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Abstract

Investigating watershed hydrology from a data-driven causal perspective is an attractive opportunity to characterize and under-

stand relationships between water storages and fluxes. Here we assess integrally how the water balance components interact with

themselves, aiming to find relevant time-lags or dependency patterns. Granger’s causality test and time-lagged mutual infor-

mation were used in a pairwise approach to examine cause-effect relationships between precipitation, streamflow, groundwater

levels under different land-covers, and evapotranspiration data (daily timescale) from 2009 to 2019 in a Brazilian watershed (52

km²), located in a recharge area of the Guarani Aquifer System. A verification assessment using synthetic datasets shows that

the methods are effective to identify the underlying generating mechanisms. Statistically significant causal connections were

confirmed in practically all pairs of observed data. Granger’s causality indicates that groundwater and streamflow responses

are influenced by precipitation even with a lag of 1-day, while evapotranspiration can take more than 200 days to influence

groundwater responses, depending on the water table depth and surrounding land-cover. Mutual information curves show de-

pendency patterns between hydrological processes that are different from the ones obtained by cross-correlation functions. The

causal analysis provides a complementary view of the hydrological system’s functioning and may lead us to develop predictive

models that reproduce not only the target variables but also the diverse time-lagged dependencies observed in environmental

data.
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Abstract 

Investigating watershed hydrology from a data-driven causal perspective is an attractive 

opportunity to characterize and understand relationships between water storages and fluxes. Here 

we assess integrally how the water balance components interact with themselves, aiming to find 

relevant time-lags or dependency patterns. Granger’s causality test and time-lagged mutual 

information were used in a pairwise approach to examine cause-effect relationships between 

precipitation, streamflow, groundwater levels under different land-covers, and evapotranspiration 

data (daily timescale) from 2009 to 2019 in a Brazilian watershed (52 km²), located in a recharge 

area of the Guarani Aquifer System. A verification assessment using synthetic datasets shows that 

the methods are effective to identify the underlying generating mechanisms. Statistically 

significant causal connections were confirmed in practically all pairs of observed data. Granger’s 

causality indicates that groundwater and streamflow responses are influenced by precipitation even 

with a lag of 1-day, while evapotranspiration can take more than 200 days to influence groundwater 

responses, depending on the water table depth and surrounding land-cover. Mutual information 

curves show dependency patterns between hydrological processes that are different from the ones 

obtained by cross-correlation functions. The causal analysis provides a complementary view of the 

hydrological system’s functioning and may lead us to develop predictive models that reproduce 

not only the target variables but also the diverse time-lagged dependencies observed in 

environmental data.  
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1 Introduction 

Applying causal inference methods in hydrology finds motivation in the complexity of the 

multiple interactions and interdependencies between hydrological, climatic, environmental, and 

human systems, in both space and time domains (Kumar, 2015). The analysis of observational 

data, which are becoming increasingly available from satellite remote sensing, station-based, and 

field site measurements (Runge et al., 2019), has been one of the most feasible alternatives to 

investigate hydrological variability and causality (Blöschl et al., 2019; Ombadi et al., 2020). 

Mechanisms of how the water cycle components are being impacted by natural and human-induced 

changes, including climate change, land-use changes, and increasing water demands, may be 

unraveled with causal frameworks (Goodwell et al., 2020). Similarly, the environmental conditions 

that control hydrologic responses of interest for management purposes (e.g., extreme events) can 

be better understood (Pelletier and Tucotte, 1997; Dey and Mujumdar, 2018).  

Ruddell and Kumar (2009) used transfer entropy (an information-theoretic statistical 

measure) for quantifying several properties of information flow and interactions between pairs of 

variables measured at an eddy flux tower. Goodwell and Kumar (2017) investigated complex 

dependencies and proposed a partitioning method to characterize how two source variables jointly 

influence a third (target) variable. The results were illustrated with an application to data measured 

at a weather station. In more recent applications of causal methods in hydrology: Ombadi et al. 

(2020) compared four methods (Granger causality, transfer entropy, PC algorithm, and convergent 

cross mapping) and examined pairwise causal relationships in the evapotranspiration process using 

data from a flux tower; Franzen et al. (2020) characterized time-lagged dependencies between 

precipitation and streamflow data observed in a large river basin using mutual information; and 
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Bennett et al. (2019) used a lag 1-day transfer entropy to quantify and compare the intensity of 

interaction between simulated hydrologic data.  

As suggested by the scope of related studies, applications in which the underlying causality 

mechanisms are reasonably well-known represent opportunities to test and explore causal methods 

before moving to the analysis of more complex interactions. To date, no studies have focused on 

an exploratory and comprehensive causal analysis in a monitored watershed aiming to quantify the 

time-lagged dependencies between precipitation, evapotranspiration, streamflow, groundwater 

levels, and vegetation indices data, not even in a simple pairwise setup.  

As prediction is one of the main goals of science, the presence of properties in time series 

data that facilitate to predict future terms from past observed behavior and patterns has a 

fundamental value. Memory and persistence (dependences between past and future states) are 

properties widely found in hydrologic data. Hurst was the precursor in identifying that the 

hypothesis of serial independence of hydrological data results in statistical inconsistencies, 

triggering a series of studies that formalized the theory of long memory processes (Amblard & 

Michel, 2013; Graves et al., 2017). As practical examples, Zimmermann et al. (2006) and 

Tomasella et al. (2008) identified significant memory effects in studies related to deforestation and 

interannual variability of precipitation in the Amazon rainforest, suggesting that the history of 

land-use and the groundwater system were influencing later hydrological responses. To detect such 

cause-and-effect relationships from observational data, several methods have been developed (e.g., 

Granger's method and variations, causal maps, causal networks, algorithms based on information 

theory) (Runge et al., 2019). The selection of the most appropriate method depends on the prior 

knowledge of the system, on the nature of the variables involved and on the intended objectives. 
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The Granger causality test has been one of the most used statistical tools to determine the 

presence of causal relationships between random variables (Barnett & Seth, 2015). 

