pyUserCalc: A revised Jupyter notebook calculator for
uranium-series disequilibria in basalts

Lynne J Elkins™! and Marc Spiegelman?®?

!University of Nebraska-Lincoln
2Columbia University

December 25, 2020

Abstract

Meaningful analysis of uranium-series isotopic disequilibria in basaltic lavas relies on the use of complex forward numerical
models like dynamic melting (McKenzie, 1985) and equilibrium porous flow (Spiegelman and Elliott, 1993). Historically, such
models have either been solved analytically for simplified scenarios, such as constant melting rate or constant solid/melt trace
element partitioning throughout the melting process, or have relied on incremental or numerical calculators with limited power to
solve problems and/or restricted availability. The most public numerical solution to reactive porous flow, UserCalc (Spiegelman,
2000) was maintained on a private institutional server for nearly two decades, but that approach has been unsustainable in light
of modern security concerns. Here we present a more long-lasting solution to the problems of availability, model sophistication
and flexibility, and long-term access in the form of a cloud-hosted, publicly available Jupyter notebook. Similar to UserCalc, the
new notebook calculates U-series disequilibria during time-dependent, equilibrium partial melting in a one-dimensional porous
flow regime where mass is conserved. In addition, we also provide a new disequilibrium transport model which has the same
melt transport model as UserCalc, but approximates rate-limited diffusive exchange of nuclides between solid and melt using
linear kinetics. The degree of disequilibrium during transport is controlled by a Damkéhler number, allowing the full spectrum

of equilibration models from complete fractional melting (Da = 0) to equilibrium transport (Da = [7]).

10

11

12

pyUserCalc: A revised Jupyter notebook calculator for
uranium-series disequilibria in basalts

Lynne J. Elkins!, Marc Spiegelman?

]University of Nebraska-Lincoln, Lincoln, NE, USA, lelkins@unl.edu
2Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA, mspieg@ldeo.columbia.edu

Key Points:

+ Cloud-based Jupyter notebook presents an open source, reproducible tool
for modeling U-series in basalts

+ Equilibrium and pure disequilibrium porous flow U-series models with 1D
conservation of mass

+ Scaled porous flow model introduces incomplete equilibrium scenario with
reaction rate limitations

Corresponding author: Lynne J. Elkins, 1elkins@unl.edu

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Abstract

Meaningful analysis of uranium-series isotopic disequilibria in basaltic lavas relies
on the use of complex forward numerical models like dynamic melting (McKen-
zie, 1985) and equilibrium porous flow (Spiegelman and Elliott, 1993). Historically,
such models have either been solved analytically for simplified scenarios, such as
constant melting rate or constant solid/melt trace element partitioning through-
out the melting process, or have relied on incremental or numerical calculators
with limited power to solve problems and/or restricted availability. The most
public numerical solution to reactive porous flow, UserCalc (Spiegelman, 2000)
was maintained on a private institutional server for nearly two decades, but that
approach has been unsustainable in light of modern security concerns. Here we
present a more long-lasting solution to the problems of availability, model so-
phistication and flexibility, and long-term access in the form of a cloud-hosted,
publicly available Jupyter notebook. Similar to UserCalc, the new notebook cal-
culates U-series disequilibria during time-dependent, equilibrium partial melting
in a one-dimensional porous flow regime where mass is conserved. In addition,
we also provide a new disequilibrium transport model which has the same melt
transport model as UserCalc, but approximates rate-limited diffusive exchange

of nuclides between solid and melt using linear kinetics. The degree of disequi-
librium during transport is controlled by a Damkohler number, allowing the full
spectrum of equilibration models from complete fractional melting (Da = 0) to
equilibrium transport (Da =).

1 Introduction

Continuous forward melting models are necessary to interpret the origins of
empirically-measured U-series isotopic disequilibria in basaltic lavas, but the lim-
ited and unreliable availability of reproducible tools for making such calculations
remains a persistent problem for geochemists. To date, a number of models have
been developed for this task, including classical dynamic melting after McKen-
zie (1985) and the reactive porous flow model of Spiegelman and Elliott (1993).
There have since been numerous approaches to using both the dynamic and
porous flow models that range from simplified analytical solutions (e.g., Sims

et al., 1999; Zou, 1998; Zou and Zindler, 2000) to incremental dynamic melting
calculators (Stracke et al., 2003), two-porosity calculators (Jull et al., 2002; Lund-
strom et al., 2000; Sims et al., 2002), and one-dimensional numerical solutions to
reactive porous flow (Spiegelman, 2000) and dynamic melting (Bourdon et al.,
2005; Elkins et al., 2019). Unfortunately, some of the approaches published since
1990 lacked publicly available tools that would permit others to directly apply the
authors” methods, and while the more simplified and incremental approaches re-
main appropriate for asking and approaching some questions, they are insufficient
for other applications that require more complex approaches (e.g., two-lithology
melting; Elkins et al., 2019). Other tools like UserCalc that were available to pub-
lic users (Spiegelman, 2000) were limited in application and have since become
unavailable.

In light of the need for more broadly accessible and flexible solutions to U-series
disequilibrium problems in partial melting, here we present a cloud-server hosted,
publicly available numerical calculator for one-dimensional, decompression par-
tial melting. The tool is provided in a Jupyter notebook with importable Python
code and can be accessed from a web browser. Users will be able to access and
use the tool using a free cloud server account, or on their own computer given
any standard Python distribution. As shown below, the notebook is structured

to permit the user to select one of two primary model versions, either classical
reactive porous flow after Spiegelman and Elliott (1993) and Spiegelman (2000),

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

20

91

92

93

94

95

926

97

98

29

or a new disequilibrium transport model, developed after the appendix formulas
of Spiegelman and Elliott (1993). The new model ranges from pure disequilibrium
porous flow transport (i.e., the mass-conserved equivalent of true fractional melt-
ing over time) to a "scaled" disequilibrium scenario, where the degree of chemical
equilibrium that is reached is determined by the relationship between the rate of
chemical reaction and the solid decompression rate (which is, in turn, related to
the overall melting rate), in the form of a Damkohler number.

This scaled disequilibrium model resembles the classic dynamic melting model of
McKenzie (1985), with the caveat that ours is the first U-series melting model de-
veloped for near-fractional, disequilibrium transport where mass is also conserved
within a one-dimensional melting regime. That is, rather than controlling the
quantity of melt that remains in equilibrium with the solid using a fixed residual
porosity, the melt porosity is controlled by Darcy’s Law and mass conservation
constraints after Spiegelman and Elliott (1993), and the "near-fractional" scenario
is simulated using the reaction rate of the migrating liquid with the upwelling
solid matrix.

2 Calculating U-series in basalts during mass-conserved, one-dimensional
porous flow

2.1 Solving for equilibrium transport

Here we consider several forward melting models that calculate the concen-

trations and activities of U-series isotopes (338U, 230Th, 226Ra, 235U, and 231Pa)

during partial melting and melt transport due to adiabatic mantle decompression.

Following Spiegelman and Elliott (1993), we start with conservation of mass equa-

tions for the concentration of a nuclide i, assuming chemical equilibrium between

melt and solid:

d
Sclos@+0:(1=9)Dile] + V- [psgo -+ ps(1 = 9)DiVIe] = Airlpsg +ps(1 — $)Dinale]
—Ailog¢ + ps(1 = ¢)Di]

where f is time, c{ is the concentration of nuclide i in the melt, D; is the bulk
solid/liquid partition coefficient for nuclide i, p; is the density of the fluid and

ps is the density of the solid, ¢ is the porosity (local volume fraction of melt), v is
the velocity of the melt and V the velocity of the solid in three dimensions, A; is
the decay constant of nuclide i, and (i — 1) indicates the radioactive parent of nu-
clide i see Table 1. Equation (1) states that the change in total mass of nuclide 7 in
both the melt and the solid is controlled by the divergence of the mass flux trans-
ported by both phases and by the radioactive decay of both parent and daughter

nuclides (i.e., the right hand side of the equation above).

=R

Table 1: List of Variables Used in This Study

Variable | Definition

c{ Concentration of nuclide i in the liquid

c; Concentration of nuclide i in the solid

Ulf Natural log of the concentration of nuclide i in the liquid relative to its initial concentration
u; Natural log of the concentration of nuclide 7 in the solid relative to its initial concentration
Ustable Stable element component of Ulf

urd Radiogenic component of Ul-f

a; Activity of nuclide i

a? Initial activity of nuclide i

z Height in a one-dimensional melting column

h Total height of the melting column

g = z/h, Dimensionless fractional height in scaled one-dimensional melting column
D; Bulk solid /liquid partition coefficient for nuclide i

DY Initial bulk solid/liquid partition coefficient for nuclide i

Of Density of the liquid

0s Density of the solid

¢ Porosity (volume fraction of liquid present)

¢o Maximum or reference porosity

Vv Solid velocity

v Liquid velocity

W One-dimensional solid velocity

w One-dimensional liquid velocity

Wo Solid mantle upwelling velocity

A Decay constant for nuclide i

Al = Ajh/Wj, Decay constant for nuclide i scaled by solid transport time
r Melting rate

To Constant melting rate

Fnax Maximum degree of melting

w; £ Effective liquid velocity of nuclide i

Rf_l Ingrowth factor

o; Initial degree of secular disequilibrium in the unmelted solid

k Permeability

K, Relative permeability factor

n Permeability exponent

Ay Permeability calibration function

R Reactivity rate factor

d Diffusion/Reaction length scale (e.g., grain-size)

Da Dahmkohler number

The equilibrium model of Spiegelman and Elliott (1993) assumes that complete
chemical equilibrium is maintained between the migrating partial melt and the
solid rock matrix along a decompressing one-dimensional column. To close the
equations, they assume that melt transport is described by a simplified form of
Darcy’s Law for permeable flow through the solid matrix. In one dimension, for
a steady-state upwelling column of melting mantle rocks, they defined the one-
dimensional melt and solid velocities (w and W, respectively), and expressed the
melt and solid fluxes as functions of height (z) in terms of a constant melting rate

roi

109

117

129

137

prpw = T'oz @)

ps(1— @)W = psWp — Tz (3)

where Wy is the solid mantle upwelling rate, and Iy is equivalent to psWoFiax
divided by the depth & for a maximum degree of melting Fyax.

