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Abstract

The High-Resolution Rapid Refresh (HRRR) model version 3 meteorological fields were 
examined using data from New York State Mesonet (NYSM) sites from an entire year. In this 
work, the land surface, atmosphere and cloud coupling systems are evaluated as an integrated 
system. The physical processes influencing soil hydrological, surface thermodynamic processes 
from surface fluxes to boundary layer convection are investigated from both temporal (seasonal 
and diurnal) and spatial perspectives. Results show that the model 2m surface biases are 
seasonally dependent, with warm and dry bias present during the warm season, and an extreme 
cold bias during the night in winter. The summer warm bias includes both a land-surface-induced
bias and a cloud-induced bias. Inacurate representation of energy partition and soil hydrological 
process across different land use types and hydrological bias of spring snow melt in the land 
surface model is the main source of the land-surface induced bias. A feedback loop linking cloud
presence, radiative flux changes and temperature contributes to the cloud-induced bias. The 
positive solar radiation bias increases from clear sky to overcast sky conditions, beyond simply 
the lack of aerosols in the current version. The most significant bias occurs during overcast and 
thick cloud conditions associated with frontal passage and thunderstorms.

1 Introduction

The Understanding land-atmosphere coupling is essential for improving weather 
forecasts at multiple scales (Betts et al., 2013). Soil and vegetation influence the partition of 
surface energy fluxes, which in turn affecting planetary boundary layer (PBL) development, 
convective initiation, cloud development, and precipitation (Pleim et al., 2011; Smirnova et al., 
2016; Sun et al., 2017; Lee et al., 2018). Subsequent cloud formation and precipitation modulate 
the exchange of radiation, heat, and moisture in the boundary layer, a feedback that alters surface
thermodynamic conditions (Stull, 1988; Freedman et al., 2001; Betts & Silva Dias, 2010). This 
complex, nonlinear feedback process has been the topic of numerous simulation and 
observational studies dealing with the land atmosphere interaction (e.g., Eltahir et al., 1998; 
Schar et al., 1999; Koster et al., 2004; Koster et al., 2006; Taylor et al., 2012; Williams et al., 
2016; Peters et al., 2017). Williams et al. (2016) evaluated the single-column version of 
Community Land Model (CLM4.5) using observations in the U.S. Southern Great Plains. They 
found the model underpredicted evaporative fraction and overpredicted the impact of soil 
moisture, leading to biases in the 2-m air temperature and precipitation. Peters et al. (2017) 
analyzed the impact of surface moisture on the forecasting of a mesoscale convective system 
(MCS), finding that the initial onset and subsequent MCS displacement was strongly correlated 
with the model bias in near-surface humidity.

The HRRR (High-Resolution Rapid Refresh) model was developed to serve the US 
severe weather and aviation forecasting community by providing frequently updated high-
resolution short-range weather forecasts (Benjamin et al., 2016). HRRR is highly flexible to 
develop many valuable forecast applications, including more accurate predictions of 
thunderstorms and flooding potential (Bytheway et al., 2017; Katona et al., 2016; Griffin et al., 
2017), air quality (James et al., 2018), and renewable energy forecasting (Pichugina et al., 2017; 
James et al., 2017).  The performance of HRRR forecasts in terms of land-atmosphere interaction
has been evaluated in previous works (Wagner et al., 2019; Lee et al., 2019). Wagner et al. 
(2019) evaluated HRRR diurnal variation of convective available potential energy (CAPE) 
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against-derived CAPE obtained from surface-based Atmospheric Emitted Radiance 
Interferometer (AERI) measurements, finding that HRRR-forecasted CAPE lagged 2 to 4 hours 
compared to the observations. This is believed to result from the lack of subgrid-scale clouds in 
version 1 of the HRRR. Lee et al. (2019) also evaluated the HRRR forecasted near-surface 
meteorological fields and surface energy balance using measurements from two 
micrometeorological sites. They found that although HRRR-forecasted near-surface temperature 
and moisture are in good agreement with observations, there are notable positive biases in 
sensible heat flux, biases that might lead to modeled precipitation underestimates.  

The complex landscape of New York State and its immediate surroundings offer a unique
opportunity to study the effects of aerosol-cloud-precipitation interactions on weather systems in 
complex terrain that rely on strong land-atmosphere coupling . In response to increasingly 
frequent extreme weather events, the University at Albany, SUNY (UAlbany)  developed an 
Early Warning Severe Weather Detection network. This unique network measurement suite, 
known as the New York State Mesonet (NYSM), fills a critical need of providing data for in-
depth model evaluation.  It is well-suited for NWP model evaluations of mesoscale processes 
and comparison with the NYSM observations forms the basis of this study to evaluate HRRR 
model performance.