Papagiannopoulou et al. (2017), McGraw and Barnes (2018), Singh and Borrok (2019) and Huang 

et al. (2019) applied the test to investigate, respectively, the dynamics between climate and 

vegetation, the climate variability, the association between groundwater reserves and food 

production on a global scale, and the dependence between climatic and hydrological variables. The 

advantage of the method proposed by Granger (1969) over traditional methods based on 

correlations or regressions with lagged explanatory variables is the consideration of the memory 

effects of the response variables (McGraw & Barnes, 2018). Granger (1969) proposed that a 

process S causes, in Granger's sense, another process, T, if future values of T can be better 

predicted using values of S and T instead of just values of T. An assumption of the classic Granger 

causality test is the linearity premise for the underlying system. Despite that, some studies have 

reported the capability to detect, with some limitations, even nonlinear interactions (Barnett & 

Seth, 2014; Ombadi et al., 2020).  

Along with the Granger test, methods derived from the information theory (IT) – which 

are based on the entropy measure (Shannon, 1948) and operate on probability distribution 

functions (pdf) – are attracting increasing attention in hydrologic research and Earth system 

sciences (Weijs et al., 2010; Rinderer et al., 2018; Goodwell et al., 2020; Kumar & Gupta, 2020). 

The principal reasons are found in the capability of information-theoretic methods to provide us 

with stronger and more robust conclusions with respect to data interaction and connectivity 

(Ruddell & Kumar, 2009; Goodwell & Kumar, 2017; Jiang & Kumar, 2019). Moreover, the 

methods do not rely on specific data properties or on the nature of dependencies (linear or 
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nonlinear). Data limitations – for instance, significant changing behaviors (Ombadi et al., 2020) 

and insufficient sample lengths (Li et al., 2018) – still hinder the application of IT methods.  

Two specific measures based on informational entropy have been widely applied for causal 

inference: time-lagged mutual information (TLMI) and transfer entropy (TE). The first, TLMI, is 

a more practicable approach, which measures the general dependence (linear and nonlinear) 

between two variables (Fraser & Swinney, 1986), and requires considerably shorter sample lengths 

of data. TLMI is not capable to eliminate data memory effects (like the Granger causality test does) 

so that static dependencies are not ignored (Li et al., 2018). To address this limitation, Schreiber 

(2000) proposed the transfer entropy (TE), a conditioned mutual information, which measures the 

amount of directional information transferred between variables, excluding those memory effects 

induced by the response (target) time series. Barnett et al. (2009) demonstrated that the TE metric 

is proportional to the likelihood ratio of the Granger causality test for Gaussian random variables. 

Despite the advantages, the estimation of TE is still a challenging problem and an active area of 

research, due to numerical issues, high dimensionality (determined by the number of time lags 

between the variables), and dependence on accurate estimates of probability distributions 

(Gençağa, 2018). 

 Here we explore time-lagged dependencies between hydrologic variables measured in a 

small watershed. The Granger causality test and the normalized time-lagged mutual information 

metric (NMI) were selected to perform this study due to their suitability to assess the connectivity 

and dependency throughout long time windows. We expected to find patterns of interactions and 

estimate memory time scales associated with the hydrological processes, which may support, 

directly or not, the predictive modeling and the system characterization. This study represents an 

opportunity to identify the potentials and limitations of applying causal methods in headwater or 
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small watersheds, which are widely acknowledged for their importance in the context of water 

management, and to discuss the innovative or relevant information we can obtain from them. 

2 Material and Methods 

2.1 Study Area 

The study domain is limited to the Onça Creek watershed (OCW) (~65 km²), located in an 

agricultural area of the state of São Paulo (Brazil) (47°54’ – 48°00’W, and 22°09’ – 22°15’S) 

(Figure 1). The watershed entirely lies on a recharge area of the Guarani Aquifer System (GAS), 

which is one of the most important groundwater reserves in South America, responsible for 

supplying water to more than 90 million people in Argentina, Brazil, Paraguay, and Uruguay 

(Araújo et al., 1999; Kirchheim et al., 2019).  

The GAS is composed of sandstone layers from the Jurassic (Botucatu Formation) and 

Triassic (Piramboia Formation) periods and is widely (~ 90%) confined by basaltic spills that 

occurred in the Cretaceous period (Serra Geral Formation). The study area, instead of presenting 

such a confining layer, presents a permeable deposit of Cenozoic sediments with a thickness of 

tens of meters, and a specific yield varying from 0.08 to 0.16 (Wendland et al., 2015; Coutinho et 

al., 2020).  

The watershed has an average terrain surface slope of 8 m/km, and elevations between 825 

and 655 m above sea level (a.s.l.). Sandy soils, which dominate the watershed, along with the mild 

surface slope favor the occurrence of high infiltration rates and low overland flow. The Köppen-

Geiger climate classification (Alvares et al., 2013) indicates a humid subtropical climate, with dry 

winters and rainy summers (Cwa). From 1979 to 2014, the mean annual precipitation was 
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1486 mm (about 65% in the rainy seasons), and the mean annual temperature, 21.6 °C (Cabrera et 

al., 2016).  

