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Abstract

The development of atmospheric parameterizations based on neural networks is often hampered by numerical instability issues.

Previous attempts to replicate these issues in a toy model have proven ineffective. We introduce a new toy model for atmospheric

dynamics, which consists in an extension of the Lorenz’63 model to a higher dimension. While neural networks trained on a

single orbit can easily reproduce the dynamics of the Lorenz’63 model, they fail to reproduce the dynamics of the new toy

model, leading to unstable trajectories. Instabilities become more frequent as the dimension of the new model increases, but

are found to occur even in very low dimension. Training the neural network on a different learning sample, based on Latin

Hypercube Sampling, solves the instability issue. Our results suggest that the design of the learning sample can significantly

influence the stability of dynamical systems driven by neural networks.
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Abstract11

The development of atmospheric parameterizations based on neural networks is often12

hampered by numerical instability issues. Previous attempts to replicate these issues in13

a toy model have proven ineffective. We introduce a new toy model for atmospheric dy-14

namics, which consists in an extension of the Lorenz’63 model to a higher dimension. While15

neural networks trained on a single orbit can easily reproduce the dynamics of the Lorenz’6316

model, they fail to reproduce the dynamics of the new toy model, leading to unstable17

trajectories. Instabilities become more frequent as the dimension of the new model in-18

creases, but are found to occur even in very low dimension. Training the neural network19

on a different learning sample, based on Latin Hypercube Sampling, solves the instabil-20

ity issue. Our results suggest that the design of the learning sample can significantly in-21

fluence the stability of dynamical systems driven by neural networks.22

Plain Language Summary23

Part of atmospheric models accounting for small-scale processes, called parame-24

terizations, can be developed by using artificial intelligence techniques, such as neural25

networks. The development of such parameterizations is often hampered by numerical26

instability issues. Toy models commonly used in atmospheric research are not complex27

enough to allow the study of these instabilities, and are easily learnt by neural networks.28

Here, we introduce a new toy model for atmospheric dynamics, which consists in an ex-29

tension of the famous Lorenz’63 model to a higher dimension. While neural networks30

trained on a single orbit can easily reproduce the Lorenz’63 model, they fail to replicate31

the new toy model, leading to unstable trajectories. Training the neural network on a32

specifically designed learning sample, which explores the full phase space in the neigh-33

borhood of a given trajectory, solves the instability issues. Our results suggest that the34

design of the learning sample can significantly influence the stability of dynamical sys-35

tems driven by neural networks.36

1 Introduction37

Many efforts have been made over the last few years to develop new, data-driven38

parameterization schemes using artificial intelligence (AI) for use in atmospheric mod-39

els (e.g. Gentine et al., 2018; O’Gorman & Dwyer, 2018; Brenowitz & Bretherton, 2018).40

Even though they promise numerically affordable yet accurate physics for low resolution41
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atmospheric models (e.g. climate models), current state-of-the-art AI parameterizations42

are still biased and, more importantly, they face numerical instability issues. As reported43

by Rasp (2020), neural networks (NNs) are often numerically unstable, when coupled44

to the large-scale atmospheric fluid mechanics solver (e.g. Rasp et al., 2018; Brenowitz45

& Bretherton, 2019). Parameterizations based on random forests (RF) have been reported46

to be stable (Yuval & O’Gorman, 2020). But, when compared offline, NN-based param-47

eterizations seem to outperfom RF-based parameterizations (Brenowitz, Henn, et al., 2020).48

Stability issues can be interpreted as a result of breaking physical laws, and some49

authors propose techniques to ensure compliance with these laws (e.g. Beucler et al., 2019).50

Brenowitz, Beucler, et al. (2020) shows that instabilities are related to the linearized be-51

havior of NNs when coupled to idealized wave dynamics. To fix numerical instabilities,52

Rasp (2020) proposes a coupled online learning method where a NN model, which was53

first trained offline, is continuously corrected according to online prediction errors. This54

concept is illustrated using the Lorenz’96 model (Lorenz, 1996).55

Lorenz’96 (hereafter L96) and Lorenz’63 (Lorenz, 1963, hereafter L63) models of-56

ten serve as toy models for atmospheric modeling, drawing simplified versions of the at-57

mospheric flow. They have been extensively used as a test bed for assessing the use of58

data-driven methods in atmospheric models. L63 model has been accurately learnt by59

feedforward neural networks (Scher & Messori, 2019) or reservoir networks (Pathak et60

al., 2017). L96 dynamics has also been accurately learnt by feedforward NNs, recurrent61