2 Data and Methods

2.1 HRRR

The HRRR is a NOAA hourly updated, cloud-resolving, convection-allowing 
atmospheric model. Since the operational version of the HRRR (currently HRRRv3) was 
implemented on 12 July 2018, we will perform one-year evaluation between August 1, 2018 and 
July 31, 2019. In the HRRRv3, Rapid Update Cycle (RUC) land surface model is used to 
compute surface heat flux and moisture exchanges (Smirnova et al., 2016). The surface 
temperature is calculated using surface energy balance, which is controlled by shortwave and 
longwave radiation budget, and energy partition of sensible and latent heat fluxes. HRRR v3 
used the Thompson microphysics scheme with 5 hydrometeor types (cloud water, cloud ice, rain,
snow and graupel) which improved the upper level cloud biases compared to the previous 
version (Thompson & Eidhammer, 2014). To better represent sub-grid scale shallow-cumulus 
clouds, the MYNN Planetary Boundary Layer Scheme is used, with assumed sub-grid cloud 
probability distribution functions to determine the subgrid scale cloud mixing ratio, cloud 
fraction, and the buoyancy flux (Olson et al., 2019). The Rapid Radiative Transfer Model for 
GCMs (RRTM-G) is used to estimate radiative forcing (Iacono et al., 2008). This study focuses 
on the short-term (1 to 24 hours) forecast from 0 UTC analyses. To allow for sufficient spin-up 
time, we emphasize the daytime forecasting and analysis.

2.2 New York State Mesonet (NYSM)

In 2017, UAlbany deployed and operated a dense environmental monitoring network, 
New York State Mesonet (NYSM, http://nysmesonet.org/). The NYSM has 180 sites with state-
of-the-art instrumentations, including 126 standard surface meteorology stations, 17 flux towers 
and 17 atmosphere profilers, which are the most sophisticated, high density (average distance 
between stations ~ 26 km) statewide observing network. The 126 standard surface stations 
measure not only standard meteorological variables  (temperature, humidity, wind speed and 
direction, pressure, and precipitation) but also soil temperature and moisture at three levels, snow
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depth, and total surface short-wave (SW) irradiance at 5-minute intervals (Brotzge et al., 2020). 
The sub-network of 17 enhanced surface energy budget stations directly measure both  incoming 
and outgoing shortwave and longwave radiation, ground heat flux, and turbulent fluxes of 
momentum, sensible and latent heat, and carbon dioxide with 30 minutes intervals (Covert, 
2019). Topography and land use characteristics are considered when selected the flux station 
locations. To be comparable to HRRR, only data sampled at an hourly interval are used in this 
paper. As NWP models transit to a high-resolution convection-allowing framework, infrequent 
atmospheric sounding profiles (currently only 2 soundings per day at three sites within NYS) are 
inadequate. Recognizing this critical measurement gap, the NYSM operates 17 enhanced 
atmospheric profiler systems that are sited along population, transportation and utility corridors, 
strategically positioned to capture upwind features approaching the station (Freedman et al., 
2016). Each profiler site is equipped with a wind Doppler LiDAR (WDL), a profiling (multi-
frequency) microwave radiometer (MWRP) and the environmental Sky Imager-Radiometer 
(eSIR). The profiler network continuously samples the vertical profiles of temperature, humidity 
with MWRP from surface to 10 km (Yang & Min, 2018). MWRP significantly increased 
temporal resolution of temperature and humidity vertical measurements. Compensated with 
higher vertical resolution from sounding, MWRP measurements will provide better 
understanding of boundary layer conditions. eSIR is a dual-measurement system comprised of 
continuous (daytime) observations of aerosol and cloud optical depths, narrowband spectral 
direct and diffuse radiation, and whole sky images (cloud distribution and motion for solar 
energy forecasting). The WDL provides not only 3D wind fields (up to 7 km) but also planetary 
boundary layer (PBL) height and vertical profile of aerosol optical properties (synergistic with 
eSIR inferred aerosol optical depth). The multi-frequency MWRP independent information on 
temperature and moisture, and cloud liquid water--crucial data for determining upper 
atmospheric conditions (Yang & Min, 2018) and cloud optical properties (Min & Harrison, 
1996). This advanced instrument suite provides an unprecedented data stream of aerosols, 
clouds, radiation, precipitation, multi-level soil moisture/temperature, snow depth/snow water 
content, surface fluxes, and meteorological profile data at high spatial and temporal resolution, 
providing the ability to track abrupt changes in thermodynamic profiles throughout the state. 

