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Abstract

The decline in global emissions of carbon dioxide due to the COVID-19 pandemic provides a unique opportunity to investigate

the sensitivity of the global carbon cycle and climate system to emissions reductions. Recent efforts to study the response to

these emissions declines has not addressed their impact on the ocean, yet ocean carbon absorption is particularly susceptible

to changing atmospheric carbon concentrations. Here, we use ensembles of simulations conducted with an Earth system model

to explore the potential detection of COVID-related emissions reductions in the partial pressure difference in carbon dioxide

between the surface ocean and overlying atmosphere (ΔpCO2), a quantity that is regularly measured. We find a unique

fingerprint in global-scale ΔpCO2 that is attributable to COVID and potentially detectable in observations, but only with

much larger emissions reductions than those that have been observed to date.
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Key Points:12

• COVID-related emissions reductions will be imperceptible in surface ocean pH obser-13

vations14

• The CanESM5 COVID ensemble predicts a unique fingerprint of COVID-related15

emissions reductions in global mean ΔpCO2 (pCO>2
2 - pCO0C<

2 )16

• The fingerprint is potentially detectable in global-scale observations of ΔpCO2, but17

only with large emissions reductions18
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Abstract19

The decline in global emissions of carbon dioxide due to the COVID-19 pandemic provides20

a unique opportunity to investigate the sensitivity of the global carbon cycle and climate sys-21

tem to emissions reductions. Recent efforts to study the response to these emissions declines22

has not addressed their impact on the ocean, yet ocean carbon absorption is particularly sus-23

ceptible to changing atmospheric carbon concentrations. Here, we use ensembles of simu-24

lations conducted with an Earth system model to explore the potential detection of COVID-25

related emissions reductions in the partial pressure difference in carbon dioxide between the26

surface ocean and overlying atmosphere (ΔpCO2), a quantity that is regularly measured. We27

find a unique fingerprint in global-scale ΔpCO2 that is attributable to COVID and potentially28

detectable in observations, but only with much larger emissions reductions than those that29

have been observed to date.30

Plain Language Summary31

The COVID-19 pandemic is slowing the rate of fossil fuel use, and thus slowing the rise of32

carbon dioxide in the atmosphere. Here we explore what this change in fossil fuel use does33

to carbon in the ocean. We use a climate model to estimate the change in ocean-atmosphere34

carbon exchange and ocean acidity. Since we don’t yet know how much we will slow our35

fossil fuel use due to COVID, we make several guesses and see how our model ocean re-36

sponds to each. We use the model to investigate whether the change that we model would37

be detectable in the real world observations. We find that it is nearly impossible to detect a38

COVID-related change in ocean acidity with observations. It might be possible to detect a39

COVID-related change in ocean-atmosphere carbon exchange, but only if we drastically slow40

our emissions, and only if we have enough observation stations in place to record it.41

1 Introduction42

The socioeconomic disruptions associated with the COVID-19 pandemic have caused43

an unprecedented drop in global emissions of carbon dioxide (CO2) and other atmospheric44

pollutants. The first half of 2020 was characterized by an 8.8% decrease in global CO2 emis-45

sions relative to the first half of the previous year [Liu et al., 2020], with average daily emis-46

sions declines peaking at -26% in individual countries [Le Quéré et al., 2020]. The duration47

and severity of the emissions decline in the latter half of 2020 and beyond is as yet unknown,48

but 2020 emissions are likely to change by -6% to -13% [Friedlingstein et al., 2020] and con-49

tinued CO2 emissions reductions are expected in 2021 [Liu et al., 2020]. The important role50

of CO2 emissions in the global carbon cycle and climate system motivates further research51

on this topic.52

Several research groups are actively studying the impact of the COVID-related emis-53

sions reductions on the atmosphere and climate system. The latest World Meteorological54

Organization bulletin reports slight reductions in 2020 atmospheric CO2 levels (-0.08 to -55

