
P
os
te
d
on

21
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
56
73
.1

—
T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Examining CO2 model observation residuals and their implications

for carbon fluxes and transport using ACT-America observations

Tobias Gerken1, Sha Feng2, Klaus Keller3, Thomas Lauvaux4, Joshua P. Digangi5,
Yonghoon Choi5, Bianca Baier6, and Kenneth J Davis3

1James Madison University
2Pacific Northwest National Lab
3The Pennsylvania State University
4LSCE IPSL
5NASA Langley Research Center
6University of Colorado-Boulder

November 21, 2022

Abstract

Atmospheric CO2 inversion typically relies on the specification of prior flux and atmospheric model transport errors, which have

large uncertainties. Here, we use ACT-America 30 airborne observations to compare total CO 2 model-observation mismatch in

the eastern U.S. and during four climatological seasons for the mesoscale WRF(-Chem) and global scale CarbonTracker/TM5

(CT) models. Models used identical surface carbon fluxes, and CT was used as CO 2 boundary condition for WRF. Both models

show reasonable agreement with observations, and CO 2 residuals follow near symmetric peaked (i.e. non-Gaussian) distribution

with near zero bias of both models (CT: -0.34 +/- 3.12 ppm; WRF: 0.82 +/- 4.37 ppm). We also encountered large magnitude

residuals at the tails of the distribution that contribute considerably to overall bias. Atmospheric boundary-layer biases (1-10

ppm) were much larger than free tropospheric biases (0.5-1 ppm) and were of same magnitude as model-model differences,

whereas free tropospheric biases were mostly governed by CO2 background conditions. Results revealed systematic differences

in atmospheric transport, most pronounced in the warm and cold sectors of synoptic systems, highlighting the importance of

transport for CO2 residuals. While CT could reproduce the principal CO2 dynamics associated with synoptic systems, WRF

showed a clearer distinction for CO2 differences across fronts. Variograms were used to quantify spatial coherence of residuals

and showed characteristic residual length scales of approximately 100 km to 300 km. Our findings suggest that inclusion of

synoptic weather-dependent and non-Gaussian error structure may benefit inversion systems.
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Abstract28

Atmospheric CO2 inversion typically relies on the specification of prior flux and atmo-29

spheric model transport errors, which have large uncertainties. Here, we use ACT-America30

airborne observations to compare total CO2 model-observation mismatch in the east-31

ern U.S. and during four climatological seasons for the mesoscale WRF(-Chem) and global32

scale CarbonTracker/TM5 (CT) models. Models used identical surface carbon fluxes,33

and CT was used as CO2 boundary condition for WRF. Both models show reasonable34

agreement with observations, and CO2 residuals follow near symmetric peaked (i.e. non-35

Gaussian) distribution with near zero bias of both models (CT: −0.34± 3.12 ppm; WRF:36

0.82± 4.37 ppm). We also encountered large magnitude residuals at the tails of the dis-37

tribution that contribute considerably to overall bias. Atmospheric boundary-layer bi-38

ases (1–10 ppm) were much larger than free tropospheric biases (0.5–1 ppm) and were39

of same magnitude as model-model differences, whereas free tropospheric biases were mostly40

governed by CO2 background conditions. Results revealed systematic differences in at-41

mospheric transport, most pronounced in the warm and cold sectors of synoptic systems,42

highlighting the importance of transport for CO2 residuals. While CT could reproduce43

the principal CO2 dynamics associated with synoptic systems, WRF showed a clearer44

distinction for CO2 differences across fronts. Variograms were used to quantify spatial45

coherence of residuals and showed characteristic residual length scales of approximately46

100 km to 300 km. Our findings suggest that inclusion of synoptic weather-dependent and47

non-Gaussian error structure may benefit inversion systems.48

1 Introduction49

To understand ongoing and future global climate change, it is necessary to improve50

our understanding of the terrestrial carbon cycle. Increasing atmospheric CO2 concen-51

trations from the combustion of fossil fuels and land-use change are partially balanced52

by carbon uptake in the terrestrial biosphere (Myhre et al., 2013). While the global car-53

bon budget is constrained to a reasonable degree (Ciais et al., 2013), regional sources54

and sinks (Peylin et al., 2013; Crowell et al., 2019) as well as future trends (Friedlingstein55

et al., 2014) are much less well understood and cannot be easily diagnosed from terres-56

trial biosphere models, as they disagree substantially in temporal dynamics and the sign57

of carbon uptake(Huntzinger et al., 2012).58

–2–



manuscript submitted to JGR: Atmospheres

Atmospheric inversion systems provide a top-down approach to estimating terres-59

trial carbon fluxes and a complementary perspective to ecosystem models (Gurney et60

al., 2002; Bousquet et al., 1999). Most inversion models rely on both prior estimates of61

ecosystem carbon fluxes and atmospheric transport models to optimize fluxes with re-62

spect to observed atmospheric CO2 mole fractions ([CO2]). They are subject to uncer-63

tainties arising from limited observations of atmospheric [CO2], atmospheric model trans-64

port errors, and uncertain prior flux estimates. Model transport errors in particular are65

widely considered to be a major source of uncertainty for atmospheric inversion systems66

(Peylin et al., 2005; Baker et al., 2006; Stephens et al., 2007; Gerbig et al., 2008; Cheval-67

lier et al., 2010; Lauvaux & Davis, 2014; Dı́az-Isaac et al., 2014; Schuh et al., 2019). For68

example, Stephens et al. (2007) demonstrated the far reaching effects of the atmospheric69

transport model choice by showing that substantial biases in atmospheric CO2 gradi-70

ents (i.e. vertical mixing) resulted in considerable differences in estimated regional fluxes71

and Peylin et al. (2013) found a large uncertainty in North American terrestrial carbon72

sink (0.75± 0.45PgCy−1) in a comparison of atmospheric inversion systems, highlight-73

ing the role of transport uncertainty for atmospheric inversion. Uncertainty attributed74

to transport models appears to be independent of regional sampling density, such that75

tropical and extratropical regions exhibit similar transport uncertainties (Basu et al., 2018).76

While additional atmospheric CO2 observations in the tropics are crucially needed to con-77

strain regional carbon balances, quantification and reduction of transport uncertainty78

is a priority for improving flux estimates in North America.79

With respect to regional inversion systems, if was found that different atmospheric80

boundary-layer (ABL) parameterizations can cause substantial changes in regional in-81

verse flux estimates (Lauvaux & Davis, 2014) due to differences in ABL depth and ver-82

tical mixing strength. Also, all physical parameterizations within one numerical weather83

model lead to considerable variability in ABL CO2 (Dı́az-Isaac et al., 2018). The impact84

of atmospheric mixing strength on inversion results is exacerbated by the fact that the85

CO2 mass balance in inversion models must be maintained, which then leads to erroneous86

latitudinal transport of CO2. Transport uncertainty clearly manifests itself in ABL CO287

mole fractions, and large differences have been found within global and regional atmo-88

spheric models (e.g. Dı́az-Isaac et al., 2018; Chen, Zhang, Lauvaux, et al., 2019; Schuh89

et al., 2019). At the same time, Gaubert et al. (2019) recently challenged the notion that90

vertical CO2 gradients were the dominant cause of uncertainty in the North American91
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carbon sink for current global inversions, and suggested that uncertainties in the fossil92

fuel prior were responsible.93

Feng, Lauvaux, Davis, et al. (2019) showed that both fossil fuel fluxes and conti-94

nental boundary conditions play important roles in the uncertainty in ABL CO2 in ad-95

dition to atmospheric transport, but concluded that biogenic fluxes, the typical objec-96

tive of atmospheric inverse analyses, are the largest source of uncertainty.97

While atmospheric inversions have been crucial for estimating global to continen-98

tal scale carbon sources and sinks, limited progress has been made in constraining re-99

gional carbon fluxes on seasonal scales. The coarse resolution of transport models in global100

inversion systems (typically 1◦ × 1◦ or coarser) may limit their ability to resolve finer101

scale atmospheric transport in weather systems and complex terrain (Geels et al., 2007).102

Regional inversions with higher model resolutions, such as CarbonTracker-Lagrange (Hu103

et al., 2019), have been successfully applied to constrain ecosystem carbon fluxes at re-104

gional (Lauvaux, Schuh, Bocquet, et al., 2012; Lauvaux, Schuh, Uliasz, et al., 2012; Schuh105

et al., 2013) and continental (Hu et al., 2019) scales, but rely on high density CO2 ob-106

servations as well as the model’s ability to reproduce boundary layer processes and syn-107

optic weather systems. Synoptic systems in the northern mid-latitudes are responsible108

for up to 70% of CO2 variability through advection and are the dominant mechanism109

of day to day CO2 variability in the ABL, and synoptic scale fronts create large contrasts110

in near surface CO2 (Parazoo et al., 2008, 2011). Parazoo et al. (2012) highlighted that111

CO2 flux estimates were highly sensitive to such synoptic scale gradients.112

It is therefore desirable that transport models are capable of producing relevant113

frontal processes such as (i) advection of upstream CO2 gradients (e.g. Keppel-Aleks et114

al., 2011, 2012), (ii) moist convective lifting of ABL air and (Schuh et al., 2019) (iii) mod-115

ification of ecosystem CO2 exchange due to weather effects (e.g. Chan et al., 2004). Com-116

paring global inversion system’s ABL dynamics, vertical mixing, and convection at frontal117

boundaries were also identified as priorities for improving CO2 flux estimates in the north-118

ern mid-latitudes (Schuh et al., 2019).119

The CarbonTracker (Peters et al., 2007) global inversion modeling system uses the120