To quantify the cloud conditions at the standard sites where eSIR is not available, the 
observed global horizontal irradiance (GHI) or total solar radiation was used to calculate the 
clear-sky index (CSI). The clear-sky index is the ratio of observed GHI to the baseline GHI 
under clear-sky conditions in that month. A simple clear sky model was used to calculate clear-
sky solar radiation (Robledo & Soler, 2000):

     GHI=A× (cos z )
B
×exp (C × (900−z ))              (1)

Where GHI is the Global Horizontal Irradiance; z is solar zenith angle; and A, B, C are the fitting
parameters at specific site, derived from GHI measurements of selected clear-sky days in one 
month. Consequently, the CSI describes the atmospheric clear-sky or cloudy-sky conditions, 
defined as

                                        CSI=
GHI

GH I clear−sky
                                     (2)

Specifically, we classified the weather conditions as: 
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 Clear-sky conditions with CSI > 0.8.

 Transition conditions with CSI between (0.6, 0.8), in which either optically thin clouds or
broken clouds are present in the sky.

 Overcast conditions with CSI <= 0.6.

3 Results

3.1 Temporal and spatial analysis of the HRRR 2-m forecast

The 2-m temperature and relative humidity are key meteorological parameters for 
diagnosing and evaluating model performance.  They are strongly influenced by the coupling 
processes between  land and atmosphere. During the warm season there are consistent warm and 
dry biases during both daytime and nighttime (Figure 1). The daytime maximum temperature 
bias,  however, is anti-correlated with the bias of the nocturnal minimum temperature (r ≈ -0.49).
This suggests that low-level cloud dynamics might play a direct and important role in the diurnal 
cycle of the warm season surface temperature bias. During the daytime, low-level clouds tend to 
block the shortwave radiation and cool the surface. However, at night, the same low-level clouds 
reduce the outgoing longwave radiation and keep the surface warm. An inaccurate representation
of low-level clouds during both daytime and nighttime is a possible reason for the negative 
correlation. In contrast, both biases of maximum and minimum temperatures during the cold 
season show no significant systematic biases, with extreme negative biases on the coldest days. 
The daytime maximum temperature bias and nocturnal minimum temperature bias are positive 
correlated (r ≈ 0.36), indicating different physical processes other than low cloud bias controlled 
the cold season surface biases. In winter, the snow freezing and melting processes largely 
modulate the surface temperature and humidity. The freezing and thawing processes in the snow 
cover and soil are possibly responsible for the cold extreme biases (Viterbo et al., 1999; Garc´ıa-
D´ıez et al., 2013) 



manuscript submitted to Journal of Geophysical Research: Atmospheres

Figure 1. Average time series of data from 126 NYMN sites: (a) daily maximum temperature and
(b) is daily minimum temperature; (c) corresponding relative humidity to daily maximum 
temperature. and (d) corresponding relative humidity to daily minimum temperature.

The HRRR vegetation module incorporates monthly updated MODIS (Moderate 
Resolution Imaging Spectroradiometer) satellite retrieved vegetation. In New York, the transition
seasons (spring, fall) rapidly progress northward in spring or retreat to the south in fall 
(Fitzjarrald et al., 2001). Significant changes in vegetation “greenness”, soil temperature, and 
soil moisture in a few weeks during leaf emergence coincide with corresponding changes in the 
surface energy partition. Figure 1 also shows these distinct seasonal transitions in the 2-m 
temperature and RH bias characteristics that occurred around mid-May (during spring onset and 
leaf emergence) as well as mid-October (during leaf senescence in New York State), indicating 
that the HRRR model physics associated with the spring and fall season transition may lack 
precision. Detailed statistics of daily maximum/minimum temperature and relative humidity for 
each month are listed in Table 1. These strong seasonality of biases in temperature and RH 
suggests that there are potential issues with the land-atmosphere coupling in the HRRR. 
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Figure 2. Spatial distribution of the 2-m temperature and RH biases classified by clear sky index 
in July 2019 over NYSM 126 standard sites: (a) and (e)  clear-sky conditions with CSI > 0.8; (b) 
and (f) transition conditions with CSI between (0.6, 0.8); and (c) and (g) overcast conditions with
clear sky index <= 0.6. (hour 0900-1700).