Assuming an initial condition of secular equilibrium, where the initial activities

/\icgr oDi are equivalent for parent and daughter nuclides, they derived a system of
: f

differential equations for the concentration c; in any decay chain, which can be
solved numerically using equation (10) from that paper:

Aoy (Di=DFwx | DDy + (1= Diy)Fuad] Gy G

.~ “D;+ (1 - Di)Fuaxg Dia[Di+ (1= Di)Fnaxl] wyp wig *

where ¢} is the scaled melt concentration (= of /¢ 0) { is the dimensionless frac-
tional helght in the scaled column, equal to 0 at 'the base and 1 at the top, and

i Prdwtps(1—)DIW

= 5
eI oo+ 01— 9)D; ©

is the effective velocity for element i.

In their appendix, Spiegelman and Elliott (1993) developed the more general (and,
arguably, realistic) form where I' and D; are functions of height z. The UserCalc
model of Spiegelman (2000) then formulated a one-dimensional numerical integra-
tion for the concentrations of selected U-series isotopes in continuously produced
partial melts with height z, after the equilibrium formulas above. The concen-
tration expression derived by Spiegelman (2000) for the equilibrium scenario
(formula 6 in that reference) is:

def —d(2) d Ai-1pDisie] 1 (z) — AipDic] (2)

& TR T - FE)biE d & T eI ey - FENDIG]

where F is the degree of melting. Spiegelman (2000) further observed that solving
for the natural log of the concentrations normalized to the initial concentration of
i, U;, rather than the concentrations themselves, is more accurate, particularly for

highly incompatible elements (formulas 7-9 in that reference). This is because log

concentrations change linearly during melting, rather than exponentially, and are

more numerically stable to calculate.

f
u/ =n (C;) @)
Cio

dzl - c{(z) UTZI ®

f
L - 9 1F(z)+ (1- F(2))Dy(2)] + - [Ri exp[t] (2) — Uf (2)] — 1]

dz F(z)+ (1—F(z))Dj(z) dz Wy

138 (9)
130 For the formulas above, Spiegelman (2000) defined a series of variables that allow
140 for simpler integration formulas and aid in efficient solution of the model, namely
PD; = o5+ ps(1 = ¢)Di(2), (10)
142 F=F(z) + (1 - F(z))D;(z), (11)

i1 D} pD; 4
143 R =aj———, (12)

l Di_y pDi

)\i,lcs.
(i-1),0

144 | — T~ 1

SR v (13)
145 and substituting from the formulas above

i Os WOF
146 w! = . 14
147 where DY is the initial bulk solid/melt partition coefficient for element i, Rffl is
146 the ingrowth factor, and « is the initial degree of secular disequilibrium in the
140 unmelted solid.
150 Ui(z) = In(cs(z)/ C?), the log of the total concentration of nuclide i in the melt,
151 can then be decomposed into
. __ qstable rad
152 U, (Z) = ui (Z) + ui (Z) (15)
153 where
DY
154 Ust”ble z) =In | = 16
) = | (16)
155 is the log concentration of a stable nuclide with the same partition coefficients,
156 and U!"(z) is the radiogenic ingrowth component. An alternate way of writing
157 the radiogenic ingrowth component of equation (9) of Spiegelman (2000) is:
aui*t D i

1 = Mep (R eplli () - Ui(e)] - 1] 7)
159 where

hA;
M=_—"1
1 WO

is the decay constant of nuclide i, scaled by the solid transport time (/W) across
a layer of total height . Note Eq. (17) is solved over a column of dimensionless
height 1 where ¢ € [0, 1].

Using these equations, the UserCalc reactive porous flow calculator accepted user
inputs for both F(z) and D;(z). The method uses a formula for the melt poros-
ity (¢(z)) based on a Darcy’s Law expression with a scaled permeability factor
(formula 20 from Spiegelman (2000)):

Ko (2)Agd" (1 —)2 + ¢[1 + P(z)(jj—; ~1)] - %F(z) —0

where K, (z) is the scaled permeability with height z, A; is a permeability calibra-
tion function, and 7 is the permeability exponent. The permeability exponent for
a tube-shaped fluid network is expected to be n = 2, while for a sheet-shaped net-
work it is 3; recent measurements of the permeabilities of experimental magmatic
melt networks suggest realistic magma migration occurs in a manner intermediate
between these two scenarios, with n = 2.6 (Miller et al., 2014). The relative perme-
ability K; is calculated with respect to the permeability at the top of the column,
ie. depth z =z,

k(z)
k(zfinal)

Ky (z) =

and allows for locally enhanced flow (e.g., mimicking the effects of a relatively
low viscosity fluid).

Our model implementation reproduces and builds on the prior efforts summa-
rized above, using a readily accessible computer language (Python) and web
application (Jupyter notebooks).

2.2 Solving for complete disequilibrium transport

We further present a calculation tool that solves a similar set of equations for pure
chemical disequilibrium transport during one-dimensional decompression melt-
ing. This model assumes that the solid produces an instantantaneous fractional
melt in local equilibrium with the solid; however, the melt is not allowed to back-
react with the solid during transport, as it would in the equilibrium model above.
In the limiting condition defined by stable trace elements (i.e., without radioac-
tive decay), the model reduces to the calculation for an accumulated fractional
melt. The model solves for the concentration of each nuclide i in the solid (s) and
liquid (f) using equations (26) and (27) of Spiegelman and Elliott (1993):

S

d (@)1 - p)dF 1-¢
dz 1—-F(z) dz Wy(1—F(2))

[Aiaci1(2) = Aici(2)]

def Tm_c{(z>£+ os9

dz F(z) dz = psWoF(z)

Aiael 4 (2) = Aicd (2)]

1

(18)

(19)

(20)

21

(22)

201

204

206

207

213

which maintain conservation of mass for both fluid and solid individually, and
do not assume chemical equilibration between the two phases. As above, the
equations depend on F(z) and D;(z), i.e. melt fractions and bulk rock partition
coefficients that can vary with depth.

As above, the solid and fluid concentration equations are rewritten in terms of the
logs of the concentrations:

S f
U (z) = In <CZ§Z)> , u/(z)=In (CC J@) 23)

i0 i0
and thus
dui 1 dCi
= —— 24
dz ¢i(z) dz @4
We assume that initial ¢;; = D; Oc{ o- Also as above, the log concentration equa-
tions can be broken into stable and radiogenic components, where the stable log
concentration equations are:
1
duf,stable _ 1— T(Z) dj (25)
dz 1—F(z) dz
DY
dulf,smble By exp(Us(z) — Ulf(z)) dF 26

dz F(z) dz

which are equivalent to a model for a fractionally melted residual solid and an
accumulated fractional melt for the liquid.

Reincorporating this with the radiogenic component and scaling all distances by &
gives the dimensionless equations:

1
du; 1*D<@>dF 9 [w, 1

RS e | e, - w@l -1 @)

i

al e Q) -Ul@Q) p

i 309) T F)

Do
Diwaiq

/\/
D0 1%

exp(U] (é)—uz‘@)]—l] (28)

2.3 Solving for transport with chemical reactivity rates

The two models described above are end members for complete equilibrium and
complete disequilibrium transport. For stable trace elements, these models pro-
duce melt compositions that are equivalent to batch melting and accumulated
fractional melting (e.g., Spiegelman and Elliott, 1993). However, the actual trans-
port of a reactive fluid (like a melt) through a solid matrix can fall anywhere be-
tween these end members depending on the rate of transport and re-equilibration
between melt and solid, which can be sensitive to the mesoscopic geometry of
melt and solid (e.g., Spiegelman and Kenyon, 1992). In an intermediate scenario,

254

257

259

260

261

we envision that some reaction occurs, but chemical equilibration is incomplete
due to slow reaction rates relative to the differential transport rates for the fluid
and solid. If reaction times are sufficiently rapid to achieve chemical exchange
over the lengthscale of interest before the liquid segregates, chemical equilibrium
can be achieved; but for reactions that occur more slowly than effective trans-
port rates, only partial chemical equilibrium can occur (e.g., Grose and Afonso,
2019; Iwamori, 1993, 1994; Kogiso et al., 2004; Liang and Liu, 2016; Peate and
Hawkesworth, 2005; Qin et al., 1992; Yang et al., 2000). Such reaction rates can in-
clude, for example, the rate of chemical migration over the distance between high
porosity veins or channels (e.g., Aharonov et al., 1995; Jull et al., 2002; Spiegelman
et al., 2001; Stracke and Bourdon, 2009); or, at the grain scale, the solid chemical
diffusivity of elements over the diameter of individual mineral grains (e.g., Qin
et al., 1992; Feineman and DePaolo, 2003; Grose and Afonso, 2019; Oliveira et al.,
2020; Van Orman et al., 2002a, 2006).

To model this scaled reactivity scenario, we start with our equations for disequi-
librium transport in a steady-state, one-dimensional conservative system, and
add a chemical back-reaction term that permits exchange of elements between the
fluid and the solid. The reaction term is scaled by a reactivity rate factor, & and
expressed in kg/m3/yr. (i.e., the same units as the melting rate). The reactivity
rate thus behaves much like the melting rate by governing the rate of exchange
between the solid and liquid phases, effectively scaling the degree to which chem-
ical exchange can occur. This new term could simulate a number of plausible
scenarios that would physically limit the rate of chemical exchange by transport
along a given distance in a linear manner, such as the movement or diffusion of
nuclides through the porous solid matrix between melt channels a given distance
apart.