Transport Model Version 5 (TM5) atmospheric model (Krol et al., 2005) with ECMWF121

(European Centre for Medium Range Weather Forecasting) ERA-Interim reanalysis me-122

teorological drivers to estimate surface fluxes of CO2. TM5’s spatial resolution above North123
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America is 1◦ × 1◦. CarbonTracker ingests a variety of global CO2 data sources includ-124

ing daily flask observations, hourly surface time series data, and aircraft observations (Andrews125

et al., 2014; Sweeney et al., 2015) and and can be used as a reference point for inversion126

systems.127

The NASA funded Atmospheric Carbon and Transport (ACT) -America Earth Ven-128

ture Suborbital Mission was designed to observe atmospheric CO2 and CH4 mole frac-129

tions in the central and eastern United States, the dominant region for North American130

ecosystem CO2 fluxes and atmospheric [CO2] variability, and provide the observational131

basis for improving regional flux inversions in this region and across the midlatitudes.132

The ecosystem fluxes, atmospheric CO2 mole fractions (Sweeney et al., 2015) and weather133

patterns all exhibit strong seasonal variability (e.g. Merrill & Moody, 1996). ACT-America134

sampled atmospheric CO2 and CH4 and associated weather variables across (i) multi-135

ple altitudes, (ii) fair weather and frontal conditions (including cross-frontal differences),136

(iii) multiple regions, and (iv) all four meteorological seasons within the scope of five,137

six-week flight campaigns. ACT-America provides an ideal test-bed for exploring the abil-138

ity of atmospheric models to simulate atmospheric CO2 across weather systems typical139

of the central and eastern United States, and thus shed light on both global and regional140

atmospheric inversion system behavior.141

In this work, we compare atmospheric CO2 model-observation differences between142

ACT-America data using both the global CarbonTracker inversion system and the mesoscale143

Weather Research and Forecasting model (Skamarock et al., 2008) coupled with chem-144

istry, commonly known as WRF-Chem, which was run for the ACT-America study do-145

main using CabonTracker surface carbon fluxes and lateral boundary conditions. For sim-146

plicity, we use WRF throughout this paper, when referring to WRF-Chem and CT when147

referring to the specific CarbonTracker-data used in this work (see Methods). Carbon-148

Tracker is used when we refer to the overall inversion system. This experiment thus fo-149

cuses on how these two different transport systems represent atmospheric CO2 with re-150

spect to the ACT observations given the same fluxes.151

We analyze the properties of CO2 model-observation differences along flight tracks152

and establish a baseline and general approach for comparing mesoscale (WRF) and con-153

tinental scale (CarbonTracker) model errors, which can be further extended to other at-154

mospheric inversion (e.g. CarbonTracker-Lagrange) or regional modeling systems. Model-155
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data residuals are investigated as a function of region, altitude, climatological season,156

and airmass associated with frontal structure. These analyses – and the frontal analy-157

sis in particular – enable a comparison of the mesoscale and continental scale models for158

atmospheric conditions that are important to CO2 transport. At the same time, these159

synoptically active conditions are often avoided in airborne networks such as the NOAA160

CCGG (Carbon Cycle and Greenhouse Gases) Aircraft Program (Sweeney et al., 2015)161

and partially hidden from satellite remote sensing due to cloud interference (e.g. Para-162

zoo et al., 2008).163

This paper investigates total model-data mismatch; our results are intended to guide164

future diagnostic studies that will separate flux and transport errors.165

2 Materials and Methods166

2.1 ACT-America aircraft observations167

This work uses 5 s averaged aircraft CO2 dry mole fractions measured using a PI-168

CARRO G2401-m cavity ring down spectrometer and [CO2] calibration is traceable to169

X2007-scale. Data are published as part of the ACT-America: L3 Merged In Situ At-170

mospheric Trace Gases and Flask Data, Eastern USA dataset (Update: 2019-03-04) (Davis171

et al., 2018), which is freely available from the Oak Ridge National Lab Distributed Archive172

Center (ORNL DAAC) (Wei et al., in review). The NASA Langley Beechcraft B-200 King173

Air and the NASA Goddard Space Flight Center’s C-130H aircraft were used to collect174

high quality insitu and remote sensing measurements across the Eastern United States.175

Given the average speed of the aircraft (100 and 120m s−1, respectively), the 5 s aver-176

aged aircraft observations have a spatial resolution of 500-600m (Chen, Zhang, Lauvaux,177

et al., 2019). Data used in this work were collected during four intensive observation pe-178

riod flight campaigns aligning approximately with climatological seasons. We use these179

campaigns as proxies for seasonal greenhouse gas behavior.180

During each of the flight campaigns aircraft were operated from 3 different bases181

(Wallops/Norfolk, Virginia; Lincoln, Nebraska; Shreveport, Louisiana), which approx-182

imately correspond to study domains (Table 1) referred to as NorthEast Mid-Atlantic183

(NEMA), Mid-West (MW), and South Central (SC) U.S. We are using geographic co-184

ordinates of individual measurement locations to delineate flight regions. The South Cen-185

tral U.S. are defined as flights as Texas, Oklahoma, and the area south of latitude N37.00◦186
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Figure 1. Overview of ACT-America observation data considered in this work. Colored lines

indicate level-leg flight tracks by campaign. Study sub-regions as outlined in text are also indi-

cated.

(Latitude of the Oklahoma-Kansas border) as well as west of longitude E 84.39◦ (Lon-187

gitude of the city of Atlanta). The Mid-West U.S. region is defined as the area north of188

N37.00◦ and west of E 87.5◦ (Longitude of the Illinois-Indiana border) and extending189

south to N33.75◦ (Latitude of Atlanta), but excluding the area previously defined as South190

Central. The geographic distribution of flight observations used in this work is displayed191

in Figure 1.192

We divide aircraft data into three altitude classes which roughly correspond to the193

atmospheric boundary-layer (<1.5 km; all altitudes in above ground level), the lower free194

troposphere that is frequently affected by convective clouds and mixing (≥1.5 to <4.0 km;195

LFT), and higher free troposphere which is less often affected by convection and thus196

might be akin to background conditions (≥4 km) (Sweeney et al., 2015; Baier et al., 2020).197

Flight planning during the ACT-America campaign was cognizant of these altitude classes.198

For example, despite large diurnal and seasonal variability of ABL-heights, ACT-America199

flight legs below 1.5 km altitude attempted to stay within the ABL by maintaining, when-200

ever possible, a flight altitude of 330m AGL. The next level is altitude was specifically201
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selected to be above the ABL, depending on forecasts and ABL depths observed in flight.202

To reduce mis-classification of vertical levels, we confined our analysis to flight segments203

that were classified as level-legs, meaning without considerable (>500m) flight altitude204

changes indicative of either vertical profiling or maneuvers to evade clouds during visual205

flight rules, as defined in the ACT-America maneuver flag product produced by the ACT ManeuverFlags206

algorithm Version 1.0 (Gerken, 2019).207

Additionally, ACT observations are classified by airmass conditions. Flights were208

planned to sample synoptic systems by flying cross-frontal transects through cold and209

warm sectors of the system. Similarly, fair weather flights were planned to sample fair210

weather conditions as well as pre-frontal warm airmasses and post-frontal cold airmasses.211

During days when no frontal crossings were flown, all data were either attributed to cold/212

warm airmasses or fair conditions depending flight location with respect to the synop-213

tic systems as indicated by National Weather Service surface analysis maps. During flights214

when fronts (typically cold fronts) were crossed, data flags were manually assigned to215

separate flights into warm and cold airmasses based on equivalent potential temperature216

(θe), wind, and trace gas changes across fronts. Airmass flags and flight type flags are217

published on the ONRL DAAC as part of the ACT L3 merged data set (Davis et al., 2018).218

ACT research flights were typically conducted from local time mid-morning – i.e. after219

the development of a sufficiently deep convective ABL for aircraft operation within the220

ABL – to late afternoon, corresponding to range of the C-130 aircraft and to avoid night-221

time conditions and collapsed ABLs.222

2.1.1 CarbonTracker223

We use total posterior atmospheric [CO2] from NOAA’s CarbonTracker (Peters et224

al., 2007, with updates documented at http://carbontracker.noaa.gov) available from the225

NOAA Global Monitoring Laboratory. Give that our ACT-America research period spans226

the years from 2016 to 2018, the CT2017 release is used for the summer 2016 campaign,227

while other seasons use the CT-NRT.v2019-2 (CarbonTracker – Near-Real Time). CT-228

NRT, designed to extend CarbonTracker between official releases, employs the same TM5229

atmospheric model, while assimilating a smaller subset of [CO2] observations. Similarly,230

real-time meteorology and a simplified terrestrial ecosystem carbon flux prior are being231

used for CT-NRT. A recent two-season comparison between CT-NRT and ACT aircraft232

observations found overall reasonable agreement between modeled and observed [CO2],233
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Table 1. ACT-America Aircraft Campaigns