Table 1. Mean Bias Error (MBE), Root Mean Square Error (RMSE) of daily 
maximum/minimum temperature, relative humidity between 126 standard NYSM sites and the 
HRRR over period 1 Aug. 2018 to 31 Jul. 2019. Statistics are based on all hourly observations 
and averaged over monthly and separated by different land use types (farmland and forest)

The dense NYSM network enables us to study the HRRR performance, as a function of 
heterogeneous land covers, and soil conditions under a variety of weather conditions. In the 
warmest month, (July, 2019), Spatial pattern of 2-m temperature and humidity biases are 
correlated closely to the land surface types under all weather conditions (Figures 2a-2d). The 
forest sites, particularly at Adirondack northern plateau forest regions, have lower or even 
opposite 2-m temperature biases compared to the nearby sites under all weather conditions. 
Table 1 also shows that in warm season (June, July, August), the mean 2-m temperature biases 
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are much larger over farmland. The dependence of land use type further illustrates a potential 
issue in the Rapid Update Cycle (RUC) Land Surface Model (LSM) used by the HRRR. For the 
warm bias introduced by cloud forcing, it is found that the most significant bias comes form 
overcast clouds, which indicating that the severe thunderstorm or the synoptic scale cloud are the
main source to the warm season surface temperature bias. It is hypothesized that land surface 
energy partition and cloud forcing are two main factors controlling the warm season surface 
temperature bias. 

3.2 Soil hydrological process in land surface model

Figure 3. Time series of 126 standard sites averaged (a) daily accumulated precipitation, (b) 
snow depth, (c, e, g) soil moisture at 0.05 m, 0.25 m and 0.5 m; and (d, f, h) soil temperature at 
0.05 m, 0.25 m, 0.5 m.

Soil moisture is an important variable among the processes that describe the land 
surface–atmosphere coupling.  Its value reflects how rainfall is partitioned into runoff, surface 
storage, and infiltration components. One consequence is that soil moisture modulates the energy
budget by determining the soil heat capacity, the degree of evapotransipiration, and the albedo 
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(Seneviratne et al., 2010; Smirnova et al., 1997; Gascoin et al., 2008). Through balancing of land
surface water and energy, soil moisture directly affects 2-m temperature and humidity by 
controlling the total energy used by latent heat flux, and further modulating surface energy 
partition. (Kala et al., 2016; Seneviratne et al., 2013; Mueller & Seneviratne, 2014). Soil 
moisture at all three levels of 0.05 m, 0.25 m, 0.5 m are closely associated with the precipitation. 
The spikes of precipitation-induced soil moisture increase matches alright between model and 
observation (Figures 3a, 3c, 3e and 3g).

At each mesonet station, a Stevens Hydra Probe Soil Sensor measures soil moisture based
on dielectric permittivity measurements. Proprietary algorithms were used to convect the signal 
response of the standing radio wave into the dielectric permittivity and thus the soil moisture. 
The soil moisture measurements are in units of water fraction by volume (m3/m3), which is 
consistent with model. The forecasted soil moisture values at 0.25 m and 0.5 m have systematic 
biases around 0.05 m3/m3 respectively. The forecasted soil moisture at 0.05 m showed few 
apparent biases when compared to NYSM measurements at the beginning of the evaluation 
period (August, 2018), but a dry bias emerged as the fall transition proceeded (Figure 3c). 
During the warm days of late winter to early spring, snowmelt, which is the major reason for 
snow depth reduction, adds water into the soil. NYSM observation shows around 20cm snow 
melted during early spring and in the meantime, observed soil moisture increased sharply (blue 
arrow in Figure 3). However, the forecasted soil moisture at 0.05 m did not respond to the snow 
water as indicated by the NYSM observations. This suggests that the snow melting process is 
poorly represented by the HRRR, either due to RUC thawing process or due to the snow water 
runoff. 

Changes in soil moisture affects surface temperature and vice versa. HRRR-forecasted 
soil temperatures at three levels  (Figures 3d, 3f and 3h) basically agree with NYSM 
observations. However, HRRR predicted a much larger diurnal cycle of soil temperature at the 
0.05 m and 0.25 m levels than observation (Figures 3d and 3f). One possible reason is that the 
overall dry biases of soil moisture decreased the soil heat capacity, and led to increased 
amplitude of soil temperature variation. Also, the observed average soil temperature was above 
freezing during the cold winter months, while HRRR forecasted soil temperature exhibited much
lower temperatures, below freezing (Figure 3d). These examples illustrate potential issues in the 
RUC as used by the HRRR, including difficulties simulating the soil freeze-thaw processes 
(Viterbo et al., 1999; Ek et al., 2003). In real world, the water in the soil will not completely 
freeze, rather remain a mixture of ice and water at the temperature of 0 degree Celsius. However,
the model unrealistically freeze the soil during the cold winter. This bias in soil temperature 
partly explains the extreme cold bias we see earlier in 2m air temperature.