0.23 ppm) as a result of the COVID pandemic, though they emphasize that this reduction is56

difficult to detect given typical year-to-year variations in atmospheric CO2 [± 1 ppm; World57

Meteorological Organization, 2020]. A recent modeling study concurs that COVID-related58

reductions in atmospheric CO2 levels are likely undetectable unless the emissions reductions59

are substantially larger than observed, but also demonstrates that these short-term reductions60

will have a long-term (decadal or longer) influence on atmospheric CO2 concentrations due61

to the long-lived nature of CO2 in the atmosphere [Fyfe et al., 2020]. Modeling studies sug-62

gest a modest or negligible impact of the emissions reductions on global atmospheric tem-63

perature [Forster et al., 2020; Fyfe et al., 2020]. To date, no study has described the impact64

of COVID-related emissions reductions on the ocean. As the ocean carbon system is particu-65

larly susceptible to atmospheric CO2 levels, further study on this topic is warranted.66
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Previous modeling work implies that the COVID-related CO2 emissions reductions and67

the subsequent slowdown in the atmospheric CO2 growth rate will have an immediate im-68

pact on ocean carbon uptake. Using an upper ocean box model that solves for the time rate69

of change of dissolved inorganic carbon in the surface mixed layer, McKinley et al. [2020]70

showed high sensitivity of air-sea CO2 flux to slight variations in the growth rate of the at-71

mospheric partial pressure of CO2 (pCO0C<
2 ) over the 1990s and 2000s. Using a global Earth72

system model, Laughner et al. [in review] find an anomalous 70 Tg C yr−1 reduction in 202073

sea-to-air CO2 flux due to COVID. These findings prompt further investigation into the de-74

tection of COVID-related CO2 emissions reductions in ocean carbon observations.75

Here, we explore the potential to detect COVID-related CO2 emissions reductions in76

two measurable quantities for ocean carbon: (1) ΔpCO2, which is the difference between the77

partial pressure of CO2 in the surface ocean (pCO>2
2 ) and the overlying pCO0C<

2 and deter-78

mines the direction and, along with wind speed and solubility, the magnitude of the sea-to-air79

CO2 flux, and (2) surface ocean pH, a measure of ocean acidity. Using ensembles of simu-80

lations conducted with a single Earth system model, we identify the fingerprint of COVID-81

related CO2 emissions reductions in these observable quantities. We then treat the individual82

model ensemble members as possible observations and remark on the likelihood of finger-83

print detection in future ocean carbon measurements.84

2 Methods85

2.1 CanESM5 COVID ensemble86

Our primary numerical tool is the Canadian Earth System Model version 5 (CanESM5),87

which consists of coupled atmosphere, ocean/sea ice, and land model components and was88

designed to make estimates of historical climate change and variability, to provide future cli-89

mate projections, and to initialize near-term predictions of the climate system [Swart et al.,90

2019]. The ocean component of the model is based on the Nucleus for European Modelling91

of the Ocean (NEMO), but has been configured for use in CanESM5 with a nominal 1◦ hor-92

izontal resolution that refines to 1/3◦ meridional grid spacing near the equator, 45 vertical93

layers with varying thickness from 6 m in the surface to 250 m at depth, and a collection of94

scientifically supported sub-grid scale mixing schemes [Swart et al., 2019]. The ocean bio-95

geochemical component of the model uses the Canadian Model for Ocean Carbon [CMOC;96