NNs or generative adversarial networks (Dueben & Bauer, 2018; Chattopadhyay et al.,62

2020; Gagne et al., 2020), without reporting stability issues. Both L63 and L96 toy mod-63

els appears to be insufficiently complex to study numerical instabilities encountered with64

more complex systems.65

Understanding the instability encountered in the development of data-driven pa-66

rameterizations is of outmost importance for any climate application. However, no toy67

model for atmospheric dynamics is currently available to investigate such instability is-68

sues. The first aim of this paper is to introduce a toy model for atmospheric dynamics,69

consisting in a higher dimensional version of L63, which exhibits instability when learnt70

by a NN. The second objective is to propose a possible method to ensure stability of the71

NN-generated trajectories, which in our case involves using a specific learning sample.72

Both objectives can be seen as steps towards solving numerical instabilities – an issue73
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which remains challenging to develop suitable NN-based parameterizations for atmospheric74

models.75

Section 2 describes the Lorenz’63 model and illustrates that this model is not com-76

plex enough to challenge NNs. In Section 3, we introduce the embedded Lorenz’63 model,77

and show that learning of this simple model with NNs leads to unstable trajectories. In78

Section 4, a method to address these instability issues is proposed. Finally, conclusions79

and discussions will be drawn in Section 5.80

2 Learning the Lorenz’63 model81

By expanding the set of partial differential equations of Rayleigh-Bénard convec-82

tion into Fourier series and then truncating, Lorenz (1963) derives a finite system of or-83

dinary differential equations, given by:84

ẋ1 = σ(x2 − x1),

ẋ2 = x1(ρ− x3)− x2,

ẋ3 = x1x2 − βx3 + x1.

(1)

The evolution of the state variable x = (x1, x2, x3) is governed by the set of parame-85

ters (σ, ρ, β). L63 admits a chaotic solution for some values of these parameters, in par-86

ticular σ = 10, ρ = 28 and β = 8/3. We use these values in the following. Although87

computationally cheap, L63 is able to mimic some properties of the atmospheric flow.88

Hence, it is a suitable toy model to perform proof-of-concept experiments.89

Recently, the L63 model has been used as a test bed for assessing the use of data-90

driven methods in atmospheric models. The system of equations (1) can be formally rewrit-91

ten:92

ẋ(t) = f(x(t)). (2)

Data-driven methods provide an approximate function, f̂ , to replace the ’true’ function93

f , and thus they replace the initial dynamical system by:94

ẋ(t) = f̂(x(t)). (3)

That is, learning a dynamical system usually involves learning its derivative. For the L6395

model specifically, various functions f̂ have been proposed recently, e.g., using sparse lin-96

ear regression (Brunton et al., 2016), feedforward neural networks (Scher & Messori, 2019),97

or reservoir networks (Pathak et al., 2017). Fitting f̂ always involves an optimization98
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over a set of free parameters θ. This optimization is done for a given loss function, and99

a given learning sample. In the case of dynamical systems, the learning sample is typ-100

ically a time series, also called an orbit, obtained by numerical integration of the system,101

e.g., Eq. (2). We note [xorb] this learning sample:102

[xorb] = {(xn, f(xn))}n=1..N , (4)

where xn denotes the state of the system, x(tn), at time tn.103

To learn the L63 model, we use one single orbit as a learning sample. This orbit104

is obtained by integrating Eqs. (1) with a time-step of ∆t = 0.05 using a fourth-order105

Runge-Kutta time stepping scheme. The numerical integration is performed over 500 model106

time units (MTU, where 1 MTU = 20 ∆t). Thus, the learning sample contains N = 10000107

individuals. A simple, eight-layer feedforward artificial neural network is trained to de-108

rive f̂ , using the mean squared error as the loss function. The integration of both the109