The soil moisture budget examines  one avenue of how changes in the land surface may 
alter the water and energy balances. Precipitation and snowmelt inputs increase soil moisture 
through infiltration are countered by runoff and evapotranspiration outputs, as evapotranspiration
releases water from plant leaves and soil (Figure 4). The comparison between HRRR change 
rates and NYSM observation in four seasons exhibit unique seasonal characteristics: 
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Figure 4. Mesonet observed and HRRR simulated regression fits for soil moisture differential at 
0.05 m during different seasons. the growth rate and loss rate are linear fitted separately.

Table 2. Comparison of modeled with observational soil moisture rates of change under different 
precipitation conditions.

loss rate growth rate

r slope intercept r slope intercept

Spring 0.50 0.97 0.0006 0.78 1.11 -0.0040

Summer 0.66 0.81 0.0006 0.78 0.67 0.0001

Autumn 0.59 1.18 0.0012 0.84 0.76 -0.0002

Winter 0.19 0.18 -0.0006 0.66 0.68 -0.0016
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• Spring: Snowmelt is important to soil hydrological process for soil moisture growth rate during 
early spring season. The extreme high intercept -0.0040 m3m-3h-1 shown in Table 2 could be 
attributed to the misrepresentation of snow melting process. In the mean time, the loss rates of 
soil moisture during this period are not well captured by HRRR forecasts. The loss rate 
correlation coefficient r is only 0.50. The result indicates that large uncertainty still lies in the soil
hydrological process during spring associated with snow metling and the partition of water into 
runoff, soil moisture and evapotranspiration. 

• Summer:  The precipitation has been underestimated in summer with the integrated bias as -
20.56 mm in whole summer, which lead to the underestimation of the growth rate of soil 
moisture forecasted by HRRR in summer (Benjamin et al., 2016). The loss rate of soil moisture 
forecasted by HRRR tended to be lower than NYSM observation, suggesting a weak 
evapotranspiration process in HRRR RUC (Figure 4b). A combined result of the underestimation
of both growth and loss rates is that the overall soil moisture dry bias decreases from its 
maximum at the beginning of summer to much less in late summer (Figure 3c). The severely 
underestimation of evapotranspiration processes changes surface energy patition and lead to the 
consistent warm bias observed. Land surface biases further affect the convective behavior of 
boundary layer clouds during summer, creating positive feedbacks in land atmosphere cloud 
coupling process. 

• Autumn: The HRRR underpredicted the growth rate of soil moisture, however, overestimated 
the loss rate during the transition season. The overestimation of loss rate in fall indicates that the 
evapotranpiration process during autumn has been overestimated. As leaf senescence occurred in
New York during this period,  the transpiration went way, the vegetation ceased to withdraw 
water from the soil. The soil moisture continued to build up and reached its annual maximun in 
early winter. In Figure 3c, the model shows a gradual dry bias in forecasted soil moisture, with 
almost the same level of soil moisture at the beginning (September 1st) and 0.1 m3/m3 bias at 
the end of the fall (November 30th). It is likely that the vegetation phenology changes during the 
fall and their impact on soil moisture dynamics are not well represented in HRRR RUC.  

• Winter: The soil hydrological process is most poorly simulated in winter. The HRRR growth 
rate of soil moisture is underpredicted, and the loss rate is largely underpredicted. During the 
winter, precipitation can be either in liquid phase (i.e., rain) which immediately interacts with 
soil or in solid phase (i.e., snow) accumulated for later release. The soil freezing and thawing 
processes adds more complexity to the soil moisture dynamics. The observed HRRR biases 
suggest the needs to further investigate the snow precipitation process, snow-pack dynamic and 
the soil freeze cycle in the HRRR.  

3.3 Surface energy partition                                                                                                               

The land use types have a major control on the surface energy partition. The way that the 
model represents the partition of sensible and latent heat flux with different land use types is 
crucial to the forecast of land surface meteorological condition and cloud formation through land
atmosphere feedbacks. To gain deeper insight into model performance, HRRR forecasted energy 
partition at three major land use type sites of forest, farmland forest mosaic, and urban  are 
evaluated using the flux measurements from NYSM flux sites. It should be noted that, for three 
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selected flux sites, however, the immediatedly surrounding area is flat with grassland or low 
vegetation to meet WMO standards. To get the best representation of heat fluxes from different 
land use types, only the data from mid-afternoon (1800 UTC) are used. During this period, the 
impact of surrounding land cover on the flux measurements is most significant due to that the 
mixing of boundary layer is strongest at this time of the day.