Christian et al., 2010], a Nutrient, Phytoplankton, Zooplankton, Detritus (NPZD)-type bio-97

logical model with updated carbonate chemistry routines following the Ocean Model Inter-98

comparison Project biogeochemical (OMIP-BGC) protocol [Orr et al., 2017].99

We analyze output from a large ensemble of CanESM5 simulations forced with 4 dif-104

ferent CO2 emission scenarios (Figure 1a). This model simulation configuration is described105

in Fyfe et al. [2020], and hereafter referred to as the CanESM5 COVID ensemble. Briefly,106

the first set of simulations (the control) consists of 30 ensemble members of CanESM5 in-107

tegrated over 2015-2019 under SSP2-4.5 CO2 emissions and initialized with slightly per-108

turbed climate states to capture internal climate variability. The remaining 3 ensembles fol-109

low the same initialization procedure with 30 ensemble members each over 2019-2040, but110

are forced with a COVID-like CO2 emissions reduction that begins in December 2019 and111

resolves by December 2021 (Figure 1a). Peak emissions reductions of 25% (COVID-like),112

50% (2 × COVID-like), and 100% (4 × COVID-like) occur in May 2020 (Figure 1); these113

scenarios correspond to 2020 annualized emissions reductions of 16%, 32%, and 63%, re-114

spectively [Fyfe et al., 2020].115

CanESM5 is an appropriate tool for the exploration of the ocean carbon response to116

COVID-related emissions reductions. A previous evaluation of the CMIP6 historical simula-117

tion of CanESM5 via comparison with historical climatologies finds high spatial correlation118

(r > 0.9) of modeled and observed three-dimensional potential temperature, nitrate, oxygen,119

and dissolved inorganic carbon [Swart et al., 2019]. However, the same study finds lower120
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Figure 1. (a) Global-mean CO2 emissions (Pg C yr−1) for the (black) control/SSP2-4.5, (blue) COVID-
like, (green) 2 × COVID-like, and (red) 4 × COVID-like scenarios. (b) Global-, annual-, and ensemble-mean
surface (solid) pCO0C<

2 and (dashed) pCO>2
2 anomaly (`atm; difference from control) simulated in the

CanESM5 ensembles under the COVID-like emission scenarios. Adapted from Fyfe et al. [2020].
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103

spatial correlations (r = 0.7) between modeled and observation-based historical air-sea CO2121

flux [Swart et al., 2019], prompting our further evaluation of ocean observables ΔpCO2 and122

surface ocean pH over the historical period. Figure ??a illustrates similar spatial patterns of123

annual-mean ΔpCO2 across the global ocean between the CanESM5 control ensemble mean124

and version 2020 of the Landschützer et al. [2016] observation-based climatology [Land-125

schützer et al., 2020] over 2015-2018, though we note regional differences in the magni-126

tude and spatial extent of positive ΔpCO2 across the equatorial Pacific, in the sign of ΔpCO2127

in the subtropical North Atlantic, and in the spatial extent of the positive ΔpCO2 region in128

the eastern subtropical North Pacific. We also note a lack of observation-based estimates of129

ΔpCO2 in the Arctic, where CanESM5 predicts large negative ΔpCO2 values (Figure ??a,b).130

The CanESM5 control ensemble is capable of capturing the phasing and magnitude in the131

climatological seasonal cycle of ΔpCO2 as measured at the the Woods Hole Oceanographic132

Institution Hawaii Ocean Timeseries Site (WHOTS) buoy, though the spring minimum is133

deeper in approximately half of the CanESM ensemble members than observed (Figure ??b).134

While the annual mean surface ocean pH over 2015-2018 exhibits similar spatial patterns be-135

tween modeled pH and an observation-based product [Gregor and Gruber, 2020], the mod-136

eled pH is generally lower than that from observation-based estimates (Figure ??). As with137