L63 model (Eq. 2) and its NN-approximation (Eq. 3), starting from the same initial con-110

dition, shows a good agreement (Fig. 1). In particular, the NN-based model does not111

manifest any unstable behavior, i.e., its orbits always lay on the Lorenz ’butterfly’ at-112

tractor. Repeating this analysis with different initial conditions and/or different learn-113

ing samples leads to the same conclusion. This result suggests that the L63 model is not114

challenging enough to data-driven methods and does not allow to study instability is-115

sues, as previously shown in similar studies.116

L96 provides another simple framework to study data-driven methods in the con-117

text of atmospheric modeling. L96 is designed to be more complex than L63, owing to118

its larger number of state variables. However, reservoir computers and neural networks119

have succeeded in learning this system without reporting instability issues. Hence, both120

L63 and L96 appears to be too simple to encounter the typical instability issues that still121

hamper the development of AI parameterizations.122

3 The embedded Lorenz’63 model123

Building a higher dimensional model on the basis of L63 has already been proposed.124

Musielak and Musielak (2009) added a fourth spatial variable to extend L63 equations.125

Champion et al. (2019) created a high-dimensional model on the basis of L63 system by126

using Legendre polynomials. Here, we propose a different extension of this model specif-127

ically designed to investigate instability issues.128
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The key idea is as follows: the standard L63 model, which is of dimension 3, is em-129

bedded into a larger space of dimension d > 3. In the selected 3-D subspace, the chaotic130

dynamics of L63 is kept unchanged. Any deviation from this 3-D subspace is brought131

back by a restoring force. We call ’embedded’ L63 model (hereafter, eL63) this new sim-132

ple model. A formal definition of eL63 is in two steps (see Figure 2).133

(1) Embedding: we construct a vector z = (z1, z2, ..., zd) ∈ Rd, and define its dy-134

namics by:135

ż1 = σ(z2 − z1),

ż2 = z1(ρ− z3)− z2,

ż3 = z1z2 − βz3 + z1,

żj = −κzj , ∀j > 3.

(5)

The first three equations are identical to L63, while the d − 3 additional equa-136

tions are simple restoring forces. For the sake of simplicity, the relaxation coef-137

ficient, κ, is unique. In the following, we use κ = 1. We denote Bz the basis of138

vector z.139

(2) Random rotation: We apply a random rotation to derive the state vector of the140

eL63 system, x = (x1, x2, ..., xd):141

x(t) = Pz(t), (6)

where P ∈ Rd×d is the rotation matrix between Bz and Bx, the basis of x. Note142

that the rotation matrix P does not depend on time.143

A key property of eL63 is that zj,j>3 exponentially decays towards zero and so x(t)144

is confined within a subspace of dimension 3. This subspace can be interpreted as re-145

sulting, e.g., from physical but unknown constraints. The difficulty for a data-driven method146

to fully capture the dynamics of eL63 comes from the fact that any orbit is very thin –147

almost all points are located in a subspace of dimension 3. If such an orbit is used as a148

learning sample, any deviation from this specific subspace in a predicted trajectory can149

lead to an out-of-sample issue.150

We now consider the problem of learning eL63, in the same way as done for L63151

in the previous section. A learning sample [xorb] is built by integrating eL63 equations152

over 500 MTUs, with a timestep of ∆t = 0.05 using a fourth-order Runge-Kutta scheme.153

The initial condition is sampled from an eL63 orbit, which is equivalent to removing the154
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model spin-up from the learning dataset, ensuring that zj,j>3 ≈ 0. Therefore, the learn-155

ing dataset contains N = 10000 individuals. Both the input and the target variables156

are then normalized so that their mean value equals 0 and their standard deviation equals157

1. They are randomly partitioned into training and testing datasets, with proportions158

80% and 20%, respectively. A simple feedforward NN is trained to best approximate f .159

The NN is eight layers deep and of similar complexity to the NN that has been utilized160

to learn the L63 dynamics in Section 2. All layers are activated by Rectified Linear Unit161

(ReLU) function. With an embedding dimension d = 4, this neural network has 176458162

free parameters to fit. Learning is performed over 50 epochs, with Keras implementa-163

tion of Adam optimizer, parameterized with a initial learning rate of 0.001. During train-164

ing, the determination coefficient R2 over the test subset is monitored. The training loss165

function L is the mean squared error:166

L(θ, [xtrain]) =
1

N

N∑
n=1

∥∥∥f̂θ(xn)− f(xn)
∥∥∥2 , (7)

where [xtrain] denotes the training dataset, N the size of the training dataset, xn ∈ [xtrain]167

for 1 ≤ n ≤ N , and θ denotes the set of parameters over which the optimization is168

made. As the learning sample consists of a single orbit, we note f̂orb the estimated func-169

tion, i.e.:170

f̂orb = f̂θ∗ with θ∗ = argmin
θ
L(θ, [xorb]). (8)