Figure 5. Time series of (a, b, c) daytime latent heat flux, sensible heat flux, Bowen ratio 
measured from farmland flux sites; and (d, e, f) from forest flux sites.

At forest sites during the warm season, the latent heat flux is overestimated, and the 
sensible heat flux is close to the measurements. However, considering that the observed fluxes 
have an estimated 100W/m2 to 200W/m2 energy closure imbalances (Steeneveld et al., 2011), it 
is possible that the sensible heat flux has been underestimated at the forest sites. HRRR 
underpredicted the Bowen ratio compared to NYSM observation for most of the growing season,
from spring onset to leaf senescence (Figures 5a-5c). The bias in energy partition over forest 
sites partly explains the slight cold and wet bias over Adirondack region under clear sky shown 
in Figure 2a. Over the forest, the evapotranspiration process is dominating the latent heat flux 
during the growing season. The deep rooting system enables the forest to be less affected by the 
surface soil moisture drought. 
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On the contrary, the HRRR predictions of Bowen ratio over farmland sites are generally 
larger than the observation during the warm season. Compared to forest, farmland has a much 
shallower root depth, which is more vulnerable to the water deficit at surface soil layers. As 
discussed in section 3.2, soil moisture has been underestimated during the warm season. The 
false drought in soil further lead to the underestimation of latent heat flux, while sensible heat 
flux is overestimated around 300 W/m2. This relatively larger biases of Bowen ratio over 
farmland sites than those over forest sites consist with the larger warm bias of 2-m temperature 
over farmland sites than those over forest sites (Figure 2). These biases will also contribute to 
changing of the convection behavior of cloud, and further enlarge the surface thermodynamic 
bias through surface cloud feedbacks. 

During the snowmelt period, HRRR predicted more LH (Figure 5a) without significant 
increase in soil moisture at 0.05 m level (Figure 3c). In fact, Figure 3c shows that 0.05 m soil 
moisture in HRRR decreases steadily during this period, while the observation increases rapidly. 
The result suggests that most melt water was evaporated into the atmosphere and did not 
infiltrate into the soil.

Over the urban site, the HRRR forecast of energy partition is similar to that of the 
farmland and forest mosaic sites. The latent heat flux has been underestimated, and sensible heat 
flux has been overestimated. 

As shown in Figure 2 in section 3.1, the 2-m air temperature and humidity bias can be 
attributed to two sources, the land surface budget and cloud. In this section, the modelled surface
heat fluxes over different land use types has been evaluated with observation. During the warm 
season, the underestimation/overestimation of bowen ratio over forest/farmland sites lead to the 
cold/warm and wet/dry biases under the clear sky. The dry bias in soil moisture, and 
underestimation of evapotranspiration during warm season partly explained the bias in surface 
energy budget. The early spring snow melting problem could be one of the reasons that lead to 
the warm and dry biaes in the warm season. Under the effect of insufficient water infiltrating into
the soil during the spring, the deficit of soil water at the beginning of summer, suppressed the 
evapotranspiration especially over shallower rooted vegetation and further induce warmer drier 
surface air.

3.4 Cloud effects on land-atmosphere coupling biases

Underestimation of low-level cloud coverage and optical thickness has been identified as 
an important potential explanation for the systematic daytime incoming solar radiation bias, in 
turn yielding a surface warm and dry bias during the warm season (Benjamin et al. 2016). Here 
the biases of downward shortwave radiation and maximum 2-m air temperature are investigated 
by classifying biases using clear sky index.
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Figure 6. (a,b) Box-and-whisker plots showing the shortwave radiation bias binned by clear sky 
index (warm/cold season). The vertical bar represents standard error. (c,d) correlations between 
downward shortwave radiation bias and daily maximum temperature bias; (e, f) Number of 
measurements in certain hours when the temperature biases exceed 5 K. The warm season is 
June, July, August (JJA), and the cold season is December, January and February (DJF). Only 
daytime (from 9:00 to 16:00 local time) data are included in the statistics.