ΔpCO2, a lack of observation-based climatological estimates of pH in the seasonally ice cov-138

ered Southern Ocean and Arctic precludes investigation of model-observation similarity in139

these regions. CanESM5 produces rates of historical ocean carbon uptake that are consistent140

with observational estimates of decadal mean CO2 fluxes and with independent estimates of141

cumulative anthropogenic carbon uptake at the global scale [Swart et al., 2019], suggesting142

that the simulated response of ocean carbon to atmospheric CO2 changes is reliable at the143

large scale.144

2.2 Statistical approach145

We identify the COVID-related fingerprints in ΔpCO2 and pH using CanESM5 COVID146

ensemble mean output that has been annually and globally averaged over 2019-2024. This 5-147

year period captures the time during which we observe the largest anomalies in atmospheric148

and oceanic pCO2 relative to the control ensemble across each of the COVID emissions sce-149

narios (see also Figure 1b). We identify the fingerprint using ensemble and global-mean out-150

put to maximize the influence of external forcing and dampen the influence of internal vari-151
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ability on the fingerprint [Lovenduski et al., 2016; McKinley et al., 2016; Schlunegger et al.,152

2019, 2020]. The spatial pattern associated with the COVID-related fingerprint is estimated153

as the regression coefficient of the ensemble mean at each location and the standardized fin-154

gerprint (subtract mean and divide by standard deviation) over 2019-2024 for each emission155

scenario.156

Detection and attribution of the COVID signal is assessed by analyzing the set of 30157

Pearson’s correlation coefficients (A) produced when correlating individual ensemble mem-158

bers with the corresponding fingerprint over 2019-2024. The statistical properties (mean,159

standard deviation) of these coefficients are estimated via Fisher I-transformation.160

3 Results161

The CanESM5 COVID ensemble predicts an anomalous decrease in surface pCO0C<
2162

and pCO>2
2 due to the CO2 emissions reduction, as evidenced by the negative anomalies in163

annual mean, ensemble mean pCO0C<
2 and pCO>2

2 calculated relative to the control/SSP2-164

4.5 emissions scenario (Figure 1b). Anomalously low pCO0C<
2 peaks in 2021-2, approxi-165

mately 1-2 years after the largest emissions reduction, reflecting the mixing time of CO2 in166

the global atmosphere. At their peak, global mean anomalies in pCO0C<
2 are -1.5, -2.7, and167

-5.4 `atm for the COVID-like, 2× COVID-like, and 4× COVID-like emission scenarios,168

respectively. Anomalously low pCO>2
2 peaks in 2023-4, approximately 1-2 years after the169

largest pCO0C<
2 reduction, reflecting the equilibration timescale of the surface ocean mixed170

layer with atmospheric CO2 perturbations [McKinley et al., 2020]. At their peak, global171

mean anomalies in pCO>2
2 are smaller in magnitude than the pCO0C<

2 anomalies for the cor-172

responding emission scenario (-1.2, -1.9, and -4.1 `atm for the COVID-like, 2× COVID-like,173

and 4× COVID-like emission scenarios, respectively). Unlike the CO2 emissions anoma-174

lies (Figure 1a), the pCO0C<
2 and pCO>2

2 anomalies persist for the duration of the simulations175

(Figure 1b), due to the long-lived nature of CO2 in the atmosphere [Fyfe et al., 2020].176

The difference between the evolution of pCO0C<
2 and pCO>2

2 following the COVID-182

like CO2 emissions reductions creates a unique fingerprint in ΔpCO2 across the CanESM5183

COVID ensemble (Figure 2a-c). Figure 2 (top row) shows the evolution of the annual mean,184

global mean ΔpCO2 from the 30 individual ensemble members (light gray) and the ensemble185

mean (black) across the three COVID scenarios. The fingerprint for each scenario is indi-186

cated as the colored part of the ensemble mean ΔpCO2, capturing the temporal behavior over187

2019-2024 (Figure 2a-c). This fingerprint is characterized by an increase in ΔpCO2 from188

2019 to 2021, followed by a decrease over 2021-2024, and is most pronounced in the 4 ×189

COVID-like case and least pronounced in the COVID-like case. This inverted "V" fingerprint/time-190

series is unique; it arises due to the rapid slowdown and recovery of CO2 emissions and the191