Learning is very efficient, as we get R2 = 0.9998, i.e., an overall performance con-171

sistent with L63. To assess the stability of the trajectories generated by using f̂orb in-172

stead of f , we take an initial condition within the original learning sample [xorb]. Then,173

we generate the ANN-based trajectories starting from these points over 1000 MTUs, and174

compared them with the true eL63 orbits (i.e., integrating eL63 equations from the same175

initial condition). This seems long enough for a model to manifest numerical instabil-176

ities. Stability of the resulting orbit is assessed using a ’stability criterion’ defined as fol-177

lows: for each i = 1..d, we compute the minimum (mi) and maximum (Mi) values of178

xi over the training orbit [xorb]. A N -step trajectory is considered as stable if it remains179

within 7 times this range of values, i.e.:180

mi − 3(Mi −mi) ≤ xni ≤Mi + 3(Mi −mi), ∀ 1 ≤ i ≤ d, ∀ 1 ≤ n ≤ N. (9)

The choice of this stability criterion is partly arbitrary, but it is motivated by its sim-181

plicity.182
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The above described validation strategy is iterated over 100 different f̂orb, each be-183

ing trained with a different rotation matrix P and a corresponding learning sample
[
xorb

]
.184

The resulting functions f̂orb are then tested by generating orbits of length 1000 MTU185

from 30 different initial conditions sampled randomly from their respective training or-186

bit. As a result, stability can be assessed over 3000 simulated orbits of length 1000 MTU187

each. Figure 3 shows the percentage of stable trajectories generated with f̂orb for dif-188

ferent values of d, the dimension of eL63. Even with minimal embedding (i.e., d = 4),189

40% of the NN-generated orbits are unstable. With d ≥ 7, all generated orbits are un-190

stable regarding the stability criterion defined by Eq. (9). The accumulation of small pre-191

diction errors gradually leads the NN-generated orbit away from the learning sample,192

in a region where f̂orb is not accurate. Hence, many NN-generated orbits are unstable,193

proving that eL63 is a very simple model (as its dimension remains very low) which is194

able to reproduce instability issues. Lastly, we notice that the same recipe (i.e., embed-195

ding) can be applied to even simpler non-chaotic dynamical system, and leads to sim-196

ilarly unstable trajectories when learnt by NNs (see Supplementary Information).197

4 Stabilizing the NN-based embedded Lorenz’63 model198

We now propose to illustrate a possible method to solve instability issues encoun-199

tered by simple NN models in the case of the eL63 model. We generate a new learning200

sample by taking points away from a typical orbit, taking advantage of the fact that the201

value of f can be sampled at any location. In this way, we better approximate the func-202

tion f on regions away from the eL63 attractors. This method can be thought as a data203

augmentation technique. Pan and Duraisamy (2018) yet proposes data augmentation204

as a remedy to tackle instability issues encountered in the dynamical system they study.205

Here, we use a Latin Hypercube Sampling (LHS) (McKay, 1992) to generate a new206

learning sample of size N = 10000 (i.e., N is kept unchanged). LHS generates an op-207

timal near-random sample in a high-dimensional (here, dimension d) hypercube. The bound-208

aries of the LHS are set to 1.5 times the range of an orbit [xorb]. This calculation is done209

for each i = {1, ..., d}, leading to an hypercube in the basis Bx. Finally, we generate210

the target variables by simply applying f to the selected points, and obtain a new learn-211

ing sample [xLHS]. The next step is to estimate f from [xLHS]. Consistent with the pre-212

vious section, train and test datasets are obtained by randomly partitioning the learn-213

ing sample in proportions of 80% and 20%, respectively. A feedforward neural network214
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is trained, and we denote215

f̂LHS = f̂θ∗ with θ∗ = argmin
θ
L(θ, [xLHS]). (10)

the new estimate of f . Learning over the LHS sample is slightly less efficient than learn-216

ing from a single orbit dataset, as we find R2 = 0.9975. This is an expected outcome,217