Agricultural and livestock activities have dominated the area during the last decades. In 

1990, eucalyptus plantations covered about 30% of the total area, pastures, 15%, and the native 

vegetation (Cerrado, tropical savanna), 30% (Pompeo, 1990). In 2017, eucalyptus, citrus, 

sugarcane, and pasture activities summed-up approximately 35%, 30%, 10%, and 4%, 

respectively, with the remaining native vegetation corresponding to only 10% (Figure 1).  

Data from the monitoring stations and wells indicated in Figure 1 were used in this study. 

The reference period covered December 2008 to September 2019. Basic quality control procedures 

were followed to ensure data consistency. 

 

Figure 1. Location of the study area. (a) hydrometeorological stations and (b) dominant land-covers and monitoring 

wells. Data sources: 1. Recharge areas of the Guarani Aquifer: http://geoserver.ourinhos.unesp.br/; 2. DEM: 

https://www.infraestruturameioambiente.sp.gov.br/ 
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2.2 Streamflow and Baseflow Data 

The discharge time series was estimated at the stream gauge Santa Maria, in a section that 

drains an area of 52.1 km² (Figure 1), and located immediately upstream to a crossroad with two 

culvert pipes with a diameter of 1.50 m. Discharge measurements have been carried out by current 

meters twice a month since 2004. The daily discharges (long-term mean = 0.65 m³/s) were 

estimated from the transformation of sub-hourly water level data, using the classic power-law 

stage-discharge transformation function. The level data are recorded every 15 minutes, since 

December 2008, by water level loggers maintained in a stilling well hydraulically connected to the 

stream. The parameter for zero flow condition was set based on the invert elevation of the culverts, 

while the other rating curves parameters were calculated by the ordinary least square method. The 

parameters are variable over time due to the channel section instability (sandy stream bed) and due 

to the downstream impoundment with controlled water release during the dry seasons. Considering 

the errors associated with the rating-curves and the water level data, the median uncertainty in the 

estimated discharges was 11.9%, whereas the mean uncertainty, 13.0%. 

The unconfined aquifer holds a high interaction with the stream, maintaining its perennial 

regime (Wendland et al., 2015). To estimate the daily baseflow time series, the two-parameter 

separation method proposed by Duncan (2019) was applied. This method comprises a backward 

filtering operation to fit an exponential master recession curve, followed by the original Lyne and 

Hollick digital filter to smooth the resulting curve. The filter parameters in the first and second 

pass were set equal to 0.983. The baseflow index was estimated as 0.86, which is comparable to 

the value of 0.83 obtained by Batista et al. (2018) through isotopic mass balance calculations, in 

nearby catchments with similar meteorological and hydrogeological conditions (recharge areas of 

the GAS).  
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2.3 Meteorological Data 

The operation periods up to September 30, 2019, of the four nearby weather stations (WS, 

circles in Figure 1) and the two rain gauges (RG, squares in Figure 1) defined the meteorological 

datasets used here. All weather stations are equipped with rain gauges, air temperature and 

humidity probes, pyranometers, and anemometers.  

Reference evapotranspiration rates were calculated by the Penman-Monteith method (PM 

FAO-56) (Allen et al., 1998). Given the dimensions of the study area and the spatial variability of 

meteorological variables, daily precipitation data and the reference evapotranspiration calculated 

at each WS were interpolated. The deterministic method of inverse distance weighting (IDW), 

with power 2 (Dirks et al., 1998), was used to obtain daily grid surfaces (50 x 50 m) from 

simultaneous records. The average values over the monitored drainage area formed the final time 

series of precipitation and reference evapotranspiration. 

2.4 Spectral Vegetation Indices and Evapotranspiration 

The vegetation dynamics can be relevant to describe the hydrological behavior of 

catchments, especially in small spatial and temporal scales (Area < 500 km² and 1 - 5 years) 

(Donohue et al., 2007; Wegehenkel, 2009). Studies have shown that the relationships between 

actual (AET) and reference (RET) evapotranspiration are reasonably well estimated, in diverse 

biomes, as a function of remotely sensed vegetation indices (Glenn et al., 2008; Glenn et al., 2011; 

Kamble et al., 2013; Nagler et al., 2013).  

The empirical method proposed by Nagler et al. (2013), based on experimental studies in 

the state of Arizona (USA), was adapted here to provide an estimate of the actual 

evapotranspiration. The method follows Equation 1, which is based on the Beer-Lambert law to 
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determine the absorption of light by a canopy and takes the enhanced vegetation index (EVI) as 

an indicator of the density of light-absorbing particles.  

AET = [𝑎(1 − exp (−𝑏. EVI)) − 𝑐] × RET (1) 

in a, b, and c are parameters to be calibrated against observed data. As a simplification, motivated 

by the lack of observed evapotranspiration in the study area (e.g., by flux towers in representative 

land covers), we adopted a = 1.65 and b = 2.25, the same values estimated by Nagler et al. (2013), 

and left c as a free parameter to be adjusted in the water balance assessment. This is equivalent to 

allow for slight translations in the transformation curve, maintaining the sensibility of the ratio 

AET/RET with respect to EVI. 

The EVI data, referring to the surrounding areas of the monitoring wells and to the 

watershed area, were taken from the product MOD13Q1 (Didan, 2015), generated every 16 days 

in 250 m spatial resolution, and made available on the NASA Land Processes Distributed Active 

Archive Center (LP DAAC). Daily values of EVI were obtained from linear interpolation, then 

individual time series of actual evapotranspiration for each well and for the watershed were 

calculated.  