Campaign Region Start & End Dates # Flight Daysa

Summer 2016 Northeast Mid-Atlantic June 18–27 7

Mid-West Aug 01–14 10

South Central Aug 16–28 9

Winter 2017 South Central Jan 30 – Feb 12 8

Mid-West Feb 13–26 9

Northeast Mid-Atlantic Feb 27 – Mar 10 9

Fall 2017 Northeast Mid-Atlantic Oct 03–14 7

Mid-West Oct 16–27 8

South Central Oct 30 – Nov 10 7

Spring 2018 South Central Apr 12–22 9

Mid-West Apr 23 – May 02 8

Northeast Mid-Atlantic May 04 – May 20 9

a Transit flights between regions are attributed to their destination region

but substantial differences in bias between region and season (Chen, Zhang, Zhang, et234

al., 2019). ABL heights for CarbonTracker are obtained using NOAA’s Observation Pack-235

age (OBSPACK, Masarie et al., 2014) for CT2017 and CT-NRT-2019.2. We find that236

CT-NRT-2019.2, CT2019, and CT2017 have very similar ABL heights along ACT flight237

tracks.238

CT2017 assimilates CO2 observations from 254 sites to estimate a weekly set of biome-239

specific scaling factors for North America that are applied to prior biospheric [CO2] flux240

model estimates. The scaling factors adjust the fluxes in order to minimize the differ-241

ence between modeled and observed atmospheric [CO2]. These biome-specific scaling fac-242

tors are estimated independently for each of the 19 potential biomes within each TransCom243

regions (Gurney et al., 2002). Prior flux estimates for fossil fuel and wildfire CO2 fluxes244

are not optimized. To estimate the impact of biases in prior fluxes, CT2017 uses two sets245

of priors (two each for terrestrial, ocean, fossil-fuel and wildfire carbon fluxes) and the246

final inversion result is the mean flux of the two inversions.247
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Two versions of the CASA model (Carnegie-Ames Stanford Approach Potter et al.,248

1993, 2003) are used for the terrestrial biospheric prior and originate from the GFED249

(Global Fire Emission Database) project (van der Werf et al., 2006; Giglio et al., 2009,250

2013). Monthly net ecosystem carbon exchange from CASA as used in GFED 4.1s and251

GFED CMS are scaled to 3-hourly fluxes similar to Olsen and Randerson (2004), while252

ensuring smooth month to month transitions following Rasmussen (1991). GFED 4.1 and253

GFED CMS are also used as priors for wild-fire fluxes and rely on MODIS (MODerate254

resoltion Imaging Spectrometer) fire counts and CASA to estimate wildfire carbon loss.255

As prior for fossil fuel emissions the ODIAC2016 and Miller datasets are used in256

CT2017. The Miller dataset uses estimated total global fossil fuel CO2 emissions from257

the Carbon Dioxide Information and Analysis Center (CDIAC, Boden et al., 2016), which258

are spatially mapped to a 1◦×1◦ grid using the spatial patterns of the EDGAR4.2 in-259

ventory (Comission, 2019) and temporal distribution of Blasing et al. (2005). ODIAC260

(Oda & Maksyutov, 2011) emissions are also based on CDIAC, but differs in the spa-261

tial mapping of fluxes, which is based on proxy data such as power-plant locations, night-262

light images, and aviation tracks. Because of ODIAC’s yearly temporal resolution, sea-263

sonal changes were derived using CDIAC monthly fossil fuel emission inventories (Andres264

et al., 2011). Diurnal and day of the week fossil fuel cycles are imposed on monthly emis-265

sions using scaling factors (Nassar et al., 2013).266

For ocean basins, oceanic, instead of biospheric, CO2 fluxes are optimized. Both267

ocean priors – the Ocean Inversion Flux prior (OIF, Jacobson et al., 2007) and pCO2-268

Clim (Takahashi et al., 2009) – are based on estimates of air-water differences in CO2269

partial pressure from either ocean inversions (OIF) or direct observations (pCO2-Clim).270

Consequently, CT2017 provides a complete set of carbon surface fluxes from the271

terrestrial biosphere, oceans, fossil fuels and wildfires as well as atmospheric CO2 mole272

fractions, which are available at 3-hourly temporal resolution and 1◦ × 1◦ spatial res-273

olutions over North America. CO2 mole fractions are reported on TM5’s 25 model lay-274

ers (Krol et al., 2005), which include 6 layers below 1.5 km and 15 layers below 10 km.275

CarbonTracker has unrealistically large differences between the first (25m) and second276

(103m) atmospheric layer in well-mixed conditions (Dı́az-Isaac et al., 2014). However,277

these model levels are considerably below the typical ABL level-leg flight altitude of ∼278

330m AGL. CT2017 includes parameterized convective CO2 mass-flux.279
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2.1.2 WRF-Chem280

The mesoscale model is WRF-Chem v3.6.1 (Powers et al., 2017; Skamarock et al.,281

2008; Grell et al., 2005; Fast et al., 2006) with the modification to transport greenhouse282

gases as passive tracers described in Lauvaux, Schuh, Uliasz, et al. (2012). Trace gas bound-283

ary conditions are provided from CarbonTracker at 3-hourly interval posterior CO2 mole284

fractions and surface fluxes introduced in the last subsection. An extra step is taken to285

assure the conservation of mass when ingesting CarbonTracker CO2 mole fractions into286

the WRF-Chem domain. More details of the mass conservation of CO2 can be found in287

Butler et al. (2020).288

The domain of interest contains most of North America at 27 km horizontal res-289

olution. The model has 50 levels up to 50 hPa with 20 levels in the lowest 1 km. The model290

meteorology is initialized every 5 days and driven with ERA5 reanalysis every 6 hours291

at 25 km horizontal resolution. The WRF-Chem dynamic is relaxed to ERA5 meteorol-292

ogy every 6 hours using grid nudging. Each meteorological re-initialization is started at293

a 12-hour setback from the end of the previous 5-day run. The first twelve hours of ev-294

ery 5-day simulation are considered spin-up and discarded from the final analysis. We295

also update sea surface temperature every 6 hours at 12-km resolution. Choices of the296

model physics parameterizations used in this experiment are documented as the base-297

line setup in Feng, Lauvaux, Davis, et al. (2019) and Feng, Lauvaux, Keller, et al. (2019)298

and model output for all ACT campaigns is archived and publicly available at the Penn-299

sylvania State University DataCommons (Feng et al., 2020).300

CO2 fluxes in WRF are taken from CarbonTracker as described above and remain301

separate tracers in the model simulations. For analyses requiring total atmospheric CO2302

mole fractions, the surface flux tracers are summed and added to the boundary condi-303

tion CO2 tracer.304

2.2 Analysis of CO2 residuals305

Differences between modeled and observed CO2 are calculated by subtracting [CO2]306

observed along the aircraft flight from modeled [CO2] using the nearest neighbor in space307

and time. Chen, Zhang, Zhang, et al. (2019) found while comparing CT-NRT v2017 to308

ACT observations that temporal and spatial interpolation impacted calculated RMDSs309

of typically less than 0.4 ppm in the ABL, which is considerably smaller (order 10% or310
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less) than RMSDs calculated in this work. The resulting residuals thus include both er-311

rors from model transport and surface fluxes. Given that CT and WRF use the same312

flux dataset, differences in residual should be a representation of differences in atmospheric313

transport including model resolution.314

We calculate statistical measures – including bias, median deviation, root mean square315

deviation, and mean absolute deviation – for the entire data set as well as separated by316

region, season, and meteorological airmass. Confidence intervals for the above statisti-317

cal measures are calculated using a block-bootstrap, which accounts for temporal auto-318

correlation using an optimal block-length approach (Politis & White, 2004; Patton et al.,319

2009). For each subset of the data, we also separate the dataset by vertical flight level.320

These divisions enable us to gain more understanding of the causes for model-data dif-321

ferences such as the impact of biological fluxes from different regions, and the impact of322

vertical mixing on continental background [CO2].323

We adopt the following notation for all quantities: The observed arithmetic mean324

and standard deviation of a quantity x are presented as x± σ.325

2.3 Variograms326

To assess spatial statistics of CO2 residuals, we compute empirical (semi-)variograms327

(Matheron, 1963) for each flight day:328

γ(D) =
1

2|N(D)|
∑
N(D)

(Ri −Rj)
2, (1)

where N(D) is the set of all pairwise Euclidean distances (i − j), |N(D)| the number329

of distinct pairs, and Ri and Rj are the residuals at spatial locations i and j. Distance330

(on WGS84 ellipsoid) pair calculation and is performed separately for individual level-331

legs at each altitude level, to minimize the impact of atmospheric change. Vertical dis-332

tances are not included in the variogram calculations as horizontal distances are much333

larger than altitude differences within the same level-leg. Subsequently, the empirical var-334

iograms for ABL, LFT, and HFT as well as WRF and CT are calculated using all dis-335

tance pairs. Euclidian distance calculations are performed using Experimental (Semi-336

)Variogram version 1.4.0 (Schwanghart, 2013). Distances are binned into 36 classes us-337

ing a geometric scaling between 1 and 750 km. To remove the disproportionate impact338

of outliers, including local CO2 plumes (e.g. directly downwind of conventional power339
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plants) that caused spikes of more than 100 ppm in [CO2], on variance calculations, we340

only considered [CO2] residuals between the 1st and 99th percentiles for the variogram.341