First, returning to the conservation of mass equations for a steady-state, one-
dimensional, reactive system of stable trace elements, and using I'(z) to represent
the melting rate:

d
pppw =T(z)

d s s
Epfq)wc{(z) = [C)iiz)l“(z) - R (c{(z) — IC)Z,((ZZ))>

d sy _ i@ f ¢ (2)
- PWe () = — LT + R (] () - 1
where, for an adiabatic upwelling column,

dF
I'(z) = psWOE

From this, the equations (29) and (30) can be integrated (with appropriate bound-
ary conditions at z = 0) to give

prpw = psWoF(z)

(29)

(30)

(D)

(32)

(33)

(34)

262

268

269

273

275

276

277

279

280

281

282

os(1 =)W = psWo(1 — F(2))

Next, we expand the concentration equations to include the reactivity factor, and
substitute the conservation of total mass determined above:

pMoEC) el () + el () = L)~ (o) -)

dz ! i D,'(Z) Dz(z)
oot~ ot =~ 8 (oo - 519

If we then combine the T'(z) terms and rearrange:

pW0F() el () =1 (05—l 0) ~# (0 - 55

Pt = &) () =16 (1 5y 5) + (/- 165)

f

We can now divide the fluid and solid equations by c;

rearrange the Wy terms:

Lo 1 cf<z>_>_ <_<>>]
c{(z) dz — psWoF(2) lr(Z) (Di(z)C{(Z) ' S Di(Z)C{(Z)

1 dc; 1 1 R Di(z)c{(z) B
G &= pWoll— F(2)) [”Z) (-50)* 50 < 5@ 1)]

The first terms on the right-hand side of each of these equations are identical to
pure disequilibrium melting, such that if ® is zero, the equations reduce to the
disequilibrium transport case of Spiegelman and Elliott (1993).

and c;, respectively, and

To solve, the final terms that involve the reactivity factor can be further rewritten

using the definitions for Ulf and U;:

o] (z) = cyexplU! (2)] = 5 exp[U] (2)]

1

Thus:

-10-

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

283

284

285

286

288

291

292

204

295

207

208

299

300

L DL expltri(z) — u (2) #5)

and:
dulf 1 DZO H f DlQ s f
dz psWoE(2) lr(z) <D1~(z) exp[U; (z) — U; (z)] — 1) - R (1 — X exp[U; (z) — U;
(46)
auy _ 1 1 R [Di(z) P .
= oW F@) [“” (1-5@) 51 (Dy Pl ()~ W) - 1)]
47)
Finally, substituting adiabatic upwelling and scaling with depth by #, and adding
radioactive terms gives the full solutions for the dimensionless equations dU;/d(:
au/ 1 [ar [DY oo] D o
i~ F(Q) [dé (Di(é) Ui (€)= U (2] 1)] oWE@D) |1 Dy P E)
Y (P ! D?“i—
HoE M | D UL (O U/ -1
(48)
aug; 1 dF 1 Rh Di(Z) f .
=T |37 \1— u u
g~ (1-FQ) [dé (Di(é))] T D —EQ) | o Pl (€ Ui C)]

ul ()]

Lo | S el 1(0) - tr(0)] 1]

—F(Q) i
(49)
where £ is the total height of the melting column.
2.3.1 The Dahmkdéhler number
The dimensionless combination
Rh
Da = 50
0V (50)
is the Dahmkohler number, which governs the reaction rate relative to the solid
transport time. If re-equilibration is limited by solid state diffusion, # can be
estimated using:
R ~ LoD (51)

42
where D; is the solid state diffusivity of element i, and d is a nominal spacing

between melt-channels (this spacing could, for example, be the average grain
diameter for grain-scale channels, or 10 cm for closely spaced veins).

-11-

302

303

307

308

309

318

321

322

323

In this case (which we will assume for this paper), the Dahmkoéhler number can
be written

Dih

D =
T Wod2

(52)

Substituting the definition of Da above yields the final dimensionless ODEs for
the disequilbrium transport model:

aul 1 (dF) DY f or¢ [DV 4 / P
=——~(-—=—=+Da Loexp[UF(Q) — U —1|+ A= exp[U —u’ -1
dg (C:) dg Dz(g) p[1(€) 1 (g)] pSF(g) 1 D?fllxi P[1_1(5) 1 (g)]
(53)
aus 1 dF (1) Da ([D;(0) f
= —— |55 (1- + exp[U; (¢) — U; =1+
Z 0 FQ) [dé 0.@) "o \ oy P) o0
1-¢ /& s _ 178 _
Sl | Mt explu (@) - U3 0)] -1
with initial conditions U} = Ulf =0.
In the limit where the Dahmkohler number approaches zero, the above formulas
reduce to pure disequilibrium transport, whereas if Da approaches infinity (i.e.,
infinitely fast reactivity compared to physical transport), the system approaches
equilibrium conditions (¢; — Djc;).
2.3.2 Initial conditions
Inspection of equation (53) shows that for the initial conditions described above
f
and F(0) = 0O, ddig" is ill-defined (at least numerically in a floating-point system).
However, taking the limit { — 0 and applying L'Hopital’s rule yields
aul us0)—u’(o) sar DV;_,
li i i i 4D U it -1
i G = (i) o o
where
/ aur
Uu;s(0) = —# 56
1 () dg ézo ()
: au’
uf (0) = =2 (57)
7=0
dF
F'(0)= — (58)
0)= 77 -

The initial radiogenic term also uses the limit from equation (34):

12—

i P Wo
=0 psF w(0)

(59)

Rearranging equation (55) gives the value for U;f (0) for F =0 as

duf DO%;_
lim i = 1 i i 1—1” (60)

{—0 dg _2+%

’ Da
s = Y
Uz (0) (1 - F’(O)) A D

3 A pyUserCalc Jupyter notebook

3.1 Code design

The UserCalc Python package implements both equilibrium and disequilibrium
transport models and provides a set of code classes and utility functions for calcu-
lating and visualizing the results of one-dimensional, steady-state, partial melting
forward models for both the 233U and ?*°U decay chains. The code package is
organized into a set of Python classes and plotting routines, which are docu-
mented in the docstrings of the classes and also demonstrated in detail below.
Here we briefly describe the overall functionality and design of the code, which
is open-source and can be modified to suit an individual researcher’s needs.

The code is currently available in a Git repository (https://gitlab.com/ENKI-
portal/pyUsercalc), and any future edits or merge requests will be managed
through GitLab.

The equilibrium and disequilibrium transport models described above have each
been implemented as Python classes with a generic code interface:

Interface:
model (alpha0,lambdas,D,W0,F,dFdz,phi,rho_£=2800.,rho_s=3300.,
method=method,Da=inf)

Parameters:
alpha0 : numpy array of initial activities
lambdas : numpy array of decay constants scaled by solid transport
time
D : Function D(z) -- returns an array of partition coefficents
at scaled height z
WO : float -- Solid mantle upwelling rate
F : Function F(z) -- returns the degree of melting F
dFdz : Function dFdz(z) -- returns the derivative of F
phi : Function phi(z) -- returns the porosity
rho_f : float -- melt density
rho_s : float -- solid density
method : string -- ODE time-stepping scheme to be passed to
solve_ivp (one of 'RK45', 'Radau', 'BDF')
Da : float -- Dahmkohler Number (defaults to \inf, unused in
equilibrium model)

Required Method:

model.solve(): returns depth and log concentration numpy arrays z,
Us, Uf

13-

370

which solves the scaled equations (i.e., equation (9) or equations (53) and (54) for

the log concentrations of nuclides U; and U; in a decay chain of arbitrary length,
with scaled decay constants A and initial activity ratios ag. In the code, we use the
variable z for the scaled height in the column (i.e. z = (), and the model equations
assume a one-dimensional column with scaled height 0 < z < 1. The bulk partition
coefficients D;(z), degree of melting F(z), melting rate dF /dz(z), and porosity ¢(z)
are provided as functions of height in the column. Optional arguments include the
melt and solid densities pf and ps, the Dahmkohler number Da, and the preferred
numerical integration method (see scipy.integrate.solve_ivp). Some of these
variables, such as D;(z) and F(z), are provided by the user as described further
below, and are then interpolated using model functions.

UserCalc provides two separate model classes, EquilTransport and

DisequilTransport , for the different transport models; the user could add any
other model that uses the same interface, if desired. Most users, however, will not
access the models directly but rather through the driver class UserCalc.UserCalc,
which provides support for solving and visualizing column models for the relevant
23811 and U decay chains. The general interface for the UserCalc class is:

A class for constructing solutions for 1-D, steady-state, open-system
U-series transport calculations as in Spiegelman (2000) and
Elkins and Spiegelman (2021).

us = UserCalc(df,dPdz = 0.32373,n = 2.,tol=1.e-6,phi0 = 0.008,
WO =3.,model=EquilTransport,Da=None,stable=False,
method='Radau')

Parameters:

df : A pandas dataframe with columns ['P','F', Kr','DU','DTh',
'DRa', 'DPa']

dPdz : float -- Pressure gradient, to convert pressure P to
depth z

n : float -- Permeability exponent

tol : float -- Tolerance for the ODE solver

phiO : float -- Reference melt porosity

WO : float -- Upwelling velocity (cm/yr)

model : class -- A U-series transport model class (one of
EquilTransport or DisequilTransport)

Da : float -- Optional Da number for disequilibrium transport model
stable : bool

True: calculates concentrations for non-radiogenic nuclides with same

chemical properties (i.e. sets lambda=0)
False: calculates the full radiogenic problem
method : string

ODE time-stepping method to pass to solve_ivp (usually one of 'Radau',

'BDF', or 'RK45')

14—

448

465

466

467

The principal required input is a spreadsheet containing the degree of melting F(P),
relative permeability K, (P), and bulk partition coefficients for the elements Dy,
Dry,, DR, and Dp, as functions of pressure P. The structure of the input data spread-
sheet is the same as that described in Spiegelman (2000), and is illustrated in Table

2 below. Because the user provides F(z), K/(z), and bulk solid D;(z) input informa-
tion to the model directly, any considerations such as mineral modes, mineral/melt
D; values, and productivity variations are external to this model and must be de-
veloped by the user separately. Once given this spreadsheet by the user, the code
routine initializes the decay constants for the isotopic decay chains and provides
functions to interpolate F(z) and D;(z) and calculate the porosity ¢(z). Once thus
initialized, the UserCalc class further provides the following methods:

Principal Methods:

set_column_parameters :

solve_1D

solve_all_1D

solve_grid

returns porosity as a function of column
height
resets principal column parameters

phiO, n, WO

1D column solution for a single Decay
chain with arbitrary D, lambda, alpha_O

: Solves a single column model for both 238U

and 235U chains.
returns a pandas dataframe

: Solves multiple column models for a grid

of porosities and upwelling rates
returns a 3-D array of activity ratios

Of these, the principal user-facing methods are:

1. UserCalc.solve_all_1D , which returns a pandas.Dataframe table that
contains, at each depth, solutions for the porosity (¢), the log concentrations
of the specified nuclides in the ?>U and 23°U decay chains in both the melt
and the solid, and the U-series activity ratios.