as the region covered by the learning sample is wider in the case of [xLHS], resulting in218

more complex variations of f .219

100 f̂LHS are trained over different learning datasets. The estimate functions then220

generate orbits of length 1000 MTU from 30 initial conditions that has been randomly221

sampled from
[
xorb

]
. The same stability criterion (Eq. 9) is applied to determine whether222

the f̂LHS orbit is stable. Contrary to orbits generated with f̂orb, all orbits generated with223

f̂LHS remain stable over 1000 MTUs (see Fig. 3) with d = 4, . . . , 10. This result sug-224

gests that stability can be a property of the learning sample – and not only of the type225

of learning algorithm or of intense tuning of hyperparameters. It also shows that extend-226

ing the training beyond the thin phase space region explored by a single trajectory is im-227

portant to improve the long-term performance (in particular stability skill) of a NN-based228

dynamical model.229

However, one caveat is worth mentioning. Even though the generated trajectories230

are stable, in some cases, they collapse onto a fixed point near the center of one of the231

eL63 attractors. This seems to happen more frequently as the embedding dimension d232

increases. It can suggest that the size of our learning sample (i.e., 10000 individuals) may233

not be sufficient when the embedding dimension increases. This finding could motivate234

further research on how to improve the design of the learning sample in such problems.235

5 Conclusion and discussion236

We have developed an extended version of the Lorenz’63 model by embedding this237

model into higher dimension d. This new model is called the embedded Lorenz’63 model.238

Using a real trajectory (orbit) as a learning sample, simple artificial neural network can239

successfully learn the time derivatives ẋ of either L63 or eL63 models. However, unlike240

in L63, long trajectories generated by NNs are unstable in eL63. Instability is observed241

even with a minimal dimension increase, i.e., d = 4, and becomes more frequent as d242

increases. As a result, eL63 is a first example of low-dimension toy model for atmospheric243

dynamics that can be used to investigate the stability of NN-generated trajectories. In-244
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troduction of this new model is important, because previous attempts to construct a toy245

model able to replicate instability issues have proven ineffective.246

Using NNs of similar complexity but with a different learning sample, specifically247

designed using a latin hypercube sample, solves the instability issue. We interpret this248

result as follows. A typical eL63 orbit converges towards the model’s attractor very quickly,249

leading to degeneracy – the orbit stays confined into a subspace of dimension 3. Con-250

versely, a LHS generates points in the full eL63 space of dimension d, which allows the251

NN to learn the restoring force playing away from the attractor. This result is impor-252

tant, as it suggests that the design of the learning sample can largely influence the sta-253

bility of the NN-generated trajectories. This finding also suggests that the design of the254

learning sample might be an important and potentially overlooked step in IA-based at-255

mospheric modelling. As opposed to this, much literature to date has focused on improv-256

ing the learning technique in order to ensure stability.257

An important further question is whether or not this new toy model can provide258

helpful guidance for real-world problems, i.e., developing full-complexity atmospheric pa-259

rameterizations based on NNs. In our view, the response is unclear at this stage, as a260

few questions remain open. Is the real world as much degenerated as is eL63? The fact261

that any orbit gets confined into a low-dimension subspace can mimic unknown phys-262

ical laws. There is a growing literature on this topic. Recent studies show that NNs can-263

not learn exact physical laws, typically inducing drifts in the generated trajectories (e.g.264

Greydanus et al., 2019). Various learning techniques have been proposed to account for265

such physical laws. However, the degeneracy could also result from a fast equilibrium266

in response to restoring forces, just as assumed in eL63 – an issue which could be more267

difficult to address, as physical knowledge is probably more difficult to incorporate in268

this case. So, if some degeneracy is likely to happen in the real-world, its strength is not269

well determined.270

Could real-world application benefit from using designed learning samples rather271

than ’samples of opportunity’ like single orbits? The idea of building a specific learning272

sample can be viewed as a data augmentation strategy. This technique first requires abil-273

ity to calculate the value of f at any given location. Additionally, using a LHS strategy274

as suggested above can be computationally demanding, especially if the dimension of x275
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is large. In particular, we note that real atmospheric parameterizations involve a dimen-276

sion d much higher than those investigated with our toy model.277

Acknowledgments278

Code is made available at : https://doi.org/10.5281/zenodo.4331711.279

References280

Beucler, T., Pritchard, M., Rasp, S., Gentine, P., Ott, J., & Baldi, P. (2019). En-281

forcing analytic constraints in neural-networks emulating physical systems.282

arXiv:1909.00912 [physics] . (arXiv: 1909.00912)283

Brenowitz, N. D., Beucler, T., Pritchard, M., & Bretherton, C. S. (2020). Interpret-284

ing and stabilizing machine-learning parametrizations of convection. J. Atmos.285