To characterize spatial residual statistics, we fit an exponential variogram of form342

γ(D) = c0 + c1

(
1− exp

(−D

L

))
, (2)

to the observational data, where c0 is the nugget (y-intercept of variogram), c1 the sill343

(the limit of γ at infinite D) and L the characteristic length-scale of the variogram. As344

proposed by Schwanghart (2013), the range (distance at which the γ approximates the345

sill is assumed to be 3L. The exponential fit is conducted with Matlab2018b’s lsqnon-346

lin-solver using weighted least squares using the inverse of the standard deviation of CO2347

residuals in each distance bin and a lower parameter bound of 0 is enforced for nugget,348

range, and sill.349

3 Results and discussion350

This study considers a total of 402,838 [CO2] observations collected during four ACT351

campaigns which are compared to modeled [CO2] from CT and WRF (Figure 2 and Sup-352

porting Table S1). The models appear to be capable of reproducing the multimodal shape353

of observed [CO2], which is both caused by the seasonality of CO2 fluxes and mixing,354

and the general increase of mean atmospheric CO2 between 2016 and 2018 associated355

with anthropogenic carbon emissions. The resulting [CO2] residuals for CT and WRF356

follow near symmetric, peaked distributions with high kurtosis (∼ 59 and ∼42 for CT357

and WRF, respectively) and near zero mean (CT: -0.34± 3.12 ppm; WRF: 0.82± 4.37 ppm358

for mean± standard deviation). These residual distributions are clearly and significantly359

different (Figure 2 c) from normal distributions with identical means and standard de-360

viations. Skewness is small compared to kurtosis (-2.1 and 2.7 for CT and WRF) but361

of opposite sign indicating skew towards negative bias for CT and positive bias for WRF.362

Note that the mode of the residual histogram is slightly positive (<0.5 ppm) for both mod-363

els.364

The skewness of residuals can be attributed to CT’s apparent lack of modeled [CO2]365

in excess of approximately 416 ppm, while WRF underpredicts [CO2] at values below ap-366

proximately 400 ppm (Figure 2 a+b). CT’s more pronounced [CO2] peak at approximately367

412 ppm is attributed to the fact that CT exhibits a narrower range of modeled ABL [CO2]368

during winter and spring compared to both ACT observations and WRF (Supporting369
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Figure S1). Consequently, CT’s winter and spring [CO2] in the ABL show much less over-370

lap with fall and summer [CO2] and the resulting PDF appears less smooth (Support-371

ing Figure S1 b) compared to the corresponding PDFs of ACT observations and WRF.372

Furthermore, the too narrow peak in CT can be attributed mainly to the Northeast Mid-373

Atlantic region (Supporting Figure S2).374

Figure 2. Overview of modeled and observed CO2 mole fractions during four ACT campaigns

2016-2018. (a) CarbonTracker (CT); (b) WRF-Chem; (c) Aircraft observations; and (d) result-

ing CO2 (Modeled – Observed CO2) for CT and WRF. The grey line in (d) shows the normal

distribution with similar mean and standard deviation to WRF residuals for reference.

3.1 Characterization of CO2 residuals375

For the remainder of the analysis, we focus on [CO2] residuals and their spatio-temporal376

statistics. This limits the impact of increasing ambient [CO2] due to fossil fuel emissions377

and seasonal CO2 climatologies on our analysis. Division of residuals by altitude level378

(Figure 3) reveals that the total difference (Figure 2 d) in [CO2] residual distribution be-379

tween WRF and CT is primarily reflective of differences in the ABL. Here, CT exhibits380

a more peaked distribution with negative bias, while WRF’s distribution is wider and381

with positive bias. The overall shape of CT and WRF residual distribution is non-Gaussian382

at all levels for CT and WRF and becomes markedly narrower and more peaked with383

increasing height, while the ABL [CO2] exhibits pronounced heavy tails. Comparing the384
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residual distributions between CT and WRF (Figure 3, right column) shows that the dif-385

ference in residual PDFs in the ABL is not only due to the difference in mean residu-386

als between CT and WRF, but also due to the opposite skewness of the underlying resid-387

ual distributions. For free tropospheric levels (LFT, HFT), we find that that the differ-388

ence in residual PDFs is primarily caused by a shift in the mean of the distribution (i.e.389

bias) rather than the shape of the distribution.390

Figure 3. Probability density of model observation CO2 residuals for CarbonTracker and

WRF-Chem separated by vertical level: (a) atmospheric boundary-layer – ABL; (c) lower free

troposphere – LFT; (e) higher free troposphere – HFT; and differences in their respective proba-

bility density functions (b,d,f).

Figure 3 a also reveals that while the majority of ABL [CO2] residuals fall into a391

narrow range (Interquartile range of -2.76–1.07 ppm and -1.07–3.87 ppm, respectively;392

Supporting Table S1) compared to the entire range of residuals, residuals are heavy tailed.393

To characterize this larger range of residuals, we also calculated the 2.5th and 97.5th per-394

centiles, which presents a compromise between representing the tail ends of the resid-395

ual of the distribution, while not including outliers, which for example can result from396

CO2 plumes in the vicinity of power plants.397

We find that the general picture encountered for the residual PDFs (Figure 3, left398

column) holds generally true when residuals are separated by season, region, and airmass399

–15–



manuscript submitted to JGR: Atmospheres

(Figure 4 and Supporting Table S1). While we encounter that mean residual and IQR400

vary across cases (see discussion in the following section), ABL IQRs are within the range401

of ±5 ppm (see also Supporting Table S1). At the same time, the tails of the residual402

distribution are much larger in magnitude for both CT and WRF and can exceed -10 ppm403

and 15 ppm for the 2.5th and 97.5th percentiles, respectively. At the higher LFT and HFT404

levels, the range of the residual PDF is much smaller and typically with ±5 ppm (LFT)405

and ±2.5 ppm (HFT).406
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Figure 4. Box and whisker of [CO2] residual distributions from CT (blue) and WRF (red)

for seasons, regions, and airmasses in (a) atmospheric boundary-layer – ABL; (b) lower free tro-

posphere – LFT; (c) higher free troposphere – HFT. The median and mean are indicated by

horizontal lines and circles, respectively. The box indicates 25th and 75th percentiles, whiskers

10th and 90th percentiles, and grey crosses indicate the 2.5th and 97.5th percentiles.
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A quantile by quantile (Q-Q) comparison of CT and WRF residuals to normal dis-407

tributions with corresponding means and standard deviations (Supporting Figure S3)408

further reinforces the notion of non-Gaussian [CO2] residuals encountered for the entire409

dataset holding true across seasons, regions, and airmasses. The Q-Q plots also reveal410

the largest deviations from Gaussian behavior for CT and WRF to be at the tail ends411

of the residual PDFs, further highlighting the potential of large magnitude residuals to412

impact summary statistics such as bias or RMSD, which are commonly used to constrain413

inversion systems.414

3.1.1 Regional, seasonal, and airmass dependent bias and RMSD415

Past studies of model observation mismatch have often reported on bias and root416

mean square deviation (RMSD) between model and observations (Figure 5). The me-417

dian residual and Mean Absolute Deviation (MAD) are reported in Supporting Figure S4.418

As expected, biases for LFT and HFT are much closer to zero compared to biases in the419

ABL. There are substantial disagreements between CT and WRF both in magnitude and420

sign of the bias. For higher atmospheric levels for which effects of local fluxes and mix-421

ing are less important – and thus are more likely to reflect background conditions – CT422

and WRF show closer agreement.423
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Figure 5. Comparison of CarbonTracker and WRF-Chem bias (a,c,e) and RMSD (b,d,f) for

levels ABL, LFT, and HFT and separated by climatological season (a,b), region (c,d), and air-

mass (e,f). Bootstrapped 95% confidence intervals, using a block bootstrap (see methods) are

shown in black.
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With respect to climatological seasons (Figure 5 a), WRF and CT show similar be-424

havior in the total magnitude of biases in the ABL, but signs are opposite between CT425

and WRF, while LFT and HFT biases are comparatively small (typically < |0.5| ppm).426

Fall and Spring show the worst model performance for both CT (-1.89 ± 4.70 ppm; -1.22±3.50 ppm,427

respectively) and WRF (2.53±6.46 ppm; 1.75±5.99 ppm, respectively), followed by Win-428

ter and Summer. For Summer, CT has a near-zero bias (0.10±6.01 ppm), while the bias429

from WRF remains considerable (0.89±8.13 ppm). Interestingly, the comparatively large430

bias for Fall is confined to the ABL, while LFT and HFT biases are virtually absent. This431

is in contrast to Winter, when model observation mismatch in the ABL also extend to432

positive biases at LFT and HFT levels.433

Seasonal Root Mean Square Deviation (RMSD, Figure 5 b) for CT and WRF in-434

crease from Winter to Summer and then decrease slightly during Fall, which is consis-435

tent with the frequency of occurrence for cloud convection.436

Overall, the median difference (Supporting Figure S4) is much smaller than the bias437

for ABL, indicating that the heavy tails of the residual distribution contribute consid-438

erably to the overall bias. For LFT and HFT, median residual and bias are similar to439

each other.440

Comparing CT and WRF residuals by study region (Figure 5 c), we find that both441