2. UserCalc.solve_grid , which solves for a grid of one-dimensional solutions
for different reference porosities (phip) and solid upwelling rates (Wp) and
returns arrays of U-series activity ratios at a specified depth (usually the top
of the column), as described in Spiegelman and Elliott (1993).

3.1.1 Visualization Functions

In addition to the principal classes for calculating U-series activity ratios in partial
melts, the UserCalc package also provides functions for visualizing model inputs
and outputs. The primary plotting functions include:

1. UserCalc.plot_inputs(df) : Visualizes the input dataframe to show F(P),

K, (P) and D;(P).

2. UserCalc.plot_1Dcolumn(df) : Visualizes the output dataframe for a single
one-dimensional melting column.

3. UserCalc.plot_contours(phiO,W0,act) : Visualizes the output of

UserCalc.solve_grid by generating contour plots of activity ratios at a
specific depth as functions of the porosity (¢p) and solid upwelling rate (Wp).

—-15-

268 4. UserCalc.plot_mesh_Ra(Th,Ra,W0,phi0) and UserCalc.plot_mesh_Pa(Th,Pa,W0,phiO) :

160 Generates ‘'mesh’ plots showing results for different ¢y and W, values on
(*?°Ra/?Th) vs. (3Th/?8U) and (' Pa/?®U) vs. (**Th/?38U) activity

an diagrams.

an2 Both the primary solver routines and visualization routines will be demonstrated in
473 detail below.

a7 3.1.2 Miscellaneous Convenience Functions

ars Finally, the UserCalc module also provides a simple input spreadsheet generator

a76 similar to the one provided with the original UserCalc program of Spiegelman

a77 (2000). This tool is described more fully in the accompanying Jupyter notebook

a7s twolayermodel.ipynb in the Supplemental Materials, and has the interface:

a79 df = UserCalc.twolayermodel(P, F, Kr, D_lower, D_upper, N=100, P_lambda=1)
480 3.2 An example demonstrating pyUserCalc functionality for a single melting

481 column

482 The Python code cells embedded below provide an example problem that demon-
483 strates the use and behavior of the model for a simple, two-layer upwelling mantle
484 column, with a constant melting rate within each layer and constant K, = 1. This
ass example is used to compare the outcomes from the original UserCalc equilibrium

as6 model (Spiegelman, 2000) to various other implementations of the code, such as

187 pure disequilibrium transport and scaled reactivity rates, as described above.

488 To run the example code and use this article as a functioning Jupyter notebook,

480 while in a web-enabled browser the user should select an embedded code cell by

490 mouse-click and then simultaneously type the ‘Shift” and "Enter” keys to run the cell,
01 after which selection will automatically advance to the following cell. The first cell
402 below imports necessary code libraries to access the Python toolboxes and functions
403 that will be used in the rest of the program:

[1]: | # Select this cell with by mouseclick, and Tun the code by simultaneouslyy,
~typing the 'Shift' + 'Enter' keys.
If the browser is able to run the Jupyter notebook, a number [1] willy
—appear to the left of the cell.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
Jmatplotlib inline

Import UserCalc:
import UserCalc

405 3.2.1 Entering initial input information and viewing input data

406 In the full Jupyter notebook code available in the Git repository and provided here
407 as Supplementary Materials, the user can edit a notebook copy and indicate their

a98 initial input data, as has been done for the sample data set below. The name for the
400 user’s input data file should be set in quotes (i.e., replacing the word "sample’ in

500 the cell below with the appropriate filename, minus the file extension). This name
s01 will be used both to find the input file and to label any output files produced. Our
502 sample file can likewise be downloaded and used as a formatting template for other
503 input files (see Supplementary Materials), and is presented as a useful example

s04 below. The desired input file should be saved to a “data’ folder in the notebook di-

16—

rectory prior to running the code. If desired, a similarly simple two-layer input file
can also be generated using the calculator tool provided in the supplementary code.

Once the cell has been edited to contain the correct input file name, the user should
run the cell using the technique described above:

runname='sample'

The next cell below will read in the input data using the user filename specified
above:

input_file = 'data/{}.csv'.format(runname)
df = pd.read_csv(input_file,skiprows=1,dtype=float)
df

-17-

Table 2: Input data table for example tested here, showing pressures in kbar (P), degree of
melting (F), permeability coefficient (K;), and bulk solid /melt partition coefficients (D;)
for the elements of interest, U, Th, Ra, and Pa. This table illustrates the format required
for input files for this model.

| P F|Kr| DU| DTh| DRa| DPa

40.0 | 0.00000 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
39.0 | 0.00241 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
38.0 | 0.00482 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
37.0 | 0.00723 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
36.0 | 0.00964 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
35.0 | 0.01210 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
34.0 | 0.01450 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
33.0 | 0.01690 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
32.0 | 0.01930 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
31.0 | 0.02170 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
10 | 30.0 | 0.02410 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
11 | 29.0 | 0.02650 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
12 | 28.0 | 0.02890 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
13 | 27.0 | 0.03130 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
14 | 26.0 | 0.03370 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
15 | 25.0 | 0.03620 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
16 | 24.0 | 0.03860 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
17 | 23.0 | 0.04100 | 1.0 | 0.00899 | 0.00500 | 0.00002 | 0.00001
18 | 22.0 | 0.04340 | 1.0 | 0.00893 | 0.00498 | 0.00002 | 0.00001
19 | 21.0 | 0.04610 | 1.0 | 0.00852 | 0.00488 | 0.00002 | 0.00001
20 | 20.0 | 0.05000 | 1.0 | 0.00700 | 0.00450 | 0.00002 | 0.00001
21 | 19.0 | 0.05610 | 1.0 | 0.00548 | 0.00412 | 0.00002 | 0.00001
22 | 18.0 | 0.06340 | 1.0 | 0.00507 | 0.00402 | 0.00002 | 0.00001
23 | 17.0 | 0.07100 | 1.0 | 0.00501 | 0.00400 | 0.00002 | 0.00001
24 | 16.0 | 0.07860 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
25| 15.0 | 0.08620 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
26 | 14.0 | 0.09370 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
27 | 13.0 | 0.10133 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
28 | 12.0 | 0.10892 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
29 | 11.0 | 0.11651 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
30 | 10.0 | 0.12410 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
31| 9.0 0.13169 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
32| 8.0 | 013928 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
33 | 7.0 | 0.14687 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
34 | 6.0 | 015446 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
35| 5.0 | 016205 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
36 | 4.0 | 0.16964 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
37 | 3.0 | 017723 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
38 | 2.0 | 0.18482 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
39 | 1.0 | 0.19241 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
40 | 0.0 | 0.20000 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001

OOV WN R~ O

513 The next cell will visualize the input dataframe in Figure 1, using the utility function
514 plot_inputs:

-18-

515

520

521

[4]:

[5]:

fig = UserCalc.plot_inputs(df)

—— DTh
— DRa
DPa

L

=
(=]

[
un

Pressure (kbar)
P P
(W] o
— -

¥V}
o

W
L

s
o

0.0 0.2 0.95 1.00 1.05 10-3
F K- D;

Figure 1: Diagrams showing example input parameters F, K;, and D; as a function of
pressure, for the sample input file tested here.

3.2.2 Single column equilibrium transport model

In its default mode, UserCalc solves the one-dimensional steady-state equilibrium
transport model described in Spiegelman (2000). Below we will initialize the model,
solve for a single column and plot the results.

First we set the physical parameters for the upwelling column and initial conditions:

Maxzimum melt porosity:
phi0 = 0.008

Solid upwelling rate in cm/yr. (to be converted to km/yr. in the driver,
—function) :
Wo = 3.

Permeability exponent:
n = 2.

Solid and liquid densities in kg/m3:
rho_s = 3300.
rho_f = 2800.

Initial activity values (default 4s 1.0):
alpha0_238U il
alpha0_235U i,

-19-

522

525

526

[7]:

527

[7]:

528

[8]:

531

alpha0_230Th 1.

alphaO_226Ra = 1.

alpha0_231Pa = 1.

alpha0O_all = np.array([alpha0_238U, alpha0_230Th, alphaO_226Ra,,
—alpha0_235U, alphaO_231Pal)

Next, we initialize the default equilibrium model:

us_eq = UserCalc.UserCalc(df)

and run the model for the input code and display the results for the final predicted
melt composition in List 1:

df _out_eq = us_eq.solve_all_1D(phiO,n,W0,alpha0_all)
df_out_eq.tail(n=1)

P z F phi (230Th/238U) (226Ra/230Th) (231Pa/235U) Uf_238U
40 0.0 0.0 0.2 0.008 1.164941 1.590091 2.10557 -3.121055

Uf_230Th Uf_226Ra Us_238U Us_230Th Us_226Ra Uf_235U0 Uf_231Pa
40 -3.556171 -8.613841 -3.121055 -3.556171 -8.613841 -3.121909 -9.179718

Us_235U Us_231Pa
40 -3.121909 -9.179718

List 1. Model output results for the equilibrium melting scenario tested above.