∼1 year equilibration timescale for carbon between the atmosphere and the ocean mixed192

layer [Figure 1b; McKinley et al., 2020]. In contrast, a typical year-on-year emissions re-193

duction scenario – for example, a scenario that limits warming to 1.5◦C – generates a slowly-194

changing ΔpCO2 whose fingerprint would be challenging to distinguish (not shown).195

The evolution of ocean acidification under COVID-like emissions reductions produces196

an almost imperceptible fingerprint in global mean surface ocean pH. Here, the large and197

long-lived anthropogenic CO2 burden in the atmosphere drives continued ocean carbon up-198

take and thus decreasing global pH relative to the base period in all ensemble members over199

2019-2040 (Figure 2d-f). The rate of pH decrease briefly stagnates under COVID-like emis-200

sions reductions, with the biggest stagnation under the 4 × COVID-like emissions scenario201

(Figure 2f). This fingerprint in surface ocean pH would be difficult to distinguish in the ob-202

servational record due to large measurement uncertainty relative to the projected rate of pH203

decrease. Thus, for the remainder of our study, we focus our analysis efforts on the unique204

ΔpCO2 fingerprint brought about by COVID-related emissions reductions.205
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The COVID-related fingerprints in ΔpCO2 are characterized by a heterogeneous spa-210

tial pattern across the CanESM5 global ocean. Figure 3 shows the magnitude of the finger-211

print signal at each location. The largest fingerprint signals (> 2 `atm) manifest in the Arctic212

Ocean, the subtropical North Pacific, and the western subpolar North Atlantic (Figure 3).213

The fingerprint signals become more widespread with larger emissions reductions, such that214

a majority of the global ocean experiences a fingerprint signal in the 4 × COVID-like emis-215

sions scenario (Figure 3c).216

Is it possible to detect our modeled ΔpCO2 fingerprint in the real ocean, and to at-217

tribute the fingerprint to COVID-related emissions reductions? To answer this question, we218

treat the individual CanESM5 COVID ensemble members as equally likely observations of219

the recent past / near future and examine their correlation to the ensemble mean. Figure 4a220

shows the range of correlation coefficients across the 30 ensemble members under the four221

emission scenarios for the global mean ΔpCO2. The mean correlation coefficient is near zero222

for the control simulation (not exactly zero due to the long term trend in ΔpCO2 under SSP2-223

4.5), with a wide range; COVID-like emissions reductions increase the mean and narrow the224

range, supporting the attribution of the ΔpCO2 signal to COVID. There is enhanced likeli-225

hood of detection of the COVID signal from global-mean ΔpCO2 observations with more226

severe reductions in emissions, as evidenced by the increasing mean correlation coefficient227

with larger emissions reductions. However, the range of correlation coefficients is only sta-228

tistically different from zero (using the ±1f or 67% confidence interval) in the 4 × COVID-229

like scenario. Thus, while the evolution of the global mean ΔpCO2 anomaly is potentially230

detectable in observations and attributable to COVID emissions, a much larger emissions231

reduction than observed to date would be required to truly detect the signal in the real ocean.232

It is nearly impossible to detect the COVID-related fingerprint in ΔpCO2 at a single233

observational site due to high local internal variability and measurement uncertainty. Fig-234

ure 3 shows the location of buoys capable of near real-time autonomous surface ocean pCO2235

measurements (< 2 `atm uncertainty) as open black circles; these 40 observational buoys236

are discussed in detail in Sutton et al. [2019]. Both a strong signal (COVID fingerprint) and237

low noise (internal variability) are required for detection at a single site. In all emission sce-238

narios, the CanESM5 COVID ensemble predicts the strongest ΔpCO2 fingerprint signals in239

regions where few buoys are located, such as the Arctic and the western subpolar North At-240

lantic. Under extreme emission reductions, a strong and measurable (> 2 `atm) fingerprint241

signal begins to emerge at several of the buoy sites (Figure 3c). However, even at a subtrop-242