2.5 Groundwater Level 

The surrounding typical land covers, the ranges of water level variation of the eight 

monitoring wells considered in this study (Figure 1), and the respective specific yield (drainable 

porosity) values are shown in Table 1. The wells have been monitored every 15 days by water 

level meters, and twice a day by dataloggers (Levellogger® Edge 3001 or Diver® DI501). The 

datasets from the manual and automatic measurements were adjusted, resampled, and merged to 



11 
 

form the final daily time series for each well. Also, an average groundwater level variable (named 

‘GWL’) was defined as the arithmetic mean of the levels observed in the monitoring wells. 

Table 1. Description of the groundwater monitoring wells (m b.g.l. = meters below ground level). Specific yield 

(drainable porosity) values were obtained from Wendland et al. (2015).  

ID 
Land cover 

Water level depth 

(m b.g.l.) 
Specific 

yield  
 min mean max 

W4  Pasture 14.4 16.5 17.9 15.9% 

W5 Pasture 3.6 6.3 9.1 15.9% 

W9 Eucalyptus  15.6 20.2 24.4 15.1% 

W13 Sugarcane 5.5 9.8 11.0 15.1% 

W14 Sugarcane 2.8 6.6 7.6 15.1% 

W15 Citrus 4.6 7.8 9.5 8.5% 

W16 Eucalyptus 2.7 5.2 7.2 12.3% 

W19 Eucalyptus 8.9 15.1 18.7 12.3% 
 

 

2.6 Water Balance 

We examined the water balance dynamics in the watershed from October 01st, 2009 to 

September 30th, 2019, which corresponds to ten complete water years in the study area. The 

control volume of inputs and outputs was defined as the region from the upper canopy layer to the 

layer where deep regional recharge (outflow to the GAS) occurs.  

 

∆𝑆 = 𝑃𝑃 − 𝐴𝐸𝑇 − 𝑄 − 𝐷𝑅 (2) 

in which ∆𝑆: water storage change, PP: precipitation, AET: actual evapotranspiration, 

Q: discharge, and 𝐷𝑅: deep recharge. Based on the study by Wendland et al. (2007), the deep 

recharge was assumed as 3.5% of the average annual precipitation (~ 50 mm/a in the study period). 

The accumulated water storage changes are supposed to follow the average behavior of the 

groundwater levels because the soil moisture has negligible annual variations in the study area 

(Pompeo, 1990).  



12 
 

2.7 Granger Causality Test (GC) 

The Granger causality definition is based on the increase of predictive power of an 

autoregressive model by including an additional variable, candidate to present a causal 

relationship, with a certain time lag (Granger, 1969). Some considerations to make such definition 

applicable are that the data are generated according to a linear and stochastic process. In the 

simplest, bivariate case, two models are considered: the unrestricted (Equation 3), with the past 

values of the variables X and Y; and the restricted (Equation 4), only with the past values of the 

variable Y. Here we assumed that hydrological processes can be modeled by vector autoregressive 

models, despite their nonlinearities. 

yut
= cu +   ∑[ϕ1jyt−j + ϕ2jxt−j]  + 𝜖𝑡,   ϵt ~ N(0, 𝑣𝑢)

p

j=1

 (3) 

 

yrt
= cr +  ∑ ϕ1jyt−j + 𝜖𝑡,   𝜖t ~ N(0, 𝑣𝑟)

p

j=1

 (4) 

in which cu, cr, ϕ1j e ϕ2j are model parameters, and ϵt is a Gaussian error, with variance 𝑣.  

The null hypothesis is accepted when ϕ2j = 0 for j =1, 2, …, p, meaning that X does not 

cause Y in the Granger sense. Conversely the null hypothesis is rejected when ϕ2j  ≠ 0 for a j 

between 1 and p.  

The open source library Statsmodels 0.9.0 (Seabold & Perktold, 2010) was used for the 

computational implementation of the method. The algorithm executes the test for multiple time 

lags (up to the maximum lag length) between pairs of variables and examines the corresponding 

statistical significance of the causal relationships based on the likelihood ratio test (Equation 5).  
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LR = −2 log [
ℒr(θ̂0)

ℒu(θ̂1)
]   ~ χ2 (d.f. = p

u
-p

r
) (5) 

 

in which LR is the likelihood ratio, 𝜃𝑖 indicates the maximum likelihood estimation of 𝜃𝑖 (model 

parameters) under the hypothesis 𝑖, ℒ indicates the likelihood function, and the subscripts u and r 

refer to the unrestricted and restricted model, respectively. The LR follows approximately a chi-

square distribution, with degrees of freedom (d.f.) equal to the difference between the number of 

parameters of the unrestricted (pu) and restricted (pr) models (Wilks, 1938).  

2.8 Time-lagged normalized mutual information (NMI) 

The mutual information I (X; Y) is defined as the relative entropy between the joint 

distribution and the product distribution (Cover & Thomas, 2005): 

I(X; Y) = ∑ ∑ pXY(x, y) log2

pXY(x, y)

pX(x)pY(y)
y∈𝒴x∈𝒳

= H(X) + H(Y) − H(X, Y) (6) 

in which pX, pY and pXY are marginal and joint probability mass functions, and H(X), H(Y) and 

H(X,Y) are the entropy and joint entropy of the discrete random variables X and Y. The mutual 

information I (X; Y) measures the general dependence (linear and non-linear) between two 

variables and can be seen as the reduction of the uncertainty of variable X (or Y) due to knowledge 

of variable Y (or X). By adopting some time lag between the variables under analysis, mutual 

information can be used to detect the direction and intensity of interaction between linear or non-

linear processes (Li et al., 2018). 