The cell below produces Figure 2, which shows the model results with depth:

fig = UserCalc.plot_1Dcolumn(df_out_eq)

-20-

Degree of melting
0.1

0.0 0.2

0 —— (230Th/238U)
5 (226Ra/230Th)
—— (231Pa/235U)
10

15
20
25

Pressure (kbar)

30
35

40

0.00000.00250.00500.0075 0 1 2 3 4
Porosity Activity Ratios

Figure 2: Equilibrium model output results for the degree of melting, residual melt
porosity, and activity ratios (30Th/238U), (22°Ra/%0Th), and (**'Pa/?*°U) as a function of

pressure.

532 3.2.3 Single column disequilibrium transport model

533 For comparison, we can repeat the calculation using the disequilibrium transport
534 model, and compare the results to the equilibrium model. We first initialize a new
535 model with Da = 0, which will calculate full disequilibrium transport:

[9]: us_diseq = UserCalc.UserCalc(df, model=UserCalc.DisequilTransport, Da=0.)

537 The cells below calculate solutions for this pure disequilibrium scenario, as shown
538 in List 2:

[10]: df_out = us_diseq.solve_all_1D(phiO,n,W0,alpha0_all)
df_out.tail(n=1)

539

[10]: P z F phi (230Th/238U) (226Ra/230Th) (231Pa/235U) Uf_238U
40 0.0 0.0 0.2 0.008 1.051064 1.001054 1.056847 -3.096744

Uf_230Th Uf_226Ra Us_238U0 Us_230Th Us_226Ra Uf_235U Uf_231Pa
40 -3.63473 -9.155135 -39.606509 -39.945908 -42.201598 -3.096769 -9.844821

Us_235U Us_231Pa
40 -39.602818 -45.46502

sa1 List 2. Model output results for the disequilibrium melting scenario tested
542 above.
543 Next we compare the results to our equilibrium calculation above:

-21-

[11]: fig, axes = UserCalc.plot_1Dcolumn(df_out)
for s in ['(230Th/238U)', ' (226Ra/230Th)"', ' (231Pa/235U) ']:

axes[2] .plot(df_out_eq[s],df _out['P'],'--"',color="'grey')
axes[2] .set_title('Da = {}'.format(us_diseq.Da))
plt.show()

Degree of melting
0.1

0.0 0.2

(=

— (230Th/238U)
(226Ra/230Th)
— (231Pa/235U)

L

=
=]

-
w

M
L8]

Pressure (kbar)
Pd
(=]

W
o

35

40

0.00000.00250.00500.0075 0 1 2 3 4
Porosity Activity Ratios

Figure 3: Disequilibrium model output results for the degree of melting, residual melt
porosity, and activity ratios (30Th/28U), (22°Ra/%*0Th), and (**'Pa/?*°U) as a function of
pressure, for the Dahmkohler number shown (Da = 0). For comparison, the dashed gray
curves show solutions for the equilibrium transport model.

545 The dashed grey curves in Figure 3 illustrate the equilibrium transport solution,
sa6 which is significantly different from the disequilibrium solution. If we increase the
547 value of Da, however, the disequilibrium transport solution should converge to-
548 wards the equilibrium scenario. To illustrate this, below we calculate the result for
549 Da =1:

[12]: | # Reset the Da number in the reactive transport model to 1:
us_diseq.Da=1.

Recalculate the model:
df _out = us_diseq.solve_all_1D(phiO,n,W0,alphaO_all)
df_out_eq.tail(n=1)

550

[12]: P z F phi (230Th/238U) (226Ra/230Th) (231Pa/235U) Uf_238U
40 0.0 0.0 0.2 0.008 1.164941 1.590091 2.10557 -3.121055

Uf_230Th Uf_226Ra Us_238U Us_230Th Us_226Ra Uf_235U Uf_231Pa
40 -3.556171 -8.613841 -3.121055 -3.556171 -8.613841 -3.121909 -9.179718

22—

[13]:

556

[14]:

Us_235U Us_231Pa
40 -3.121909 -9.179718

List 3. Model output results for the disequilibrium melting scenario tested
above, where Da = 1.

fig, axes = UserCalc.plot_1Dcolumn(df_out)
for s in ['(230Th/238U)', ' (226Ra/230Th)"', ' (231Pa/235U) ']:

axes[2] .plot(df_out_eq[s],df _out['P'],'--"',color="'grey')
axes[2] .set_title('Da = {}'.format(us_diseq.Da))
plt.show()

Degree of melting
0.1

0.0 0.2

o

—— (230Th/238U)
(226Ra/230Th)
—— (231Pa/235U)

=
o un

=
wu

M
(5]

Pressure (kbar)
()
=

w
o

35

40

0.00000.00250.00500.0075 0 1 2 3 4
Porosity Activity Ratios

Figure 4: Disequilibrium model output as in Figure 3, but for Da = 1.

The outcome of the above calculation (Figure 4, List 3) approaches the equilibrium
scenario more closely, as predicted. Below is an additional comparison for Da = 10:

Reset the Da number in the reactive transport model to 10:
us_diseq.Da=10.

Recalculate and plot the model:

df_out = us_diseq.solve_all_1D(phiO,n,W0,alpha0_all)

fig, axes = UserCalc.plot_1Dcolumn(df_out)

for s in ['(230Th/238U)', "' (226Ra/230Th) "', ' (231Pa/2350) ']:

axes[2] .plot(df_out_eq[s],df _out['P'],'--"',color="'grey')
axes[2] .set_title('Da = {}'.format(us_diseq.Da))
plt.show()

23—

[15]:

574

[15]:

Degree of melting
0.1

0.0 0.2

(=

— (230Th/238U)
(226Ra/230Th)
— (231Pa/235U)

=
o v

M
L8]

Pressure (kbar)
P
=

w
o

35

40

0.00000.00250.00500.0075 0 1 2 3 4
Porosity Activity Ratios

Figure 5: Disequilibrium model output as in Figure 3, but for Da = 10.

For Da = 10 (Figure 5), the activity ratios in the melt are indistinguishable from the
equilibrium calculation, suggesting that a Dahmkohler number of 10 is sufficiently
high for a melting system to approach chemical equilibrium, and illustrating that
the equilibrium model of Spiegelman and Elliott (1993) and Spiegelman (2000) is

the limiting case for the more general disequilibrium model presented here. For this
problem, equilibrium transport always provides an upper bound on activity ratios.

3.2.4 Stable element concentrations

For a stable element, i.e,, A; = 0, Spiegelman and Elliott (1993) showed that the
equilibrium melting model reduces identically to simple batch melting (Shaw, 1970),
while the disequilibrium model with Da = 0 is equivalent to true fractional melting.
This presents a useful test of the calculator that verifies the program is correctly cal-
culating stable concentrations. To simulate stable element concentrations for U, Th,
Ra, and Pa during equilbrium melting, we can use the same input file example as
above and simply test the scenario where A; values are equal to zero.

First, we impose a "stable" condition that changes all decay constants A; = 0:
us_eq = UserCalc.UserCalc(df,stable=True)

df _out_eq = us_eq.solve_all_1D(phiO,n,W0,alpha0_all)
df _out_eq.tail(n=1)

P z F phi (230Th/238U) (226Ra/230Th) (231Pa/235U) Uf_238U
40 0.0 0.0 0.2 0.008 1.003937 1.015919 1.019959 -3.120895

Uf_230Th Uf_226Ra Us_238U Us_230Th Us_226Ra Uf_235U Uf_231Pa
40 -3.704753 -9.21042 -3.120895 -3.704753 -9.21042 -3.120895 -9.903528

Us_235U Us_231Pa
40 -3.120895 -9.903528

24—

582

583

586

587

[16]:

592

List 4. Model output results for equilibrium porous flow melting where A; = 0,
simulating stable element behavior for U, Th, Ra, and Pa and thus true (instan-
taneous) batch melting.

For comparison with the results in List 4, we can use the batch melting equation
(Shaw, 1970) to calculate the concentrations of U, Th, Ra, and Pa using the input
values in Table 2 for F(z) and D;, where:

o _ ! (61)
¢ F+Di(1-F)
and determine radionuclide activities for the batch melt using the definition of the
activity a for a nuclide i:
a; = AiC{ (62)
and the initial nuclide activities a?, such that:
4 = il (63)
' F+D;(1-F)

As the activity ratios in List 5 illustrate, the outcomes of this simple batch melting
equation are identical to those produced by the model for equilibrium transport and
A=0.

df _batch=df[['P','F','DU','DTh', 'DRa', 'DPa']]

df_batch['(230Th/238U) '] = (alphaO_all[1]/(df_batch.F-df_batch.Fxdf_batch.
~DTh+df _batch.DTh))/(alpha0O_all[0]/(df_batch.F-df_batch.F*df_batch.
~DU+df _batch.DU))

df _batch['(226Ra/230Th) '] = (alphaO_all[2]/(df_batch.F-df_batch.
—~F*df_batch.DRa+df_batch.DRa))/(alphaO_all[1]/(df_batch.F-df_batch.
~Fxdf_batch.DTh+df_batch.DTh))

df _batch['(231Pa/235U) '] = (alphaO_all[4]/(df_batch.F-df_batch.Fxdf_batch.
~DPa+df_batch.DPa))/(alphaO_all[3]/(df_batch.F-df_batch.F*df_batch.
~DU+df _batch.DU))

Extract columns and concatenate dataframes

cols = ['P', 'F', '(230Th/238U)', '(226Ra/230Th)', '(231Pa/235U)']

df _compare = pd.concat([df_batch[cols].tail(1l), df_out_eqlcols].tail(1)])

df _compare['model'] = ['Batch Melting', 'Equilibrium Transport: stable
—~elements']

df_compare.set_index('model')

P F (230Th/238U) (226Ra/230Th)

model

Batch Melting 0.0 0.2 1.003937 1.015919

Equilibrium Transport: stable elements 0.0 0.2 1.003937 1.015919
(231Pa/2350)

model

25—

[177:

[17]1:

602

Batch Melting 1.019959
Equilibrium Transport: stable elements 1.019959

List 5. Simple batch melting calculation results using the methods of Shaw
(1970), demonstrating identical activity ratio results to those calculated using
the equilibrium transport model with A; = 0.