CT and WRF struggle in particular to accurately represent ABL [CO2] (biases in ex-442

cess of ±1 ppm) in the North East Mid-Atlantic region, which has the most complex ter-443

rain of the three study regions and also exhibits complex atmospheric flow patterns. In444

contrast, Mid-West and South Central regions exhibit comparable biases for CT of -0.74± 4.26 ppm445

and -0.60± 3.99 ppm, while WRF has a high bias of 2.14± 5.37 ppm in the South cen-446

tral and a near zero bias (0.23± 4.82 ppm) in the Mid-West ABL. Different from seasonal447

RMSD patterns, regional RMSD is comparable in magnitude between CT and WRF,448

except for NEMA where RMSDs in ABL and LFT are ∼60% larger for WRF compared449

to CT. Generally speaking median residuals exhibit a similar behavior, but with a smaller450

magnitude (< 1.5 ppm for all cases).451
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3.1.2 Comparison to previous studies452

[CO2] uncertainties over North America have been addressed in previous studies453

either through comparison of models with concentration tower observations or through454

model-model comparison.455

A previous effort to characterize uncertainties stemming from biospheric carbon456

fluxes and atmospheric transport using perturbed WRF-Chem ensembles over North Amer-457

ica during summer 2016 (Chen, Zhang, Lauvaux, et al., 2019) found that near surface458

[CO2] uncertainties arising from fluxes (∼ 6 ppm) exceed transport uncertainty (∼ 4 ppm)459

during the daytime, while background uncertainty was less important (∼ 1 ppm). In the460

free troposphere, the importance of flux and transport uncertainty were both reduced461

to ∼ 1 ppm respectively (with transport uncertainty exceeding flux uncertainty), while462

background uncertainty remained unchanged. These uncertainties are comparable in mag-463

nitude to standard deviations of summertime model observation residuals for WRF found464

in this study (ABL: 8.13 ppm, LFT: 1.67 ppm; Table S1).465

Chen, Zhang, Lauvaux, et al. (2019) identified the Mid-West and Mid-Atlantic as466

regions of largest model uncertainty due to terrestrial carbon fluxes, and noted that strong467

horizontal and vertical CO2 gradients in this region also give rise to larger uncertainties468

due to transport. Results from our study also show large [CO2] residuals in the NEMA469

region, but smaller errors in the Midwest, albeit for all seasons taken together.470

Our result that model observation mismatches were largest in NEMA is supported471

by Chen, Zhang, Zhang, et al. (2019), who compared ACT to CT-NRT v2017 and CAMS472

for Summer 2016 and Winter 2017 and found negative biases for CT-NRT in the Mid-473

Atlantic for Summer 2016. CT-NRT’s Summer 2016 ABL bias averaged across all re-474

gions was approximately -1.5 ppm while CT data used in this study had near zero bias475

and WRF had a positive bias of ∼ 1 ppm. A comparison to CAMS (Copernicus Atmo-476

sphere Monitoring Service) showed that CAMS biases were much larger in magnitude477

compared to the biases found in this work. Chen, Zhang, Zhang, et al. (2019) also iden-478

tified the NEMA as a region of high bias and particularly during Summer. Given the479

fact that NEMA is downwind of MW, which is the region of largest uncertainty in ter-480

restrial carbon fluxes (Chen, Zhang, Lauvaux, et al., 2019; Feng, Lauvaux, Davis, et al.,481

2019), model data mismatches in this region are likely to result from both flux and trans-482

port uncertainty. RMSDs in this work are also comparable in magnitude to RMSDs cal-483
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culated using a WRF-model ensemble of approximately 4.5 ppm for daily values and 4 ppm484

for 7–10 day averaging (Feng, Lauvaux, Keller, et al., 2019), who also identified the bio-485

sphere as the major source of ABL model uncertainty (∼ 3 ppm). This uncertainty was486

invariant to averaging at less than seasonal timescales, while transport uncertainty di-487

minished when averaged over time (∼ 2 ppm and 1 ppm for averaging windows of 1 and488

10 days), becoming less important than uncertainties from boundary inflow and fossil489

fuels. Given that ACT’s insitu [CO2] observations reflect airmass history, flux error is490

likely a large portion of RMSDs encountered in this work.491

A tower-based comparison of WRF-Chem and Carbontracker/TM5 using CT2009492

fluxes during the growing season of 2006 (Dı́az-Isaac et al., 2014) highlighted the impacts493

of modeled near surface dynamics on ABL [CO2]. While CarbonTracker underestimated494

CO2 drawdown during summer, WRF had a tendency to overestimate drawdown, while495

using the same set of surface fluxes. Additionally, the authors found that WRF exhib-496

ited shallower ABLs with small within-ABL vertical gradients, indicating more well mixed497

conditions in the ABL compared to TM5/Carbontracker, whereas TM5 /Carbontracker498

showed stronger vertical mixing between ABL and free troposphere. Our results (Fig-499

ure 5) show a tendency in CT to have opposite biases between ABL and LFT, which may500

be indicative of excess vertical mixing in CT. WRF, in contrast, has a more consistent501

positive bias at all levels.502

Model resolution is also an important factor for model performance. A compari-503

son of [CO2] surface observations to the CAMS CO2 forecasting system showed a 1.8-504

2.5 ppm reduction of RMSD (corresponding to 33%), when reducing horizontal model505

resolution from 80 km to 9 km (Agust́ı-Panareda et al., 2019). This was attributed to both506

better representation of modeled wind fields (i.e. transport) and spatial variability in sur-507

face carbon fluxes. While the WRF-Chem resolutions used in this studies had a 27 km508

resolution and surface fluxes were at 1◦ × 1◦ resolution, RMSDs of order 5 ppm encoun-509

tered for ACT were comparable to CAMS RMSDs at 9 km. At the same time, WRF RMSDs510

were larger than those of CT at the coarser 1-degree resolution, conflicting with results511

found by Agust́ı-Panareda et al. (2019). One potential explanation for this discrepancy512

is the fact that while neither WRF nor CT are capable of directly resolving convective513

cells, WRF has a sufficiently high resolution to resolve features of warm and cold fronts.514

Consequently, small errors in frontal location and other synoptic features can lead to large515

errors in modeled [CO2] in WRF, while CT does not have the same small-scale variabil-516
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ity and thus shows lower total bias but a less realistic distribution of [CO2] (Figures 1 a–517

c and Supporting Figures S1-S2). This hypothesis is consistent with the fact that Sum-518

mer, which has the most active cloud convection, shows small bias in WRF but the largest519

RMSD (Figure 5). Additionally, posterior carbon fluxes have been optimized for CT and520

not for WRF. The differing behavior between CT and WRF and the effect of flux op-521

timization are further discussed in section 3.2. It remains to be seen whether a further522

reduction of WRF resolution below 27 km, which would allow for convection resolving523

simulations, would increase model accuracy or would further exacerbate errors due to524

location errors of synoptic structures, which do not appear in the coarser CT.525

The CarbonTracker inversion system (Peters et al., 2007) uses RMSD between ob-526

servations and atmospheric model to estimate its assumptions for model-data mismatch527

(MDM) that constrain the inversion system (specifically: MDM = 0.85-0.95×RMSD).528

CT’s choice of using seasonally, regionally, and vertical level specific MDM values ap-529

pears to be justified, based on our results, that residuals strong vary between region, sea-530

son, and level (Figures 3–5). At the same time, other inversion systems such as CarbonTracker-531

Lagrange (CT-L, Hu et al., 2019) do not specify seasonally differing MDMs. Given CT-532

L’s regional focus and finer resolution, seasonally varying MDMs appear to be advan-533

tageous given our findings of seasonally varying model residuals.534

Note that the previous studies discussed here did not perform a weather aware anal-535

ysis in the sense that they did not separate model observation comparisons by airmass536

or weather conditions. In fact, when comparing aircraft observations to models, there537

are likely issues of representativeness, as for example NOAA/GML Global Greenhouse538

Gas Reference Network profiles (Sweeney et al., 2015) are collected using small aircraft,539

which are limited to operating in fair weather conditions.540

3.1.3 Interpretation of large residuals541

Given the importance of characterizing model-observation-mismatch for atmospheric542

inversion results and given the fact that our model residual statistics are heavily influ-543

enced by the long tails of the [CO2] residual PDF, we proceed to investigate what con-544

ditions are most conducive to the occurrence of large magnitude residuals. To do so, we545

chose to focus on the ABL [CO2] residuals in the tails (< 5th and > 95th percentiles)546

of the distribution. We also chose to concentrate on WRF, which due to its higher res-547
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olution is more capable of resolving frontal structures. We find that large magnitude resid-548

uals were not randomly distributed across all flight days, but rather concentrated on spe-549

cific days for which model observation residuals tended to be large. For example, the 10550

days with the largest fraction of large positive [CO2] residuals contributed to 72% of all551

positive large magnitude residuals. Additionally, 9 out of 10 days were associated with552

research flights that included a frontal crossing and 6 out of 10 days were for the NEMA553

region. At the negative residual tail end, we found that 10 days contributed to 68% of554

all large magnitude residuals. These days with large negative residuals were highly con-555

centrated during Summer (8 out of 10) and specifically the MW region (5 days during556