 

TLMI(X; Y, τ) =  − ∑ ∑ pXY(xt, yt+τ) log2

pXY(xt, yt+τ)

pX(xt)pY(yt+τ)
  

 (7) 
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in which TLMI is the time-lagged mutual information, and τ is the time lag between the cause (X) 

and effect (Y) variable. A normalized metric, presented in Equation 8, was used here. 

0 ≤  NMI(X, Y; τ) =
TLMI(X, Y; τ)

min[H(X), H(Y)]
≤ 1 

(8) 

in which H(X) and H(Y) are the entropy of X and Y.  

The marginal and joint probability distributions were estimated from histograms (Li et al., 

2017). For each pair of variables (X, Y), the number of bins was set as the smallest between 30 

and the geometric average of the quantities individually determined by the Freedman-Diaconis 

rule (Freedman; Diaconis, 1981).  

2.9 Verification Assessment 

The verification strategy presented here aimed to identify errors in the computational 

implementation and to understand the results for situations in which the temporal dependencies 

between cause and effect are well-known. Synthetic time series, generated according to Equation 9 

(Wt, a simple summation function) and Equation 10 (Zt, a discrete convolution operation), were 

investigated by both the Granger causality test and the normalized time-lagged mutual information.  

Wt = max (0 ; 0.20 + 1 × 10−4 × ∑ [PPt−τ∗+j]
a

m

j= −m

+ ϵt) , ϵt ~ N(0, d2σPP
2 ) 

(9) 

 

Zt = ∑ PPt−jUHj

∞

j= −∞

 + ϵt,  UHt  =
(t/k)n−1 exp(−t/k)

k (n − 1)!
, E[UHt] = n. k;  ϵt ~ N(0, d2σPP

2 ) 
(10) 

in which PPt [mm] is the mean areal daily precipitation time series in the study area, 𝜎𝑃𝑃 is the 

sample standard deviation of PP (~9 mm), E[UHt] is the expected value of the gamma distribution 

function UHt (Besbes & de Marsily, 1984), and 𝜖𝑡 is an uncorrelated Gaussian noise. The 

parameter arrays, (a, m, 𝜏∗, d) for Wt and (n, k, d) for Zt, were set as shown in Table 2. The ranges 
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intended to assess the methods under diverse conditions. The premise is that the methods were 

capable to identify the lags LW = 𝜏∗ for Wt, and LZ = n × k for Zt.  

Table 2. Parameters adopted to generate the W and Z synthetic time series.  

Time 

series 

Group 

ID 

Fixed 

Parameters 

Variable 

Parameter  

W 

1 

a = 1 

d = 1 

𝜏∗ = 200 

mj = 1; 10; 100 

2 

m = 1 

d = 1 

 𝜏∗ = 200 

aj = 0.1; 0.5; 2 

3 

a = 1 

m = 1 

𝜏∗ = 200 

dj = 0.01; 0.10; 10 

4 

a = 1 

m = 1 

d = 1 

𝜏𝑗
∗ = 200; 500; 800 

Z 

1 
n = 10 

d = 0.01 
kj = 10; 20; 30 

2 
k = 10 

d = 0.01 
nj = 5; 20; 30 

3 
n = 14 

k = 14 
dj = 0.001; 0.1; 1.0 

2.10 Analysis of Observed Data 

The Granger causality test and the normalized lagged mutual information were calculated 

in a pairwise setup. The pairs were defined as: in a first set, precipitation and evapotranspiration 

as source (‘cause’) variables, whereas streamflow, baseflow, and groundwater level as target 

(‘response’) variables; and in a second set,  reference evapotranspiration, enhanced vegetation 

index and groundwater level as sources, while streamflow and baseflow as targets. Incremental 

lags, from 1 up to 1000 days, were considered. These pairs were defined based on likely or possible 

cause-effect relationships in the hydrological system. For convenience, seasonally adjusted data 

were not used. Then, the results referred to time lags greater than one year are affected by seasonal 

components.  
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All the observed time series were affected by uncorrelated Gaussian noise to compensate 

for uncertainties in the deterministic estimations of the hydrological processes. Due to data 

insufficiency and for the purpose intended here, the statistical properties of errors were taken as 

fixed approximations. A coefficient of variation (relative uncertainty) of 15% was adopted for 

streamflow, baseflow, and evapotranspiration estimates, whereas fixed standard deviations of 

10 mm, 0.02 m, and 0.06 were set for precipitation, groundwater level and EVI data, respectively.  

The statistical significance of the mutual information values was verified using a shuffled 

surrogate method (Ruddell & Kumar, 2009; Franzen et al., 2020). In this method, the time series 

data are shuffled to destroy time dependencies between the variables, and the mutual information 

is calculated using both the shuffled and the original data. Thirty iterations of shuffled data were 

used to compute a critical value associated with a 95% confidence level. Gaussian distribution was 

assumed. When the mutual information calculated for the observed data is greater than the critical 

value (calculated based on the shuffled sequences), the mutual information value is considered 

statistically significant.  

The cross-correlation function, a usual method to measure the similarity between time 

series (Gómez et al. 2018), was also computed here for each case. This aimed to question the 

relevance of the results obtained from causal methods when compared with the results from a 

simpler method: are they the same? 

For convenience and in view of the purpose of this study, all processes were assumed 

stationary. There are no significant shifts or trends in the observed time series (Figure 2) that 

motivate the use of more complex statistical models (Koutsoyiannis, 2006).  