Similarly, we can also determine pure disequilibrium melting using the disequilib-
rium transport model with A; = 0. A simple fractional melting problem is easiest
to test using constant melt productivity and partitioning behavior, so here we test a
simplified, one-layer scenario with constant dF /dz and D; values:

input_file_2 = 'data/simple_sample.csv'

df _test = pd.read_csv(input_file_2,skiprows=1,dtype=float)
UserCalc.plot_inputs(df_test)

df _test.tail(n=1)

P F Kr DU DTh DRa DPa
40 0.0 0.0964 1.0 0.009 0.005 0.00002 0.00001

5 | DTh
— DRa
10 1 —— DPa

15
20

25

Pressure (kbar)

30

35

40

0.0 0.10.95 1.00 1.05 10-3
F K D;

Figure 6: Simple alternative input file with constant melt productivity and constant
solid /melt partitioning, used here to test pure fractional melting outputs.

We note that numerical ODE solvers may not successfully solve for pure fractional
melting with Da = 0 and stable elements, because the resulting extreme changes in
solid concentrations for highly incompatible elements are difficult to resolve using
numerical methods. Stable solutions can nonetheless be obtained for very small
values of Da that approach Da = 0, and such solutions still provide a useful test

-26—

608 of the disequilibrium transport model. Here we use Da = 10~1; for such low Da

609 values, the liquid closely approaches the composition of an accumulated fractional
610 melt, and although the liquid and solid outcomes are slightly different from pure
611 fractional melting, the solid is still essentially depleted of all incompatible nuclides.

[18]: us_diseq_test = UserCalc.UserCalc(df_test, model=UserCalc.

—~DisequilTransport,stable=True,Da=1.e-10)
612

[19]: df_diseq_test = us_diseq_test.solve_all_1D(phiO,n,W0,alpha0_all)

613

614 Similar to our approach for equilibrium and batch melting, we can compare the
615 results of disequilibrium transport for stable elements with pure fractional melting
616 for constant partition coefficients using the definition of aggregated fractional melt
617 concentrations (Figure 7):
¢ 1/Di—1
618 Csﬁ = (1—F) i (64)
1
¢ D 1/D;
== (1 —~(1-F)) (65)
Ci
620 or in log units:
621 U; = (1/D; —1)log(1 —F) (66)
u/ =1log (1 F)V/P) 4 1og (2
622 i—Og(—(1—))+Og ? (67)

[20]: df_frac=df_test[['P','F','DU','DTh','DRa', 'DPa']]

df _frac['(230Th/238U)'] = ((alphaO_all[1]/df_frac.F)*(1.-(1.-df_frac.
~F)**(1./df _frac.DTh))) / ((alphaO_all[0]/df_frac.F)*(1.-(1.-df_frac.
~F)*x(1./df _frac.DU)))

df _frac['(226Ra/230Th)'] = ((alphaO_all[2]/df_frac.F)*(1.-(1.-df_frac.
~F)#*x(1./df_frac.DRa))) / ((alphaO_all[1]/df_frac.F)*(1.-(1.-df_frac.
~F)*x(1./df_frac.DTh)))

df _frac['(231Pa/235U) '] = ((alpha0O_all[4]/df_frac.F)*(1.-(1.-df_frac.
_F)*x(1./df _frac.DPa))) / ((alphaO_all[3]/df_frac.F)*(i.-(1.-df_frac.
~F)**(1./df_frac.DU)))

[21]: fig, axes = UserCalc.plot_1Dcolumn(df_diseq_test)
for s in ['(230Th/238U)','(226Ra/230Th)"',"' (231Pa/235U)']:
axes[2] .plot(df_frac[s],df_diseq_test['P'],'--',color="'black')
plt.show()

624

27—

Degree of melting

0.00 0.05 0.10
0 —— (230Th/238U)
5 (226Ra/230Th)
—— (231Pa/235U)
10

-
w

Pressure (kbar)
P
=

25
30
1
35 \
40 T
0.00000.00250.00500.0075 0 1 2 3 4
Porosity Activity Ratios

Figure 7: Model output results for the degree of melting, residual melt porosity, and
activity ratios (*Th/23U), (**Ra/?3°Th), and (3*'Pa/?*°U) as a function of pressure.
The solid curves plot the results of pure fractional melting for stable elements, while the
dashed black curves illustrate the outcomes of the disequilibrium transport model with
Da = 1071 and A; = 0. The outcomes of the two methods are indistinguishable.

3.2.5 Considering lithospheric transport scenarios

In mantle decompression melting scenarios, melting is expected to cease in the
shallow, colder part of the regime where a lithospheric layer is present. The effects
of cessation of melting prior to reaching the surface can be envisioned as affecting
magma compositions in a number of ways, some of which could be calculated using
the models presented here by setting dF = 0.

There are, however, several limitations when using our transport models to simulate
lithospheric melt transport in this way, as the model equations are written to track
steady-state decompression and melting. The first limitation is thus the underlying
assumption that the solid is migrating and experiencing progressive melt depletion
in the model, while the solid lithosphere should in fact behave as a rigid matrix

that does not experiencing upwelling. For the disequilibrium transport model with
Da = 0, no chemical reequilibration occurs while JF = 0, so the lack of solid mi-
gration after the cessation of melting does not pose a problem; instead, in the pure
disequilibrium transport case, imposing dF = 0 simply allows for radioactive decay
and ingrowth during transport through the lithospheric layer.

The equilibrium transport model, on the other hand, permits full equilibration
evenif dF = 0, but the liquid composition does not directly depend on the solid
concentration, c;(z), so ongoing chemical reequilibration between the liquid and a
modified lithospheric solid could be simulated by modifying the bulk solid/liquid
partition coefficients D;. However, the underlying model assumes that the liquid
with mass proportion F;y reequilibrates with the solid matrix in a steady-state
transport regime, at the maximum reference porosity, which may not accurately
simulate the transport regime through the fixed lithosphere with no melting. Be-
cause it does not directly consider mineral abundances or compositions, the model

28—

650

651

652

653

667

668

669

670

692

693

694

also does not account for complexities such as low temperature melt-rock reaction
or mineral growth.

The case of the scaled disequilibrium transport model with Da > 0 is the most
complex, since the model directly calculates reequilibration of the liquid with a
progressively melting solid layer, and thus may not accurately simulate transport
through the fixed solid lithosphere. We advise that if the model is used in this way,
the results must be interpreted with additional caution.

Finally, calculating a given transport model through the upwelling asthenosphere
and into a fixed overlying lithospheric layer neglects an additional, significant limi-
tation: namely that melt-rock interactions, and thus the magma transport style, may
be different in the lithosphere than in the melting asthenosphere. As noted above,
this could also include low-temperature reactions and the growth of new mineral
phases. While it is not possible to change transport models during a single 1D run
in the current implementation, one alternative approach is to change the relative
permeability, K;, in the lithosphere, in addition to modifying the bulk partition co-
efficients to reflect lithospheric values. It may also be possible to run a separate,
second-stage lithospheric calculation with modified input parameters and revised
liquid porosity constraints, but this option is not currently implemented and would
require an expansion of the current model.

Despite these caveats, there are some limited scenarios where users may wish to
simulate equilibrium or disequilibrium magma transport through a capping layer
with constant JF = 0, constant ¢ = ¢, and revised D; values for a modified layer
mineralogy. The cells below provide options for modifying the existing input data
table to impose such a layer. The first cell identifies a final melting pressure P 05,
which is defined by the user in kbar. This value can be set to 0.0 if no lithospheric
cap is desired; in the example below, it has been set at 5.0 kbar. There are two overall
options for how this final melting pressure could be used to modify the input data.
The first option (implemented in the Supplementary Materials but not tested here)
simply deletes all lines in the input dataframe for depths shallower than Py ;5. This
is a straightforward option for a one-dimensional column scenario, where melting
simply stops at the base of the lithosphere and the composition of the melt product
is observed in that position. This is an effective way to limit further chemical inter-
actions after melting has ceased; it fails to account for additional radioactive decay
during lithospheric melt transport, but subsequent isotopic decay over a fixed trans-
port time interval could then be calculated using the radioactive decay equations for
U-series nuclides.

A second option, shown here to demonstrate outcomes, changes the degree of melt-
ing increments (4F) to a value of 0 for all depths shallower than Py ;;,,s, but allows
model calculations to continue at shallower depths. This is preferable if the user
aims to track additional radioactive decay and/or chemical exchange after melting
has ceased and during subsequent transport through the lithospheric layer, and
shall be explored further below.

Plithos = 5.0
Pfinal = df.iloc[(df['P']-Plithos) .abs().idxmin()]

F_max = Pfinal[1] .tolist()
df .loc[(df['P'] < Plithos),['F']] = F_max

For equilibrium transport scenarios, the cell below offers one possible option for
modifying lithospheric solid /melt bulk partition coefficients. We note that if the

-20—

695 disequilibrium transport model is used with Da = 0 (i.e., pure chemical disequilib-
696 rium), this cell is not necessary.