Figure 6a shows that during the warm season, the shortwave radiation bias increases as 
observed clouds thicken (The clear-sky index in Figure 6 is based on station observation). The 
dependence of shortwave biases on cloud is more significant in warm season than during the 
cold season (Figures 6a and 6b). In the warm season, a negative radiation bias around 100 W/m2 
when the clear sky index exceeds 0.9. The absence of aerosol direct effect in HRRR could be the 
reason for this negative bias under clear sky. For clear sky index < 0.2, when the sky is covered 
by optically thick clouds, the mean radiation bias can be as high as 400 W/m2. In contrast to 
previous studies that emphasized the importance of unresolved fair-weather sub-grid clouds on 
the surface temperature bias, our analysis indicates that optically thicker clouds result in the 
largest radiation bias. During the warm season, the clouds over NEUS can be separated into four 
categories: Fair weather cumulus, cumulus congestus (towering cumulus), individual 
cumulonimbus, and stratocumulus associated with thunderstorm and frontal passage. The large 
bias with low cloud index is associated with type 3, 4 clouds. The displacement and weaker 
strength in deep convection might explain most of the biases in thick clouds.

During the warm season, daytime temperature bias correlate well with shortwave 
radiation bias (Figure 6c) . Further analysis separates the radiation and temperature biases using 
the clear sky index. In both warm and cold seasons, it is clearly shown (Table 3) that the slope of
the linear regression between solar radiation and temperature biases decreases as the clear sky 
index increases, as does the correlation coefficient r. The result further supports the argument 
that the relationship between radiation bias and temperature bias is more significant with thicker 
clouds. Compared to the warm season, the cold season daytime temperature bias is much less 
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dependent on cloud bias. When the clear sky index exceeds 0.4, the slope becomes negative, and 
the correlation coefficient essentially vanishes. One possible reason is that the surface snow in 
cold season dominates boundary layer processes instead of shortwave cloud forcing (Betts & 
Beljaars, 2017). Also, due to the much thinner convective boundary layer, the surface 
thermodynamically-controlled boundary layer cloud fraction is lowest during cold season over 
the eastern United States (Freedman et al., 2001). These results suggested that other physical 
processes, such as the snow albedo effect and snow/soil frozen/melting process may be more 
important to explain the surface temperature biases (Figure 6d).

Table 3. Relationships between solar radiation biases and air temperature biases during warm and
cold season. The results are classified by clear sky index (CSI).  The slope has been multiplied 
by scale factor of 1000. W indicates warm season, C indicates cold season.

CSI [0, 0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5] [0.5,0.6] [0.6,0.7] [0.7,0.8] [0.8,0.9] [0.9,1]

Slope(W) 4.77 4.26 3.96 3.73 3.53 3.45 2.97 2.61 2.25

r (W) 0.53 0.50 0.48 0.45 0.41 0.39 0.32 0.25 0.16

Slope (C) 1.74 1.53 0.45 -0.21 -0.77 -0.13 0.02 -0.22 -0.05

r  (C) 0.09 0.09 0.03 -0.01 -0.04 -0.01 0.00 0.01 0.00

Figures 6e and 6f illustrates the interesting feature that extreme temperature biases larger 
than 5 K (assumed to be a temperature forecast error) is more frequent at 15:00 LT, typically 
considered to be the warmest time of day.  However, another possible reason for the largest 
temperature biases may be associated with occasional afternoon thunderstorms, which occur 
around 15:00. The histogram of cold season extreme temperature biases are much flatter than 
during warm season, indicating that the frequency of extreme temperature bias does not 
correspond to the time of day as during the warm season.

4 Conclusions

One year of HRRR model and observation data were used in this study to investigate the 
biases from both diurnal and seasonal perspectives. The dense NYSM network (average distance 
between stations ~ 30 km) of 126 standard weather stations provides opportunities to investigate 
the impact of spatial heterogeneity on the land-atmosphere-cloud interaction as a coupled 
system.

First, an entire year of surface meterological fields was examined by separating the daily 
maximum and minimum temperature. Distinct physical processes governing diurnal and seasonal
biases in the model were found. In the warm season, there are consistent warm and dry biases at 
2 meter, with a relatively small standard deviation. At the diurnal scale, a negative correlation 
between biases in daily maximum and minimum temperature indicated that low-level clouds play
an important role in the warm season surface warm and dry bias. Cold season biases show a 
much larger standard deviation but smaller mean biases. Furthermore, extreme cold biases exist 
in the nighttime in February, with large daytime wet biases in March.  Understanding the role of 
snow is critical for the interpretation of cool season biases from both albedo and hydrological 
perspectives. The sensitivity of surface temperature to albedo during winter possibly creates the 
large variance in cold season biases. In the model, inaccurate partition between runoff and soil 
moisture from snowmelt may cause the wet bias from the late winter to early spring season. 
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Additionally, lacking a comprehensive representation of soil freezing-thawing processes, the 
model failed to predict a soil temperature barrier at the freezing point possibly a result of thermal
inertia of freezing and thawing. These processes partly explain the extreme cold bias that 
occurred in February. 