17 
 

3 Results 

3.1 Water Balance Dynamics 

Figure 2 shows the time series from 2009 to 2019 of the streamflow (total, Q and baseflow, 

Qb), precipitation (PP), estimated actual evapotranspiration (AET), enhanced vegetation index 

(EVI) and average groundwater level (GWL). There is a groundwater dominance in the streamflow 

dynamics, with a baseflow index greater than 0.85. The ratio of reference evapotranspiration by 

annual precipitation is 0.87, and the ratio of AET by annual precipitation, 0.70. Trend analysis was 

not the focus here, however, it is possible to see a slight downwards trend in Q, Qb, and GWL time 

series data, and also an apparent upwards trend in the AET.   

The water year 2013-2014 was marked by a meteorological drought (Coelho et al., 2016; 

Marengo et al., 2015), with annual precipitation 20% lesser than the average. The impacts on 

groundwater levels and streamflow can be readily observed. Minimum groundwater levels were 

reached in January 2015, and minimum streamflow, in September 2015.  

From October 2009 to September 2019, the average groundwater level experienced a 

reduction from 716.13 to 714.90 m a.s.l. Considering a mean specific yield of 0.10, this 

groundwater level change represents a water storage reduction of 123 mm in the phreatic zone. In 

the water balance, when the parameter c used to estimate the AET is taken as 0.220, the 

accumulated water storage changes in the watershed varied from -4 to -125 mm in the same period. 

This reasonable water balance closure suggests that the estimates presented in Figure 2 are 

consistent and can be used in our causal analyses.  
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Figure 2. Water balance components and vegetation index time series in the study area. The actual 

evapotranspiration calculated with c = 0.220 (continuous red line) led to a water balance consistent with the 

groundwater level variation from October 2009 to September 2019. Mean annual rates in the study period: 

precipitation = 1403 mm/a; streamflow = 384 mm/a (0.63 m³/s); baseflow = 324 mm/a (0.54 m³/s); reference 

evapotranspiration = 1220 mm/a; and actual evapotranspiration = 985 mm/a. Horizontal lines indicate initial values.  

3.2 Synthetic Time Series 

The methods were effective to characterize the time delay mechanisms that generated the 

synthetic time series W (derived from a summation function) and Z (derived from a convolution 

operation), as shown in Figures 3 and 4. When the p-value (GC) is greater than 0.05 (adopted 

significance level), there is statistical evidence that the lagged time series does not present a causal 

relationship in the Granger sense. Complementary, the intensity of the functional connectivity, or 

causal interaction, between the lagged time series is proportional to the NMI metric. When the 

results are analyzed simultaneously, we realize that they were capable to identify the time lags in 
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practically all instances. Exceptions happened for the cases in which large noise variances were 

used to generate the response time series (Figure 3i, Figure 4i), affecting especially the mutual 

information-based method. GC worked well for most of the cases. The most relevant 

inconsistencies were found in Figure 3c and Figure 3l, situations in which the causal relationships 

in the Granger sense were identified for time lags about 100 and 400 days, respectively, shorter 

than they should be.  

 

Figure 3. Causal detection in the synthetic time series W. For the Granger causality analysis (GC, results indicated 

by the dotted red lines), the null hypothesis (absence of causal interaction in the Granger sense) is rejected when p-

value < 0.05. The normalized time-lagged mutual information NMI (indicated by the blue lines) shows the 

functional connectivity dynamics between the time series (PP and Wj). The time lags in which global peaks occur 

correspond to the time lags (τ*) used to generate the synthetic time series. In most of the instances, the GC and NMI 

methods correctly detected the time lags τ*. The exceptions are found in plots c, i and l. 
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Figure 4. Causal detection in the synthetic time series Z. The NMI metric correctly detected in most of the cases the 

mean time-delay (n.k) of the unit hydrographs used to generate the time series, while the Granger causality analysis 

detected the causal relationships (p-value < 0.05) with some anticipation (between 50 and 150 days).  

 

 

The Granger causality test, despite being designed to detect linear causal relationships, was 

capable to identify the lags in series W2-1, W2-2 and W2-3, in which non-linear functions of PP 

were used.  

3.3 Observed Time Series 

The Granger causality (GC) test confirmed that meteorological variables are influencing 

groundwater levels (GWL) and streamflow (total or baseflow) for practically all cases, with 

different time lags. A summary of the results is presented in Table 3. The precipitation affects (p-
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value < 0.05) the streamflow and the water level at practically all monitoring wells, even for short 

time lags (starting from 1 day). A singular behavior was found in the deepest water table (well 

W9), in which the causal interaction between precipitation and water level started to be confirmed 

only for time lags greater than 150 days.  

Each well presented a unique GC response to evapotranspiration, regardless of the 

surrounding land cover, suggesting that the water table depth and the soil properties are together 

controlling the minimum time lag required to detect a causal interaction. 

When analyzed as a response of the precipitation or as a cause of groundwater level 

changes, the EVI presented two disconnected intervals with p-value < 0.05. GC analysis only 

determines whether a causal interaction exists between time series, identifying the time-delay 

associated with them. As an additional source of information, the NMI measure shows details 

related to the strength and dynamics of functional connectivities between processes.  

Table 3. Results of the Granger causality test. 

Causal interaction Time lag intervals with 

 p-value < 0.05  

(M = 1000 days) Cause Response 

PP → 

Q or Qb  [1, M]  

GWLj (j = 4, 5,13, 14, 15, 16, 19)  [1, M] 

GWL9 [150, M] 

EVI [1, 50] ∪ [265, M] 

AET → 

Q  [1, M] 

Qb [100, M] 

GWL14 [1, M] 

GWL4,16 [10, M] 

GWL5 [20, M]  

GWL13, 15 [30, M] 

GWL19 [100, M] 

GWL9 [260, M] 

EVI → 

Q  [300, M] 

Qb [370, M] 

GWLmean [1, 30] ∪ [270, M] 

GWL → Q or Qb [1, M] 
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Figures 5 and 6 present NMI curves considering precipitation and evapotranspiration as 

causes and the groundwater levels as responses. To facilitate the visualization, simple moving 

averages of the NMI values (period of 5 days) were plotted. The upwards trend observed in most 

of the curves occurs because the time-lagged mutual information, unlike GC analysis, does not 

eliminate the effects induced by the own response time series memory (dependency on previous 

states and seasonality). 