697 The option demonstrated below imposes new, constant melt-rock partition coef-
698 ficients during lithospheric transport. These values are assumed to be fixed. An

699 alternative choice, included in the Supplementary Materials, instead fixes the shal-
700 lower lithospheric solid /melt bulk partition coefficients such that they are equal to
701 D; values at the depth where melting ceased (i.e., Prips)-

[23]: | # Define new bulk solid/liquiud partition coefficients for the,
~lithospheric layer:
D_U_lith = 0.002

D_Th_1lith = 0.006
D_Ra_lith = 0.00002
D_Pa_lith = 0.00001

Implement the changed values defined above:
df .loc[(af['P'] < Plithos),['DU']] = D_U_lith
df .loc[(df['P'] < Plithos),['DTh']] D_Th_1lith
df .loc[(df['P'] < Plithos),['DRa'l] D_Ra_lith
df .loc[(df['P'] < Plithos),['DPa']l]] = D_Pa_lith

702

703 Following any changes implemented above, the cells below will process and display
704 the refined input data (Figure 8, Table 3).

[24]: UserCalc.plot_inputs(df)

705

0 — DU
5 DTh

— DRa
10 —— DPa

[
(8]

MJ
L

Pressure (kbar)
P
[

W W
[4 I

s
=

0.0 0.1 0.95 100 1.05 10-3
F K- D;

Figure 8: Diagrams showing input parameters F, K;, and D; as a function of pressure, for
the example input file and modified lithospheric conditions.

-30-

[25]: df

706

Table 3: Input data table for an example scenario with modified lithospheric transport
conditions, showing pressures in kbar (P), degree of melting (F), permeability coefficient
(Ky), and bulk solid / melt partition coefficients (D;) for the elements of interest, U, Th, Ra,
and Pa.

| P F|Kr| DU| DTh| DRa| DPa

40.0 | 0.00000 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
39.0 | 0.00241 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
38.0 | 0.00482 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
37.0 | 0.00723 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
36.0 | 0.00964 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
35.0 | 0.01210 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
34.0 | 0.01450 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
33.0 | 0.01690 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
32.0 | 0.01930 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
31.0 | 0.02170 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
10 | 30.0 | 0.02410 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
11 | 29.0 | 0.02650 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
12 | 28.0 | 0.02890 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
13 | 27.0 | 0.03130 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
14 | 26.0 | 0.03370 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
15 | 25.0 | 0.03620 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
16 | 24.0 | 0.03860 | 1.0 | 0.00900 | 0.00500 | 0.00002 | 0.00001
17 | 23.0 | 0.04100 | 1.0 | 0.00899 | 0.00500 | 0.00002 | 0.00001
18 | 22.0 | 0.04340 | 1.0 | 0.00893 | 0.00498 | 0.00002 | 0.00001
19 | 21.0 | 0.04610 | 1.0 | 0.00852 | 0.00488 | 0.00002 | 0.00001
20 | 20.0 | 0.05000 | 1.0 | 0.00700 | 0.00450 | 0.00002 | 0.00001
21 | 19.0 | 0.05610 | 1.0 | 0.00548 | 0.00412 | 0.00002 | 0.00001
22 | 18.0 | 0.06340 | 1.0 | 0.00507 | 0.00402 | 0.00002 | 0.00001
23 | 17.0 | 0.07100 | 1.0 | 0.00501 | 0.00400 | 0.00002 | 0.00001
24 | 16.0 | 0.07860 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
25 | 15.0 | 0.08620 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
26 | 14.0 | 0.09370 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
27 | 13.0 | 0.10133 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
28 | 12.0 | 0.10892 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
29 | 11.0 | 0.11651 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
30 | 10.0 | 0.12410 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
31| 9.0 | 013169 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
32 | 8.0 | 013928 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
33 | 7.0 | 0.14687 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
34| 6.0 | 0.15446 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
35| 5.0 | 0.16205 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
36 | 4.0 | 0.16205 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
37 | 3.0 | 016205 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
38 | 2.0 | 0.16205 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
39 | 1.0 | 0.16205 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001
40 | 0.0 | 0.16205 | 1.0 | 0.00500 | 0.00400 | 0.00002 | 0.00001

O OIS UI - WN -~ O

-31-

708

[26]:

709

[28]:

[28]:

[29]:

723

The cells below will rerun the end member models for the modified lithospheric
input file. First, equilibrium transport:

us_eq = UserCalc.UserCalc(df,stable=False)
df _out_eq = us_eq.solve_all_1D(phiO,n,W0,alpha0_all)

And second, for disequilibrium transport with Da = 0:

us_diseq = UserCalc.UserCalc(df,model=UserCalc.
—DisequilTransport,Da=0,stable=False)
df_out_diseq = us_diseq.solve_all_1D(phiO,n,W0,alpha0_all)

List 6 below displays the activity ratios determined for the final melt compositions
at the end of the two simulations (i.e., the tops of the one-dimensional melting
columns).

df _compare = pd.concat([df_out_eq.tail(n=1), df_out_diseq.tail(n=1)])
df _compare['model'] = ['Equilibrium Transport', 'Disequilbrium Transport']
df _compare.set_index('model')

P z F phi (230Th/238U)
model
Equilibrium Transport 0.0 0.0 0.16205 0.008 1.015792
Disequilbrium Transport 0.0 0.0 0.16205 0.008 1.039704

(226Ra/230Th) (231Pa/235U) Uf_238U Uf_230Th

model

Equilibrium Transport 1.894057 1.792975 -2.901132 -3.473250

Disequilbrium Transport 1.000828 1.034719 -2.891833 -3.440684
Uf_226Ra Us_238U Us_230Th Us_226Ra Uf_235U

model

Equilibrium Transport -8.355990 -2.901132 -3.473250 -8.355990 -2.902001
Disequilbrium Transport -8.96132 -30.351986 -30.353121 -30.353146 -2.88492

Uf_231Pa Us_235U0 Us_231Pa
model
Equilibrium Transport -9.120520 -2.902001 -9.120520
Disequilbrium Transport -9.653185 -30.272812 -30.272749

List 6. Model output results for the disequilibrium (Da = 0) melting scenarios
tested here, with modified lithospheric input conditions.

The following cell generates Figure 9, which illustrates outcomes with depth for the
equilibrium and disequilibrium transport models. The model outcomes for the two
transport scenarios are notably different, particularly for the shorter-lived isotopic
pairs.

fig, axes = UserCalc.plot_1Dcolumn(df_out_diseq)

axes[2] .set_prop_cycle(None)

for s in ['(230Th/238U)', ' (226Ra/230Th)"', ' (231Pa/235U) ']:
axes[2] .plot(df_out_eq[s],df_out['P'],'--")

-32—

724

[30]:

axes[2] .set_title('Da = {}'.format(us_diseq.Da))
plt.show()

Degree of melting
0.00 0.05 0.10 0.15 Da=0

0 — (230Th/238U)

(226Ra/230Th)
— (231Pa/235U)

5

s
o

s
w

M
un

Pressure (kbar)
MJ
(=]

W
o

35

40

0.00000.00250.00500.0075 0 1 2 3 4
Porosity Activity Ratios

Figure 9: Comparison of equilibrium (dashed) and disequilibrium (Da = 0; solid) trans-
port model output results for the degree of melting, residual melt porosity, and activity
ratios (?30Th/%%8U), (***Ra/? Th), and (*31Pa/?%U) as a function of pressure, for the
modified lithospheric transport scenario explored above. Symbols and lines as in Figure
3.

3.3 Batch operations

For many applications, it is preferable to calculate an ensemble of model scenarios
over a range of input parameters directly related to questions about the physical
constraints on melt generation, such as the maximum residual or reference melt
porosity (¢o) and the solid mantle upwelling rate (Wp). The cells below determine

a series of one-dimensional column results for the the equilibrium transport model
and the parameters defined above (that is, the input conditions shown in Table 3
withn = 2,p; = 3300 kg/m?, and p r = 2800 kg/ m?), but over a range of values
for ¢g and Wj; these results are then shown in a series of figures. The user can select
whether to define the specific ¢y and Wy values as evenly spaced log grid intervals
(option 1) or with manually specified values (option 2). As above, all upwelling
rates are entered in units of cm/yr. We note that because some of these models tend
to be stiff and the Radau solver is relatively computationally expensive, the batch
operations below may require a few minutes of computation time for certain sce-
narios. Here we show the results for the default equilibrium model over a range of
selected ¢y and Wy values:

Option 1 (evenly spaced log grid intervals):
phi0 = np.logspace(-3,-2,11)
WO = np.logspace(-1,1,11)

Option 2 (manual selection of walues):

-33—

phi0 = np.array([0.001, 0.002, 0.005, 0.01])
WO = np.array([0.5, 1., 2., 5., 10., 20., 50.])

import time
tic = time.perf_counter()
toc = time.perf_counter()

Calculate the U-238 decay chain grid values:

act = us_eq.solve_grid(phiO, n, WO, us_eq.D_238, us_eq.lambdas_238, us_eq.
—alphas_238)

Th = act[0]

Ra = act[1]

df = pd.DataFrame(Th)

df = pd.DataFrame(Ra)
742
W=20.5
W=1.0
W=2.0
W=5.0
W = 10.0
W =20.0
W =50.0

[31]: | # Calculate the U-235 decay chain grid values:
act_235 = us_eq.solve_grid(phiO, n, WO, us_eq.D_235, us_eq.lambdas_235,
—us_eq.alphas_235)
Pa = act_235[0]
df = pd.DataFrame (Pa)

W=20.5

W=1.0

W=2.0

W =25.0

W = 10.0

W=20.0

W = 50.0
744 The figures below illustrate the batch model results in a variety of ways. First, each
745 isotopic activity ratio is contoured in ¢ vs. Wy space (Figure 10), using figures sim-
746 ilar to the contour plots of Spiegelman (2000). The model outcomes for Wy and ¢
747 values are also contoured as mesh "grids" in activity ratio-activity ratio plots (Fig-
748 ure 11). These diagrams show the outcomes for model runs with a given Wy and ¢y
749 value at each grid intersection point, and each curve shows outcomes for a constant
750 Wy value with variable ¢ or vice versa, as indicated in the figure legend. Because
751 this particular example shows results for the equilibrium transport model, and the
752 input values for the shallow, spinel peridotite layer of the sample input file define

753 Dy < Dy, we note that some of the results exhibit (***Th/?*%U) < 1.0 in Figure 11.

[32]: UserCalc.plot_contours(phiO,W0,act, figsize=(12,12))

754

[33]: UserCalc.plot_contours(phi0O,W0,act_235)

755

-34—

a . it L) b (226Ra > Th)

= =
£ g
§ 2
e 107 =
o o
= E
T T
=z T
a =1
=3 =
107! - 3 - - = -3 -3
2= 10 4 =107 6 x 10 10-2 2= 10 410776 =10 102
Porosity (¢} Parosity (4]
030 D45 060 075 105 120 1.35 1 2 3 & 5 [7 a a
C - (FE1pg 235

1o

Upwelling Rate (cmyyr)

10—1 — —3 —3 -3 -

1077 FEIT] 4107 B 10 10-2
Porosity ()

15 4.5 5 9.0 105 120 135

Figure 10: Diagrams of upwelling rate (W) vs. maximum residual melt porosity
(¢) showing contoured activity ratios for (a) (30Th/2380), (b) (***Ra/? Th), and (c)
(231Pa/235U).