ical site with low internal variance, such as the WHOTS buoy, and under the most extreme243

forcing scenario, the ±1f confidence interval of the fingerprint correlations encapsulates the244

zero correlation line (Figure 4b).245

Detection of a COVID-related fingerprint in ΔpCO2 from near real-time autonomous251

buoys is more likely when considering all 40 observational data streams simultaneously. Fig-252

ure 4c reveals that, akin to the global-mean, the subsampled model ΔpCO2 averaged across253

the 40 autonomous buoy locations has higher correlations with the fingerprint than that of254

a single buoy location. Yet, it is still statistically unlikely to detect the fingerprint from this255

subsampled mean unless there is a much larger emissions reduction than that which has been256

observed to date.257

4 Conclusions and Discussion258

We use an ensemble of Earth system model simulations to identify and assess the de-259

tectability of a COVID-related fingerprint in ΔpCO2 and surface ocean pH. Our study re-260

veals a unique fingerprint in modeled global mean ΔpCO2 anomalies under COVID-like CO2261

emissions reductions due to the rapid slowdown and recovery of the emissions and the equi-262

libration timescale for carbon in the upper mixed layer of the ocean. We find no discernible263

COVID fingerprint for modeled surface ocean pH, but rather a slight slowing of the contin-264

uous pH decline due to ocean acidification. A detection and attribution analysis conducted265
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246

247

248

249

250

on individual model ensemble members shows that the ΔpCO2 fingerprint is attributable to266

COVID emissions and potentially detectable in global-scale observations in cases with large267

emissions reductions. At local scales, however, observational detection is hampered by high268

internal variability.269

Our results indicate that the detection of a COVID-related ΔpCO2 fingerprint in fu-270

ture observations is more attainable from global-scale estimates, rather than regional or lo-271

cal measurements. While this is expected due to the low magnitude of internal variability272

at global scales and high variability at local scales [Diffenbaugh et al., 2020; Lovenduski273

et al., 2016], it nevertheless suggests that a large network of global-scale pCO>2
2 observations274

will be necessary to detect the COVID signal. Recent efforts to collect and process disparate275

pCO>2
2 data streams into a single cohesive database [e.g., Sutton et al., 2019; Bakker et al.,276

2016] will be highly useful for detection efforts. Even so, the ocean carbon community will277

continue to rely on observation-based, gap-filled surface ocean pCO2 estimates to approxi-278

mate the global-mean ΔpCO2 and its temporal evolution. Continued improvement upon and279

testing of the reliability of these products is thus warranted [e.g., Gloege et al., in review].280

The COVID-related fingerprint in ΔpCO2 is unique to the COVID-like emissions tra-281

jectory, permitting our investigation of detection and attribution. A more difficult task that282

awaits our community is the detection of a continuous emissions reduction in ocean carbon283

that may come about to support climate change mitigation policy. This detection will be fur-284

ther challenged by to the relatively high uncertainty in the global carbon cycle [Peters et al.,285

2017]. Yet, it will become necessary to demonstrate the efficacy of emissions reductions on286

ocean carbon in the near future.287
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Figure S1. Comparison of modeled and observed ΔpCO2 (pCO>2
2 - pCO0C<

2 ). Annual-mean ΔpCO2 from
(a) the CanESM5 control ensemble mean, and (b) the observation-based Landschützer et al. [2016] climatol-
ogy over 2015-2018. (c) Seasonal cycle of ΔpCO2 at the WHOTS buoy location (orange dot on inset map):
(gray) 30 CanESM5 control ensemble members in 2015 and (green) the observed ΔpCO2 climatology (mean
± one standard deviation) from Sutton et al. [2019].
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Figure S2. Comparison of modeled and observed surface ocean pH. Annual-mean pH from (a) the
CanESM5 control ensemble mean, and (b) the observation-based Gregor and Gruber [2020] climatology
over 2015-2018.
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