Summer). Unlike the positive residual days, weather did not appear to play a major role557

during negative residual days, which may be due to the fact carbon fluxes in MW are558

underestimated for the MW agricultural belt, such that transport errors associated with559

synoptic systems do not play a considerable role.560

The fact that large magnitude positive residuals are concentrated during frontal561

conditions, highlights the fact that CO2 transport and associated model errors are highly562

dependent on synoptic scale conditions. It is likely that comparatively small errors in563

modeled frontal location, which arise despite WRF being nudged to ERA-5 analysis, com-564

bined with observed large cross frontal [CO2] differences (Pal et al., 2020) can result in565

large [CO2] residuals. Also, ACT observations revealed characteristic bands of elevated566

[CO2] ahead of the cold front, which the WRF model may not be able to adequately re-567

produce. Given the importance of synoptic weather systems to mid-latitude carbon trans-568

port (e.g. Parazoo et al., 2008, 2011) as well as the large associated model residuals, weather569

aware specification of prior model observation mismatch could be beneficial for inver-570

sion systems and particularly regional inversions. The interplay between season and air-571

mass on model residuals is further discussed in section 3.2.572

The large contribution of MW summer to negative residuals (i.e. overestimation573

of modeled [CO2] within the ABL) coincides with the fact that the U.S. Midwest is dom-574

inated by high intensity agriculture and particularly corn, which makes this region a large575

continental carbon sink during the agricultural growing season, leading to CO2 deple-576

tion within the ABL. Consequently, underestimation of terrestrial carbon fluxes is a likely577

source of this model data mismatch for this region. At the same time, tall ABLs dur-578

ing summer and associated entrainment of free-tropospheric air counteract CO2 in the579

ABL, but models such as WRF can have considerable random errors in ABL heights that580
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are variable between regions (e.g. Dı́az-Isaac et al., 2018). The covariance between ter-581

restrial carbon fluxes and ABL heights (also referred to as rectifier effect, Denning et al.,582

1995) makes it difficult to attribute model observation differences into flux and model583

errors. The impact of ABL heights and specifically differences in simulated ABL mix-584

ing between models (e.g. Dı́az-Isaac et al., 2014) on [CO2] residuals is further discussed585

in section 3.2.3586

3.1.4 Implications for inversion systems587

The [CO2] model-observation residuals encountered in this study do not follow Gaus-588

sian distributions (Figures 2+3). Given that this study cannot separate between trans-589

port and flux errors, it is theoretically possible that the total residuals, which are non-590

Gaussian, are the result of normally distributed flux and transport errors which are su-591

perimposed onto each other. At the same time, we encounter non-Gaussian residuals at592

all vertical levels, including LFT and HFT, where the influence of surface fluxes is smaller593

compared to the surface, implying that transport model errors, taken in isolation, are594

also non-Gaussian. Atmospheric inversion systems require the specification of model-data595

mismatch errors in order to constrain the flux optimization. The CarbonTracker (Peters596

et al., 2007) and most other operational inversions require mismatches to be normally597

distributed and transport errors to be unbiased. While we find that the overall bias of598

the model-data mismatch is comparatively small, its non-Gaussian nature found in this599

study has the potential to impact inversion results. The heavy tails of the [CO2] resid-600

ual contribution, have outsized impacts on RMSD and standard deviation. The result-601

ing larger RMSDs and standard deviations, which are used to prescribe Gaussian errors,602

in consequence, reduce the sensitivity of inversion systems to observations. Given that603

we find that a large fraction of large magnitude model observation mismatches stem from604

a small number of days, and (in the case of positive residuals) from days with frontal ac-605

tivity, it appears that specifying weather aware model data mismatches in regional in-606

version systems could increase the sensitivity of the inversion to observations and thus607

improve flux estimates.608

3.2 Comparison of model residuals between CT and WRF609

A comparison of the joint residual statistics (Figure 6) reveals their differing be-610

havior in the two modeling systems when disaggregated according to seasons, regions,611
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and airmasses. Given that CT and WRF use identical carbon surface fluxes and that612

WRF uses [CO2] from CT as lateral boundary condition, we infer that differences be-613

tween CT and WRF are due to tracer transport differences.614
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Figure 6. Comparison of CarbonTracker (as described in methods) and WRF-Chem CO2

residual as function of climatological season (rows), region (columns) and airmass (symbols) for

the three observation levels.
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3.2.1 Residuals in the free troposphere615

Free tropospheric [CO2] residuals are small compared to ABL residuals for all sea-616

sons (Figures 6 and Supporting Figure S5 showing only FT and HFT), regions, and air-617

mass conditions and mean differences between CT and WRF are smaller than their re-618

spective standard deviations. The magnitude of HFT bias is of order 0.5 ppm for both619

CT and WRF, while the standard deviation of residuals is of order 1 ppm. In the vast620

majority of cases CT and WRF bias differences are less than 0.5 ppm and show the same621

sign. A similar picture emerges for LFT, but with slightly larger magnitude biases and622

standard deviations (|0.8| ppm and 1.5–2 ppm, for mean and standard deviation, respec-623

tively). Similarly, the difference between CT and WRF also tends to be less than 0.5 ppm624

and to be of similar sign (Supporting Figures S6–S12). The fact that model-model mis-625

matches are of similar magnitude to model observation mismatch, highlights the diffi-626

culties in separating the two. It is notable that WRF tends to have lower free tropospheric627

[CO2] than CT, except during Summer where the reverse appears to be true for NEMA628

and MW, but not necessarily SC, where onshore flow of homogeneous high CO2 air from629

the Gulf of Mexico occurs. Given the fact that CT and WRF employ the same carbon630

fluxes and WRF uses CT atmospheric mole fraction for lateral boundary conditions (i.e.631

background), it appears reasonable to infer that transport uncertainty between CT and632

WRF in the free troposphere is of order 0.5 ppm. However, given the comparatively large633

volume of the free troposphere compared to the atmospheric boundary-layer, even small634

model errors represent large quantities of carbon and will affect column averaged [CO2]635

(often referred to as XCO2), which is thought to be less sensitive to ABL dynamics and636

surface flux heterogeneity (e.g. Keppel-Aleks et al., 2011). Also, it has been estimated637

that a difference of 0.5 ppm between to boundary-condition products over North Amer-638

ica produces an offset of 0.8PgCy−1 in the North American terrestrial carbon flux, which639

is similar to the magnitude to the actual North American sink of around 0.5–1.0PgCy−1
640

(Gourdji et al., 2012). This further highlights the need to further reduce uncertainties641

in global products. Additionally, given that the free troposphere is not in direct exchange642

with the surface, free tropospheric [CO2] biases can be integrated over continental scales,643

making attribution of flux errors to specific regions and processes difficult.644
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3.2.2 Interpretation of free tropospheric differences645

CarbonTracker XCO2 (CT2015) was also shown to have good agreement with air-646

craft observations using the NOAA aircore network with spatial XCO2 gradients mostly647

reflecting large-scale circulation (Lan et al., 2017). Therefore, comparatively small free648

tropospheric biases are in line with our expectations. Sweeney et al. (2015) showed that649

vertically homogeneous oceanic background air becomes increasingly less homogeneous650

with residence time over land, in response to terrestrial carbon fluxes and upward mix-651

ing of the flux signal. Since, WRF and CT employ identical fluxes, differences between652

CT and WRF are either due to differences in vertical mixing or airmass history. Due to653

the fact that ABL volume and mass are small compared to the free troposphere, verti-654

cal mixing differences are difficult to diagnose using ACT data. However, since HFT and655

LFT [CO2] are lower in WRF during winter, when the terrestrial biosphere acts as a car-656

bon source and higher during summer, when there is carbon uptake, as well as the fact657

the CT has been documented to have strong vertical mixing (Dı́az-Isaac et al., 2014; Schuh658

et al., 2019), the differences between WRF and CT with respect to ABL to FT [CO2]659

are consistent with different vertical mixing strengths between models. These findings660

are also consistent with Butler et al. (2020), who found model data mismatches to re-661

sult from model transport differences below 850 hPa. Cloud convection associated with662

frontal lifting causes convective mass flux and presents a potentially important avenue663

for vertical transport of CO2. While CarbonTracker and the underlying TM5 chemical664

transport model operate on an approximately 4-times coarser horizontal resolution than665

WRF, CarbonTracker includes parameterized convective mass fluxes taken from the par-666

ent ECMWF (European Centre for Medium-Range Weather Forecasts) model. WRF in667

contrast, with its finer horizontal and vertical resolution, resolves a larger portion of ver-668

tical motion, but does not presently have explicitly coupled convective tracer mass-flux669

associated with clouds. This omission may cause underestimation of vertical transport,670

which is consistent with the observed opposite sign of ABL to FT CO2 residuals between671