Sci., 1–55. doi: 10.1175/JAS-D-20-0082.1286

Brenowitz, N. D., & Bretherton, C. S. (2018). Prognostic validation of a neural net-287

work unified physics parameterization. Geophysical Research Letters, 45 (12),288

6289–6298. doi: 10.1029/2018GL078510289

Brenowitz, N. D., & Bretherton, C. S. (2019). Spatially extended tests of a neu-290

ral network parametrization trained by coarse-graining. Journal of Advances in291

Modeling Earth Systems, 11 (8), 2728–2744. doi: 10.1029/2019MS001711292

Brenowitz, N. D., Henn, B., McGibbon, J., Clark, S. K., Kwa, A., Perkins, W. A.,293

. . . Bretherton, C. S. (2020). Machine learning climate model dynamics: offline294

versus online performance. arXiv:2011.03081 [physics] . (arXiv: 2011.03081)295

Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Discovering governing equa-296

tions from data by sparse identification of nonlinear dynamical systems. Proc297

Natl Acad Sci USA, 113 (15), 3932–3937. doi: 10.1073/pnas.1517384113298

Champion, K., Lusch, B., Kutz, J. N., & Brunton, S. L. (2019). Data-driven discov-299

ery of coordinates and governing equations. Proc Natl Acad Sci USA, 116 (45),300

22445–22451. doi: 10.1073/pnas.1906995116301

Chattopadhyay, A., Hassanzadeh, P., & Subramanian, D. (2020). Data-driven302

predictions of a multiscale Lorenz 96 chaotic system using machine-learning303

methods: reservoir computing, artificial neural network, and long short-304

term memory network. Nonlin. Processes Geophys., 27 (3), 373–389. doi:305

10.5194/npg-27-373-2020306

–11–



manuscript submitted to Geophysical Research Letters

Dueben, P. D., & Bauer, P. (2018). Challenges and design choices for global weather307

and climate models based on machine learning. Geosci. Model Dev., 11 (10),308

3999–4009. doi: 10.5194/gmd-11-3999-2018309

Gagne, D. J., Christensen, H. M., Subramanian, A. C., & Monahan, A. H. (2020).310

Machine learning for stochastic parameterization: generative adversarial net-311

works in the Lorenz ’96 model. Journal of Advances in Modeling Earth Sys-312

tems, 12 (3), e2019MS001896. doi: 10.1029/2019MS001896313

Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., & Yacalis, G. (2018). Could314

machine learning break the convection parameterization deadlock? Geophysical315

Research Letters, 45 (11), 5742–5751. doi: 10.1029/2018GL078202316

Greydanus, S., Dzamba, M., & Yosinski, J. (2019). Hamiltonian neural networks.317

arXiv:1906.01563 [cs] . (arXiv: 1906.01563)318

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric319

Sciences, 20 , 130–141. doi: 10.1175/1520-0469(1963)020〈0130:DNF〉2.0.CO;2320

Lorenz, E. N. (1996). Predictability: a problem partly solved. Proc. ECMWF Semi-321

nar on Predictability , Vol. I, Reading, United Kingdom, ECMWF , 1–18.322

McKay, M. D. (1992). Latin Hypercube Sampling as a tool in uncertainty analysis323

of computer models. Proceedings of the 24th Conference on Winter Simulation,324

557–564. doi: https://doi.org/10.1145/167293.167637325

Musielak, Z. E., & Musielak, D. E. (2009). High-dimensional chaos in dissipative326

and driven dynamical systems. Int. J. Bifurcation Chaos, 19 (09), 2823–2869.327

doi: 10.1142/S0218127409024517328

O’Gorman, P. A., & Dwyer, J. G. (2018). Using machine learning to parameter-329

ize moist convection: potential for modeling of climate, climate change, and330

extreme events. Journal of Advances in Modeling Earth Systems, 10 (10),331

2548–2563. doi: 10.1029/2018MS001351332

Pan, S., & Duraisamy, K. (2018). Long-Time predictive modeling of nonlinear dy-333

namical systems using neural networks. Complexity , 2018 , 1–26. doi: 10.1155/334