 

Figure 5. Cross-correlation and normalized time-lagged mutual information (NMI) between precipitation (PP) and 

groundwater level at the monitoring wells (GWLj) for time delays (τ) up to 1000 days. (S, T) (blue): NMI curves and 

confidence intervals for the source (cause) and target (response) variables (variables generated randomly from mean 

and uncertainty values). (Ss, Ts) (red): NMI curves and confidence intervals for the shuffled time series.  
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The results were examined individually. Considering first the precipitation, the wells W4 

and W5, which are 30 m apart and installed in a pasture area, presented a similar pattern despite 

the depth difference (~10 m, Table 1). This suggests that location and soil characteristics may be 

a critical factor to understand the results because they are monitoring different aquifers (mean 

water level equal to 16.5 m b.g.l. at W4, and 6.3 m b.g.l. at W5). The earliest local NMI peaks 

occurred at 240 and 140 days for W4 and W5, respectively. These time lags seem to be related to 

the mean time required to the water reach the respective water tables.  

Only the well W9 did not present statistically significant NMI. That well is located out of 

the watershed, 500 m away from the water divide and surrounded by a Eucalyptus plantation. The 

great depth of the water table (20.2 m b.g.l., Table 1) may be one of the reasons that contributed 

to the singular behavior. 

The wells W13 and W14, 100 m apart in a sugarcane crop area, followed a similar general 

shape, with the earliest NMI peaks at 100 and 75 days.  

The well W15, located in a citrus orchard, presented a trending NMI curve, without any 

relevant peaks. For the wells W16 and W19, which are in a Eucalyptus plantation area and located 

150 and 500 m away from the Onça Creek (main stream), the NMI curves showed similar patterns, 

with earliest local (and global) peaks at 115 and 175 days, respectively.  

When examining the interaction between groundwater levels and evapotranspiration 

(AET) (Figure 6), the water levels at wells close to each other (W4 and W5; W13 and W14; W16 

and W19) exhibited similar NMI patterns. Such patterns are characterized by multiple local peaks, 

which overall did not coincide with the peaks found in the analyses with precipitation.  
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When comparing the time lags in which local NMI peaks occurred with those lags detected 

by the GC analysis (Table 3), no wells showed inconsistency, that is, all peaks occurred in intervals 

with causal interaction confirmed in the Granger sense. 

Overall, the NMI curves and cross-correlation functions do not indicate the first peaks at 

the same lag times. For example, considerable differences can be observed in the groundwater 

level responses at the wells W13 and W14. The linearity premise of the correlation method 

probably leads to the observed deviations.  

 

Figure 6. Cross-correlation and normalized time-lagged mutual information (NMI) between evapotranspiration 

(AET) and groundwater level at the monitoring wells (GWLj) for time delays (τ) up to 1000 days. (S, T): NMI 

curves for the source (cause) and target (response) variables. (Ss, Ts): NMI curves for the shuffled time series. 

 

Figure 7 shows how precipitation, evapotranspiration, EVI and mean GWL interact with 

total streamflow (a) and baseflow (b) over different time delays. The hydraulic connectivity 
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between the aquifer and the stream is evidenced by the high NMI values for early time lags. The 

NMI curve for the relationship between precipitation and streamflow drops rapidly in the first 5 

days of delay, and it develops two local peaks at 380 and 765 days. The NMI curve for the baseflow 

as a response of the precipitation presented local maxima at 50, 415, 780, and 845 days. The 

evapotranspiration presented slight peaks every ~ 180 days. Again, divergences between NMI 

curves and cross-correlation functions are evidenced.    

 

Figure 7. Cross-correlation and NMI between meteorological variables (precipitation-PP, actual evapotranspiration-

AET), groundwater states (mean groundwater level-GWL), and streamflow (Q) and baseflow (Qb) responses. (S, T): 

NMI curves for source (cause) and target (response) variables. (Ss, Ts): NMI curves for the shuffled time series. 
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To support the interpretation of the results showed in Figures 5, 6 and 7, especially to better 

know the memory timescale and the persistence of the hydrological processes, the time-lagged 

mutual information was also calculated for each variable, determining a ‘self-information’ 

(Figure 8). Notably, the mean groundwater level (GWL) has the highest persistence, followed by 

the baseflow and streamflow. The memory timescale, if estimated by the first local minimum of 

the time-lagged mutual information, was about 200 days for GWL, Q, and Qb, and about 100 days 

for EVI and AET. The precipitation did not present statistically significant results.  

 

 

Figure 8. Autocorrelation and time-lagged (auto) mutual information series. (S, T): NMI curves for source (cause) 

and target (response) variables. (Ss, Ts): NMI curves for the shuffled time series.  