CarbonTracker and WRF found predominantly during Winter and Spring.672

3.2.3 Residuals in the atmospheric boundary layer673

A different picture emerges for ABL [CO2] residuals (Figure 6). We encounter larger674

differences between CT and WRF. In the ABL, CT exhibits a low bias and WRF a high675

bias (Figure 3 a) for most seasons and regions. Exceptions include Summer in MW, for676
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which CT has high bias in cold and fair conditions, while WRF shows the opposite be-677

havior. The differences in mean residual between models are generally smaller than one678

standard deviation, highlighting the large temporal and spatial variability of model ob-679

servation residuals. In general, we find the largest variation in [CO2] residuals as indi-680

cated by their standard deviation during Summer conditions, which have the most ac-681

tive cloud convection and biosphere fluxes. Winter, Spring, and Fall exhibit much less682

variation, except for the NEMA region. In NEMA the standard deviations of residuals683

remain large during Spring and Fall, which may be due to topographic effects, long con-684

tinental upwind trajectories, and regional fossil fuel emissions. Fair weather conditions685

on average are not only associated with the lowest magnitude in bias, but also show the686

smallest differences between CT and WRF across seasons and regions.687

This work investigates total ABL [CO2] biases as the difference between modeled688

and observed [CO2] which consist of flux errors and transport uncertainty. Despite pre-689

scribed carbon fluxes being optimized to continental [CO2] observations, ABL [CO2] bias690

magnitudes for specific regions and seasons are approximately 1–3 ppm in Winter, 1–691

10 ppm during Summer and 1–5 ppm during Spring and Fall, highlighting the remain-692

ing uncertainties associated with biospheric carbon fluxes and atmospheric transport.693

Because we use posterior carbon fluxes from CT, one can expect CT to show smaller694

magnitude biases compared to WRF which has a different atmospheric transport of CO2695

– care should be taken to not interpret bias differences between WRF and CT as differ-696

ences in model quality. Instead, model-model differences between CT and WRF should697

be seen to reflect transport uncertainty. Model-model differences follow a similar sea-698

sonal pattern compared to bias but can reach slightly larger magnitudes (Winter: 1–4 ppm;699

Spring: 1–8 ppm; Summer: 1–10 ppm; Fall 1–8 ppm). We find larger model-model dif-700

ferences for warm and cold airmasses associated with synoptic systems compared to fair701

weather conditions. Also, biases are generally smaller in magnitude for fair weather, high-702

lighting the role of dynamics processes on model performance. Model-model differences703

encountered in our work are larger in magnitude compared to values found by Chen, Zhang,704

Lauvaux, et al. (2019). A recent study using 45 different combinations of physical pa-705

rameterizations in WRF (Dı́az-Isaac et al., 2018) revealed ABL CO2 transport uncer-706

tainties of 3–4 ppm. Since model-observation differences are in the same range as model-707

model differences, we can infer that transport uncertainty is a large contributor total ABL708

[CO2] biases and must be resolved before reaching conclusions about flux errors alone.709
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In addition to substantial vertical [CO2] gradients resulting from ABL enrichment or de-710

pletion of [CO2] due to surface fluxes Pal et al. (2020) encountered large horizontal cross711

frontal [CO2] differences during Summer 2016, which arise from differences in airmass712

history as well as modification of surface fluxes in response to cloud shading and reduced713

ABL mixing (e.g. Chan et al., 2004; Pal et al., 2020). Given the importance of cross frontal714

CO2 differences for atmospheric CO2 transport and potentially inversion system perfor-715

mance, it is important for atmospheric models to accurately represent these cross-frontal716

[CO2] differences. Especially during Summer, when differences are largest with 5-30 ppm717

(Pal et al., 2020), we find differences in warm and cold sector bias in both models to ex-718

ceed 5 ppm, such that modeled cross-frontal [CO2] differences can differ considerably from719

observations. Smaller bias differences are found for the other seasons and regions, ex-720

cept for Winter in MW. However, given that Summer is a season with high convective721

activity and large terrestrial biogenic carbon fluxes, misrepresentation of cross-frontal722

gradients may have substantial impact on modeled atmospheric carbon fluxes and thus723

atmospheric inversions. This finding further highlights the potential need for weather-724

aware inversion approaches.725

3.2.4 Potential sources of mismatch726

The ABL is in direct contact with both the surface and the free troposphere, thus727

making accurate prediction of ABL [CO2] a particularly challenging problem. Despite728

using posterior biospheric CO2 fluxes from CT, considerable uncertainty in surface car-729

bon fluxes remains an issue. Additionally, CT is optimized to continental scale CO2 ob-730

servations and large variation of bias exists between regions, seasons, and airmass con-731

ditions. Besides surface fluxes, ABL growth and resulting entrainment of free tropospheric732

air into the ABL as well as convection lead to CO2 exchange between ABL and LFT.733

Given the importance of vertical mixing for inversion accuracy (Stephens et al., 2007;734

Peylin et al., 2013; Schuh et al., 2019) we proceed to investigate potential impacts of ABL735

depth (in conjunction with ABL to LFT [CO2] differences) on model-model bias differ-736

ences. We find that CT tends to exhibit deeper ABLs for all seasons except Fall (Fig-737

ure 7), which would be consistent with, CT’s demonstrated low bias for Winter and Spring738

(when ABLs are enriched in CO2 compared to LFT) as well as the high bias during Sum-739

mer (when ABLs are depleted in CO2). However, a more complicated picture emerges,740

when taking into account observed vertical [CO2] differences (Supporting Figure S13).741
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One caveat is the fact that this comparison uses ABL depths directly provided from CT742

and WRF model output. For CT this means that ABL depths are calculated based on743

the Richardson number, while WRF ABL depths are diagnosed in the turbulence pa-744

rameterization. However, despite these differences in ABL definition, we believe that us-745

ing the ABL definition native to the modeling system should accurately reflect the model’s746

vertical ABL mixing. Based on ABL depth differences between CT and WRF ranging747

from -20% to 35% and typical ABL to LFT [CO2] differences of less than 10 ppm mag-748

nitude, we estimate the maximum impact of ABL depth differences between CT and WRF749

to be less than 3 ppm. Consequently, while ABL [CO2] bias differences between CT and750

WRF during Winter are explainable by differences in entrainment of free tropospheric751

air at the ABL-top, model-model residual differences between CT and WRF within the752

ABL are considerably larger than 3 ppm for all seasons except Winter and can thus not753

be explained by entrainment alone. This result leaves cloud convection associated with754

frontal lifting and horizontal advection differences as the likely main source for the dif-755

fering behavior between CT and WRF.756
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Figure 7. Comparison of CarbonTracker (as described in methods, red) and WRF-Chem

(blue) diagnosed ABL heights separated by season, region, and airmass. The boxplot indicates

10th, 25th, 75th, and 90th percentiles of the distribution. The median and mean are indicated by

horizontal lines and circles, respectively.

Differing [CO2] residuals between CT and WRF highlight the importance of CO2757

transport differences in frontal systems. At the same time, considerable biases remain758

for CT and WRF shows larger magnitude biases than CT. We hypothesize that WRF,759

due to its higher resolution, is capable of reproducing frontal location and structure, while760

TM5 which underlies CT is less capable of doing so. CT’s fluxes are optimized without761

taking into account transport uncertainty differences associated with frontal systems and762

using a model resolution that does not fully resolve synoptic scale weather. Consequently,763

terrestrial carbon fluxes optimized with the CarbonTracker system and applied to WRF,764

then lead to considerably higher [CO2] biases in warm airmasses compared to cold air-765

masses in WRF, while biases in warm and cold sectors for CT, which has a coarser res-766

olution, are more consistent.767

Given the importance of midlatitude synoptic scale systems to North American merid-768

ional carbon transport, our findings support the notion that inversion systems can be769
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improved by considering the effects of frontal passage through, for example, warm and770

cold sector specific prescribed model-data mismatches. At the same time, increasing pre-771

scribed model-data mismatches near fronts without addressing model biases would de-772

emphasize observations near frontal structures in inversion systems. This would poten-773

tially reduce changes to prior fluxes in vicinity of synoptic systems, which may be es-774

pecially problematic, because frontal systems present a complex environment, where sur-775

face flux priors from land-surface models such as CASA may be highly uncertain.776

3.3 Spatial structure of model observation mismatch777

Spatial analysis of model-observation mismatch through experimental variograms778

(Figure 8), confirms the previously reported findings. CT and WRF show similar struc-779

tural behavior for LFT and HFT, while substantial differences emerge within the atmo-780

spheric boundary layer. We determine the spatial extent of mismatch correlations (var-781

iogram range) to be between 300 and 600 km (LFT: 267 and 309 km for CT and WRF782

respectively; HFT: 405 and 576 km). The corresponding variances (variogram sill) are783

for LFT 1.11 and 1.43 ppm2 for CT and WRF, respectively as well as 0.48 and 0.62 ppm2
784

for HFT. In the ABL, the range is estimated 356 km for CT and 693 km for WRF, while785

corresponding sills are 13.10 and 36.60 ppm2. Note, however, that these values are highly786

uncertain as we find generally large variability of model-data mismatches, as indicated787

by the shading in Figure 8, compared to the average variogram. Also, we have compar-788

atively little data that extended beyond 300 km as indicated by the drop in variance, due789

to the inherent limitations of airborne data collection. Therefore, larger magnitude val-790

ues for range as encountered in the ABL and WRF particularly are associated with larger791

uncertainties in the fitting of the experimental variogram.792
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Figure 8. Experimental variogram for [CO2] residuals for CT and WRF at levels (a) ABL;