2018/4801012335

Pathak, J., Lu, Z., Hunt, B. R., Girvan, M., & Ott, E. (2017). Using machine336

learning to replicate chaotic attractors and calculate Lyapunov exponents from337

data. Chaos, 27 (12), 121102. doi: 10.1063/1.5010300338

Rasp, S. (2020). Coupled online learning as a way to tackle instabilities339

–12–



manuscript submitted to Geophysical Research Letters

and biases in neural network parameterizations: general algorithms and340

Lorenz 96 case study (v1.0). Geosci. Model Dev., 13 (5), 2185–2196. doi:341

10.5194/gmd-13-2185-2020342

Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid343

processes in climate models. PNAS , 115 (39), 9684–9689. doi: 10.1073/pnas344

.1810286115345

Scher, S., & Messori, G. (2019). Generalization properties of feed-forward neural346

networks trained on Lorenz systems. Nonlin. Processes Geophys., 26 (4), 381–347

399. doi: 10.5194/npg-26-381-2019348

Yuval, J., & O’Gorman, P. A. (2020). Stable machine-learning parameterization of349

subgrid processes for climate modeling at a range of resolutions. Nat Commun,350

11 (1), 3295. doi: 10.1038/s41467-020-17142-3351

–13–



manuscript submitted to Geophysical Research Letters

x1

−20
−15

−10
−5

0
5

10
15

20

x 2

−20

−10

0

10

20

30

40

x 3

0

10

20

30

40

50

+

x1

−20
−15

−10
−5

0
5

10
15

20

x 2

−20

−10

0

10

20

30

40

x 3

0

10

20

30

40

50

+ 0

20

40

60

80

100

tim
e 

(M
TU

)

(i) Lorenz ’63 orbit (ii) NN-based Lorenz ’63 orbit

Figure 1. Examples of Lorenz’63 orbits. (i) The orbit is obtained by integration of Lorenz’63

system of equations (see Eq. 1 in the text) with σ=10, ρ=28 and β=8/3. (ii) The orbit results

from the integration of neural network model f̂ (see Eq. 3). The numerical integration is per-

formed over 100 model time units from initial condition (10, 15, 0). The orbits are colored by the

time variable.
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Figure 2. The embedded Lorenz’63 model (see text for details). (i) Representation of an eL63

orbit in Bz basis over 30 MTU : (left) tri-dimensional representation of (z1(t), z2(t), z3(t)), (mid-

dle) time series of z1(t), z2(t), and z3(t), (right) time series of z4(t) and zd(t). (ii) Representation

of the same eL63 orbit in Bx basis. Time series of x1(t), xi(t) and xd(t) are shown.
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Figure 3. Percentage of stable orbits generated with f̂ when trained with orbital (f̂orb, green)

or LHS (f̂LHS, purple) learning samples, as a function of embedding dimension d. Initial con-

ditions are randomly sampled either in an eL63 orbit or in a region around the eL63 attractor.

Stability is assessed with 100 different f̂ and 30 initial conditions for d ∈ {3, 4, 5, 6, 7, 8, 9, 10},

using the stability criterion defined in Eq. (9).
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Introduction

In this Supporting Information, we investigate the stability issues with a simpler model

than the eL63 toy model described in the main text. The use of this simple model

supports the results obtained in the main text. The state vector of this simple dynamical

system belongs to R
3, allowing a simple graphical representation and thus facilitating

interpretation of stability issues discussed in the main text. Text S1 describes the simpler

model and additional figures (Figures S1-S3) provide more information about the stability

issues encountered by neural networks.
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Text S1.

The numerical instability issue is investigated by using a very simple model. Instead of

the Lorenz’63 model we assume a rotation along a circular path. As the embedded L63

model, the model is defined in two steps.

In a first step, we define the time evolution of the state vector z = (z1, z2, z3) ∈ R
3 by :

ż1 = −ωz2,

ż2 = ωz1,

ż3 = −κz3.