 

4 Discussion 

The time-lagged mutual information and the Granger causality test proved to be effective 

to detect relevant time lags in synthetic time series. Simple and convergent interpretations were 

possible in our assessment. When analyzing the watershed data, however, the results were diverse, 
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without a clear pattern. The Granger test seemed to be useful to detect processes that demand a 

large time delay to establish a connection. Since our study area is relatively small (~ 52 km²), in 

most of the cases, the causal interaction was detected even for 1-day lag (Table 3). These results 

could be expected since all local processes are structurally connected, sometimes with an 

intermediate reservoir (e.g., soil). Nevertheless, the innovative information we obtain from them 

is very limited. The NMI curves presented multiple and statistically significant local peaks, which 

are likely attributed to the memory of the response time series itself (Li et al., 2017). The causal 

information flow may be limited only to the first local peak, mainly when we try to give a physical 

interpretation. For example, the results from the pairs formed by precipitation and groundwater 

level (Figure 5) suggest that the first peak is the mean time required for the rainwater to reach the 

water table, while the second and third peaks are products of the seasonality of the variables. The 

diversity of patterns in the NMI curves also suggest that location, soil characteristics and land 

cover are all contributing to the responses of groundwater levels. Streamflow is highly dependent 

on the groundwater (Figure 7), validating the physical knowledge (or conceptual model) we have 

about the system (Machado et al., 2016; Wendland et al., 2015).  

For the same watershed studied here, the study by Gómez et al. (2018) applied correlation 

and wavelet transform based techniques and found a response time of approximately 2 years of 

the baseflow to precipitation events. This result seems to correspond to that presented in Figure 7b 

(global NMI peak at ~750 days). Nevertheless, when considering the general upwards trend of the 

mutual information observed in practically all pairwise analyses, we understand that only the first 

local peak has a potential physical meaning related to response time, whereas the other peaks are 

associated with the auto dependency (and seasonal effects) found in the precipitation data (Figure 

8f) or in other driving variables. This interpretation is reinforced by the groundwater level 
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responses to precipitation (Figure 5) once the first NMI peaks occur in the same range of 50 to 100 

days of time lag.  

Although the interactions in the hydrologic system are generally nonlinear, the Granger 

causality test revealed the existence of causal interactions in most of the pairwise analyses, even 

for very short time lags. Similar capability to detect nonlinear dependencies in 

hydrometeorological systems using the Granger test was reported by Ombadi et al. (2020). In our 

case, the detections may have been facilitated by the high connectivity between the hydrological 

processes. In some instances, the Granger test was useful to detect low connectivity between 

causes and responses (e.g., GWL9). We did not find a clear pattern in the results that could be 

associated with a physical interpretation of the lags detected. Although the Granger causality test 

seems to not be as useful as other information theoretic-based methods when assessing the 

connectivity between processes, it still provides some information. One utility we defend is 

precisely the opportunity to reduce uncertainties related to the interpretations. For example, a local 

peak in the NMI curve between the variables S and T for a time lag in which there is no causality 

in the Granger sense possibly will not have a relevant meaning.  

 

4.1 Limitations and Future Directions 

This study consists of a practical application of causal analysis to a hydrologic system. The 

meaning of the multiple peaks of the NMI measure and the possible physical interpretation 

associated with the results require further clarification. Even in a scenario with doubts about these 

meanings and interpretations, we understand that the methods have potential to show relevant 

characteristics of the hydrologic system behavior and could be useful for the development and 

evaluation of models.  
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The reproduction of hydrologic responses and their time-lagged dependencies 

(connectivity) with driving variables seems to be an attractive criterion to be considered in future 

research. Time lagged mutual information (with the issues related to the memory effects), or even 

a more complex measure such as the transfer entropy (Bennett et al., 2019), may serve as an 

additional metric to evaluate the consistency and adequacy of hydrologic models. 

Another potential application based on the results here presented refer to the construction 

of tools for real-time streamflow forecasts because many of these tools use a combination of lagged 

precipitation and streamflow data to perform the predictions (Gómez et al., 2019; Jahandideh-

Tehrani et al., 2020; Lv et al., 2020). Mutual information measures can be useful to define the 

‘optimal’ time lags to be considered. 

Our dataset is relatively short (10 years of daily data) to detect eventual variations in the 

way that the hydrologic variables interact with each other over time, such as done in the study by 

Franzen et al. (2020). Undoubtedly, understanding how connectivity measures change over time 

and how environmental changes (e.g., land use, climate variability) influence the connectivity 

between hydrological processes are relevant topics to be addressed in future studies.    

5 Conclusions 

Two causal discovery methods (Granger’s causality and mutual information) were assessed 

and used to characterize pairwise time-lagged dependencies of daily data observed in a small sub-

tropical watershed. The water balance closure was verified considering the groundwater storage 

dynamics. Unsurprisingly, statistically significant causal interactions were confirmed between 

most of the water balance components. The analysis conducted allowed us to characterize temporal 
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interdependencies with long time windows, to identify some patterns, to explore the strength of 

connectivity between hydrological processes, and to estimate the memory timescale of variables.  

Despite these capabilities, further studies are required to constrain the possible 

interpretations and to create a connection between statistical results and the hydrologic system 

dynamics. The option of using data from a watershed, an open system with many associated 

uncertainties, and insufficient characterization, made it unfeasible to advance in that sense. This is 

an opportunity, however, to advance combined field hydrology and modeling studies to move from 

abstract statistical results to objective physical interpretations. 

Throughout this paper, the potential of causal methods in characterizing the connectivity 

between variables was evidenced. Real-world applications, with examples of how such methods 

can contribute to hydrological science and applied hydrology, considering data limitations, seem 

to be essential to engage the community. In future studies, one can test, for instance, if a model 

accurately reproduces the connectivity patterns found in observed data, even when the reasons 

behind the patterns are unknown. Similar approaches can improve the adequacy and performance 

of predictive tools and constrain uncertainties. 

Data Availability 

Hydrologic data used in this research is publicly available at  

https://github.com/kalylgc/causebro/tree/Data/ 

https://github.com/kalylgc/causebro/tree/Data/
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