Taking advantage of the spatially densely distributed NYSM sites over heterogeneous 
land use types, statistical analysis is used to investigate further the land surface impact on the 
systematic warm and dry bias during the warm season, from temporal and spatial perspectives. 
Results suggest that the biases have two contributions. The first relates to the energy partition 
introduced by different land surface properties, and the second emerges from the model bias in 
cloud forcing. Statistics show that for the farmland sites, model overestimates the sensible heat 
flux and underestimates latent heat flux during the warm season, causing a 0.5 to 1 K warm bias 
and a 10% to 20% dry bias. On the contrary, the incorrect representation of energy budget over 
forest sites results in cold and wet biases under clear sky conditions. 

Soil hydrological processes strongly control surface energy balance and fluxes, which are
the most sensitive processes in the land surface model to the atmospheric model (Santanello et 
al., 2019). Through the whole year, soil moisture at all measured vertical levels (0.05, 0.25 and 
0.5 m) are largely underestimated, contributing to the warm biases during the warm season. Also,
this soil moisture underestimation reduces the soil heat capacity, causing the overestimation of 
soil temperature diurnal amplitude. We further analyzed the contribution of evapotranspiration 
and precipiatation to soil hydrological processes from seasonal perspective. Results show that 
during spring, the snow melting process controls the bias in soil moisture growth rate, leading to 
a -0.004m3m-3h-1 interception in linear regression. During summer, the the soil moisture growth 
rate is underestimated due to the forecast shortfall in summer thunderstorm development. The 
soil moisture dry bias decreases from its maximum at the beginning of summer to much less in 
late summer (Figure 3c). The results indicate that evapotranspiration processes can be severely 
underestimated over the entire summer. The largest discrepancy is in the fall, when the model 
underpredicts the precipitation brought by tropical cyclones. In the meantime, the autumn 
evapotranspiration rate has been overestimated due to incorrect representation of seasonal 
transition when the leaves fall. The combined effect is a negative soil moisture of about 0.1 m3/
m3 at the end of fall season. Winter biases mostly come from snow melting and soil 
freezing/thawing processes. 

The dry bias in soil that appears during snow melt season is the main sources for the 
warm season soil moisture underestimation. The soil dries out in the model while the soil is 
moistened by melting snow in the observations. The water stress in the model soil hydrological 
processes plays an important role in the energy partition in the following summer season where 
the water stressed soil will inhibit the evapotranspiration and increase the Bowen ratio especially 
for shallow rooted vegetation, leading to the surface thermodynamic bias in the seasonal scales. 
These processes are amplified by the positive feedback loop between dry soil, reduced clouds, 
and warm temperatures. The positive feedback loop is most significant in warm season when the 
land surface atmosphere cloud coupling is strongest. This result presents a specific avenue for 
future model improvement: studying and improving the representation of snow melt and 
infiltration processes in the early spring.

Low-level clouds are recognized as one of the most important sources of the surface 
incident solar radiation and temperature biases. Complementing earlier analyses of the impact of 
sub-pixel cloud, we further explored the cloud effect by classifying cloud optical properties using
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clear sky index directly calculated from NYSM measured incoming solar radiation. We found 
that the most optically thick clouds (generally associated with frontal system and thunderstorms) 
yielded the largest biases in solar radiation, the main contributor to the surface warm bias during 
the warm season. This finding emphasized the importance of further investigation of these clouds
in the model. 

The present work identifies HRRR model biases from the land-atmosphere coupling 
perspective.  As an integrated system, biases of each feedback elements in land-atmosphere-
cloud interactions can easily spread into the whole system and further increase the overall bias 
and reduce the forecast accuracy. For the future application of the HRRR model to forecast the 
alternate energy potential as well as for severe weather forecasting, our work identifies possible 
mechanisms responsible for the biases in the land surface processes, such as: soil hydrological, 
vegetation phenology, and thunderstorm development. However, the improvement of the land 
surface model is still challenging and requires better understanding of the physical processes as 
well as more complicated observation network and data assimilation techniques.
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