(b) LFT; and (c) HFT. The dashed lines indicate an exponential variogram fit. Shaded areas

show the standard-deviation within each bin of the experimental variogram.
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Overall, the mean spatial variance (γ) is small compared to the variability of model793

data residuals (shading in Figure 8). Unfortunately, despite ACT’s more than 400,000794

observations, we were not able to differentiate variogram statistics for season, region, and795

airmass. We hypothesize that this is due to lack of observations at large distances that796

preclude robust calculations of range and sill.797

Recently, Lauvaux et al. (2019) investigated spatial error structures of in situ [CO2]798

from tower observations and found characteristic length scales (L) of order 100–150 km799

during using a simple exponential (e−x/L). Since the range of experimental variograms800

is assumed to be 3×L, we find our airborne observations comparable to the values given801

by Lauvaux et al. (2019). Characteristic length-scales of order 100 km imply that [CO2]802

observations at the NOAA GML tall tower network (Andrews et al., 2014) are indepen-803

dent of each other, while sufficient averaging lengths should be applied to satellite XCO2804

measurements.805

3.4 Additional considerations806

Our results show distinct [CO2] biases when observations are segregated by air mass.807

Consequently, model evaluations, as commonly done, that average across different syn-808

optic conditions are likely to hide canceling biases. Also, many observational systems,809

such as satellites (e.g. OCO-2, Crowell et al., 2019) and the NOAA aircraft profiling ef-810

forts (Sweeney et al., 2015) selectively sample fair weather conditions, which are were811

found to be less biased. Resulting evaluations of model-data mismatch may thus under-812

estimate the magnitude of transport model bias.813

Biases related to air mass are likely linked to systematic differences in atmospheric814

transport and the systematic differences in representation of weather system [CO2], found815

in this work, may propagate to global meridional transport of [CO2]. They therefore may816

significantly affect global [CO2] inversion estimates as illustrated by Schuh et al. (2019)817

and Barnes et al. (2016). Additional numerical studies and model-data comparisons should818

be undertaken to quantify this link.819

The importance of simulated transport on model-data mismatch is further high-820

lighted by the fact that CT and WRF biases are of opposite sign, despite common car-821

bon surface fluxes. Similarly, we find differences between CT and WRF with respect to822

modeled cross frontal [CO2] differences, especially during Summer when WRF over-predicts823
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differences while CT tends to under-predict. The exact cause of this difference between824

models, which will affect CO2 transport in synoptic systems (Pal et al., 2020) is currently825

unclear. Our results show that ABL depth alone cannot account for reported differences.826

Potential causes may include resolved vertical transport and parameterized cloud mass827

flux (Parazoo et al., 2008).828

Magnitudes of model-data residuals strongly depend on airmass history and specif-829

ically travel time over land (Sweeney et al., 2015; Lan et al., 2017) during which air parcels830

are subject to CO2 exchange with the biosphere. For example, warm sector airmasses831

originating from the south have less fetch over land compared to cold sector airmasses832

from the north. Therefore, southern air originating from the Gulf of Mexico provides a833

homogeneous CO2 background and thus less deviation from oceanic backgrounds, while834

northern airmasses that traveled through areas of large biospheric carbon fluxes such as835

the Mid-West agricultural belt or boreal forests have much more varied [CO2]. This high-836

lights the importance of airmass history and transport error for model-observation mis-837

match. While our work points to transport error differences as one source of the model-838

data mismatch difference between warm and cold airmasses, a true segregation of trans-839

port from flux errors will likely require calibrated transport ensembles (Dı́az-Isaac et al.,840

2019; Feng, Lauvaux, Keller, et al., 2019; Feng, Lauvaux, Davis, et al., 2019).841

Considering this work as a naive and uncalibrated 2-member model-ensemble, we842

find seasonally varying model-model differences of 1–10 ppm. Within this range larger843

differences pertain to warm and cold airmasses, while smaller differences pertain to fair844

weather conditions. Unfortunately, model-model differences are in the same range as com-845

parisons with ACT observations, such that attribution of transport errors from our work846

appears to be not possible, thus necessitating more targeted modeling studies.847

In comparison to ABL [CO2] residuals, residuals in the free troposphere were much848

lower (< 0.5 ppm in HFT) and differences between CT and WRF were small, implying849

that transport model errors were less important. Therefore, CO2 observations in the higher850

free troposphere may in many cases serve as continental background for greenhouse gas851

measurements (e.g. Baier et al., 2020).852
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4 Conclusions853

We use more than 400,000 CO2 dry mole fraction observations collected during four854

flight campaigns spanning all four seasons and three regions (Northeast Mid-Atlantic,855

Mid-West, South-Central) in the Eastern U.S. to investigate model-observation mismatches856

for the WRF-Chem regional model and the global CarbonTracker system. A particu-857

lar focus of this investigation and the ACT-America project in general, were synoptically858

active conditions, which present a major component of mid-latitude CO2 transport and859

thus have the potential to greatly impact CO2 inversion results.860

Using identical carbon surface fluxes, we found that both models were capable of861

reproducing the [CO2] dynamics over the Eastern U.S. At the same time, model-model862

mismatches and model observation mismatches were found to be strongly related to sea-863

son and airmass, with synoptically active conditions and seasons to exhibit higher bias864

than fair weather conditions.865

While errors in CT posterior fluxes likely play a considerable role in model-observation866

mismatch, we also qualitatively identified CO2 transport as a major component, because867

the CT exhibited negative bias, while WRF had positive bias, despite common fluxes.868

However, it was not possible to quantify the magnitude of transport error, which was869

found to be due to horizontal transport rather than boundary-layer depth errors alone.870

While the two models used in this study could be considered a naive 2-member ensem-871

ble, further studies using carefully assembled model ensembles are needed to character-872

ize transport uncertainty. Better quantification of transport uncertainty and improve-873

ments to transport models has the potential to improve inversion efforts as currently ob-874

servations may be overly discounted in inversion products.875

Comparing the lower resolution and global CT system with the WRF regional model,876

we find that while CT was capable of reproducing the principal [CO2] dynamics asso-877

ciated with synoptic scale systems, WRF’s higher resolution showed a clearer distinc-878

tion between [CO2] residuals in warm and cold airmasses. Given the stark cross frontal879

[CO2] differences and the overall importance of weather systems for CO2 transport, there880

is a likely benefit to making transport errors in inversion systems weather aware. This881

idea also highlights the potential of regional inversion systems to improve posterior car-882

bon flux estimates. At the same time, caution should be taken because residual distri-883

butions were highly non-Gaussian and long-tailed and the higher resolution WRF-model884
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had heavier tails than CT, such that the assumption of Gaussian errors in regional in-885

version systems lead to a further discounting of observational evidence due to overesti-886

mation of transport errors.887

In contrast to considerable model biases in the atmospheric boundary-layer we only888

found small biases in the free troposphere and only small differences between models,889

highlighting the fact that upper tropospheric measurements of CO2 may be suitable for890

characterizing continental CO2 background conditions, which would improve our abil-891

ity to investigate near surface.892

In summary, our work demonstrated the utility of using ACT airborne [CO2] mea-893

surements to investigate CO2 model-observation mismatch across seasons, regions, and894

airmass conditions and provide a pathway for similar investigations using targeted model895

ensembles and to identify the processes responsible for model-observation mismatch.896

Acknowledgments897

Observational data is available from the ACT public data repository hosted898

by Oak Ridge National Lab. This work uses the ACT-America: L3 Merged In Situ899

Atmospheric Trace Gases and Flask Data, Eastern USA (Davis et al., 2018). WRF900

simulation for ACT-America (Feng et al., 2020) are available at The Pennsylvania901

State University Data Commons. CarbonTracker CT2017 and CT-NRT.v2019-2902

results are provided by NOAA ESRL, Boulder, Colorado, USA from the website903

at http://carbontracker.noaa.gov. The use of NOAA’s Observation Package (OB-904

SPACK) for CT2017 and CT-NRT-2019.2 downloaded from the ObsPack Data905

Portal at www.esrl.noaa.gov/gmd/ccgg/obspack/ is acknowledged. The Atmo-906

spheric Carbon and Transport-America (ACT) project was sponsored by the Na-907

tional Aeronautics and Space Administration (NASA) under awards NNX15AG76G908

and NNX15AJ06G. T. Lauvaux was also supported by the French research pro-909

gram Make Our Planet Great Again (Project CIUDAD - CNRS). We thank NASA’s910

Airborne Sciences program, NASA Headquarters and staff, in particular, Kenneth911

W. Jucks and Jennifer R. Olson for their support of our mission. We would like to912

acknowledge the contributions of ACT collaborators, in particular, NASA project913

managers, scientists, and engineers and our colleagues at NOAA, Colorado State914

University for their excellent cooperation during the field campaign. Thanks are915

–39–



manuscript submitted to JGR: Atmospheres

also due to the flight crews and aircraft facility groups from Wallops Flight Facility,916

Langley Research Center, and Duncan Aviation for their outstanding work sup-917

porting these flights and measurements. We also thank Hannah Halliday and John918

B. Novack for their contributions in data collection.919

–40–



manuscript submitted to JGR: Atmospheres

References920

Agust́ı-Panareda, A., Diamantakis, M., Massart, S., Chevallier, F., Muñoz-Sabater,921
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