(1)

The first two equations describe a simple rotation along a circle of radius R (we will

set R = 1) with a constant rotational speed, ω = 2π
T

= θ̇. T is the rotation period

and (z1(t), z2(t)) = (cos θ(t), sin θ(t)), with θ(t) = ωt. The third additional equation is a

simple restoring force (we fix κ = 1).

In a second step, we apply a random rotation (consistent with eL63) to derive the state

vector of the system, x = (x1, x2, ..., xd):

x(t) = Pz(t), (2)

where P ∈ R
3×3 is the rotation matrix (P does not depend on time).

This system of equations can be formally rewritten ẋ(t) = f(x(t)). To replace the ’true’

function f , we fit an approximate function with neural networks trained on a single orbit

of the dynamical model, f̂orb. We choose T = 100 ; the learning orbit is obtained by

integrating Eqs. (1) and (2) with a time-step of ∆t = 1. The numerical integration is

performed over 5 periods, corresponding to 500 model time units (MTU, where 1 MTU

= 1 ∆t).
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Figure S1 compares the value of f , f̂orb in the plane {−2 ≤ z1 ≤ 2,−2 ≤ z2 ≤ 2, z3 = 0}

and over the cylinder {0 ≤ arctan(z2/z1) ≤ 2π,−1 ≤ z3 ≤ 1}. In the plane z = 0,

errors are very small but no restoring force is learnt by f̂orb (as one might expect given

the learning sample). So, as soon as the trajectory deviates from the z = 0 plane, errors

can grow and bring the predicted state vector in out-of-sample regions, where prediction

errors are larger. This is illustrated in Figures S2 and S3. Figure S2 shows the orbit of the

dynamical system driven by a typical f̂orb, from an initial condition : z = (1, 0, 0). The

trajectory of (z1(t), z2(t)) is illustrated in Figure S2(a) and the time evolution of the third

component (z3(t)) is plotted in Figure S2(b). After about 2 periods of rotation (t1 = 1.5T

= 150 MTUs), the trajectory remains relatively close to the true orbit, but z3(t1) > 0 and

z3(t) is raising slowly. The vector fields in the corresponding z3 = z3(t1)-plane are shown

in Figure S3(a) and (d). In this plane, (ż1, ż2) predicted by f̂orb are less accurate than in

the initial (and learning) z3 = 0 plane. As time goes on, the error on the z3 component

increases and the vector field (ż1, ż2) no longer accurately reproduces the rotation along

the circle. This leads to an orbit that deviates from the original circle and an exponential

growth of error on the third component (see Figures S3(b), (c), (e) and (f)).

This remarkably simple model is a perfectly periodic and predictable system. Various

statistical techniques could successfully forecast the state of this system at a given lead-

time. However, learning the derivative of this system (as done in climate modeling) can

cause stability issues.
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(a) ż1 = f(z1, z2, 0) (b) ż2 = f(z1, z2, 0) (c) ż3 = f(cos θ, sin θ, z3)
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(d) ż1 = ̂forb(z1, z2, 0) (e) ż2 = ̂forb(z1, z2, 0) (f) ż3 = ̂forb(cos θ, sin θ, z3)
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Figure S1. Values of ż1, ż2 and ż3 obtained with f (top) and f̂orb (bottom). The values of ż

are computed in the plane {−2 ≤ z1 ≤ 2,−2 ≤ z2 ≤ 2, z3 = 0} on panels (a), (b), (d) and (e),

and over the cylinder {0 ≤ θ = arctan(z2/z1) ≤ 2π,−1 ≤ z3 ≤ 1} on panels (c) and (f).
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(a) (b)
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Figure S2. Temporal evolution of (a) the state vector (z1(t), z2(t)) and (b) the third component

z3(t) for an orbit driven by f̂orb (grey lines) and for the true orbit driven by f (black lines). The

initial condition is z = (1, 0, 0) and the orbits are plotted for the first 1000 MTUs. The state of

the vector z at t = {150, 400, 800} is highlighted by a colored empty circle.
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(a) t=150 (b) t=400 (c) t=800
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Figure S3. Snapshots at t = {150, 400, 800} of the vector fields ż(t) predicted by f (top

panels) and by f̂orb (bottom panels). (ż1, ż2) are plotted using vectors and ż3 is displayed by

filled circles. The state of (z1(t), z2(t)) at t = {150, 400, 800} is represented by a colored empty

circle (same color convention as Figure S2).
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