[34]: UserCalc.plot_mesh _Ra(Th,Ra,W0,phiO)

756

[35]: UserCalc.plot_mesh_Pa(Th,Pa,W0,phiO)

757

-35—

10

d —— W = 0.5 cm/yr
gl — W= 1.0 cm/yr
= — W =2.0 cm/yr
§ G- — W =5.0cmfyr
S .' —— W = 10.0 em/yr
& 4 —— W = 20.0 cm/yr
o W = 50.0 cm/yr
5 —— ¢ =0.001
¢ = 0.002
10 12 14 16 18 2.0 —— ¢ =0.005
10
\ b
B' N\
=
=
5
&

10 12 14 16 1.8 2.0
EZSDThFaﬁU}

Figure 11: Diagrams showing (a) (?*°Ra/?*Th) vs. (***Th/?3U) and (b) (**'Pa/?3°U)
vs. (330Th/238U) for the gridded upwelling rate (Wp) and maximum residual porosity (¢)
values defined above.

4 Summary

We present pyUserCalc, an expanded, publicly available, open-source version of
the UserCalc code for determining U-series disequilibria generated in basalts by
one-dimensional, decompression partial melting. The model has been developed
from conservation of mass equations with two-phase (solid and liquid) porous flow
and permeability governed by Darcy’s Law. The model reproduces the functional-
ity of the original UserCalc equilibrium porous flow calculator (Spiegelman, 2000)
in pure Python code, and implements a new disequilibrium transport model. The
disequilibrium transport code includes reactivity rate-limited chemical equilibration
calculations controlled by a Damkoéhler number, Da. For stable elements with decay
constants equal to zero, the equilibrium model reduces to batch melting and the
disequilibrium transport model with Da = 0 to pure fractional melting. The method
presented here can be extended to other applications in geochemical porous flow
calculations in future work.

-36—

Acknowledgments

We thank two anonymous reviewers for thoughtful feedback that strengthened this
manuscript. We thank KW.W. Sims and P. Kelemen for initiating early discussions
about creating a new porous flow disequilibrium transport calculator back in 2008.
We also thank M. Ghiorso for inviting L. Elkins to join the ENKI working group
and thereby catalyzing this fresh effort, and we further thank the working group
for their helpful suggestions and feedback. L. Elkins received ENKI working group
travel assistance that contributed to this research effort, and was supported by NSF
award OCE-1658011. M. Spiegelman was supported by the ENKI NSF SI? award
NSF-ACI1550337.

Data Availability Statement

The data set for this research consists of a code package, which

is available in several ways: 1) in the supporting information, 2)

through a binder container (at https://mybinder.org/v2/gl/ENKI-
portal%2FpyUsercalc/master?filepath=pyUserCalc_manuscript.ipynb),

and 3) in the ENKI GitLab data repository (https:/ /gitlab.com/ENKI-
portal/pyUsercalc), which can also be accessed at the ENKI cloud server
(https:/ /server.enki-portal.org/hub/login) with a free GitLab account (register
at https://gitlab.com/ENKI-portal).

References

Aharonov, E.,]. A. Whitehead, P. Kelemen, and M. Spiegelman (1995), Channel-
ing instability of upwelling melt in the mantle, Journal of Geophysical Research: Solid
Earth, 100(B10), 20433-20450.

Bourdon, B., S. P. Turner, and N. M. Ribe (2005), Partial melting and upwelling rates
beneath the Azores from a U-series isotope perspective, Earth and Planetary Science
Letters, 239, 42-56.

Elkins, L. J., B. Bourdon, and S. Lambart (2019), Testing pyroxenite versus peridot-
tie sources for marine basalts using U-series isotopes, Lithos, 332-333, 226-244, doi:
210.1016/j.lith0s.2019.1002.1011.

Feineman, M. D., and D. J. DePaolo (2003), Steady-state 226Ra/230Th disequilib-
rium in mantle minerals: implications for melt transport rates in island arcs, Earth
and Planetary Science Letters, 215(3-4), 339-355.

Grose, C.]., and J. C. Afonso (2019), Chemical disequilibria, lithospheric thickness,
and the source of ocean island basalts, Journal of Petrology, 60(4), 755-790.

Iwamori, H. (1993), Dynamic disequilibrium melting model with porous flow and
diffusion-controlled chemical equilibration, Earth and Planetary Science Letters, 114(2-
3), 301-313.

Iwamori, H. (1994), 238U-230Th-226Ra and 235U-231Pa disequilibria produced by
mantle melting with porous and channel flows, Earth and Planetary Science Letters,
125, 1-16.

Jull, M., P. Kelemen, and K. Sims (2002), Consequences of diffuse and channelled
porous melt migration on uranium series disequilibria., Geochimica Et Cosmochimica
Acta, 66, 4133-4148.

Kogiso, T., M. M. Hirschmann, and P. W. Reiners (2004), Length scales of mantle het-
erogeneities and their relationship to ocean island basalt geochemistry, Geochimica et
Cosmochimica Acta, 68(2), 345-360.

-37-

Liang, Y., and B. Liu (2016), Simple models for disequilibrium fractional melting and
batch melting with application to REE fractionation in abyssal peridotites, Geochim-
ica et Cosmochimica Acta, 173, 181-197.

Lundstrom, C., J. Gill, and Q. Williams (2000), A geochemically consistent hypothe-
sis for MORB generation, Chemical Geology, 162(2), 105-126.

McKenzie, D. (1985), Th-230-U-238 Disequilibrium and the Melting Processes be-
neath Ridge Axes, Earth and Planetary Science Letters, 72(2-3), 149-157.

Oliveira, B., J. C. Afonso, and R. Tilhac (2020), A disequilibrium re-
active transport model for mantle magmatism, Journal of Petrology,
https:/ /doi.org/10.1093/petrology /egaal067.

Peate, D. W., and C. J. Hawkesworth (2005), U series disequilibria: insights into
mantle melting and the timescales of magma differentiation, Reviews of Geophysics,
43(1).

Qin, Z., F. Lu, and A. T. Anderson (1992), Diffusive reequilibration of melt and fluid
inclusions, American Mineralogist, 77(5-6), 565-576.

Shaw, D. M. (1970), Trace element fractionation during anatexis, Geochimica et
Cosmochimica Acta, 34(2), 237-243.

Sims, K. W. W,, D. J. DePaolo, M. T. Murrell, W. S. Baldridge, S. Goldstein, D.
Clague, and M. Jull (1999), Porosity of the melting zone and variations in the solid
mantle upwelling rate beneath Hawaii: Inferences from U-238-Th-230-Ra-226 and
U-235-Pa-231 disequilibria, Geochimica Et Cosmochimica Acta, 63(23-24), 4119-4138.

Sims, K. W. W,, et al. (2002), Chemical and isotopic constraints on the generation
and transport of magma beneath the East Pacific Rise, Geochimica Et Cosmochimica
Acta, 66(19), 3481-3504.

Spiegelman, M. (2000), UserCalc: a web-based uranium series calculator for magma
migration problems, Geochemistry Geophysics Geosystems, 1(8), 1016.

Spiegelman, M., and P. Kenyon (1992), The requirements for chemical disequilib-
rium during magma migration, Earth and Planetary Science Letters, 109(3-4), 611-620.

Spiegelman, M., and T. Elliott (1993), Consequences of Melt Transport for Uranium
Series Disequilibrium in Young Lavas, Earth and Planetary Science Letters, 118(1-4),
1-20.

Stracke, A., and B. Bourdon (2009), The importance of melt extraction for tracing
mantle heterogeneities, Geochimica Et Cosmochimica Acta, 73, 218-238.

Stracke, A., A. Zindler, V.]J. M. Salters, D. McKenzie, and K. Gronvold (2003), The
dynamics of melting beneath Theistareykir, northern Iceland, Geochemistry Geo-
physics Geosystems, 4, 8513.

Van Orman, J. A., T. L. Grove, and N. Shimizu (2002a), Diffusive fractionation of
trace elements during production and transport of melting in the earth’s upper
mantle, Earth and Planetary Science Letters, 198, 93-112.

Van Orman, J. A., A. E. Saal, B. Bourdon, and E. H. Hauri (2006), Diffusive frac-
tionation of U-series radionuclides during mantle melting and shallow-level melt-
cumulate interaction, Geochimica et Cosmochimica Acta, 70(18), 4797-4812.

-38-

Yang, Z., Sista, S., Elmer,]. W., and DebRoy, T. (2000), Three dimensional Monte
Carlo simulation of grain growth during GTA welding of titanium. Acta Materialia,
48(20), 4813-4825.

Zou, H., and A. Zindler (2000), Theoretical studies of 238U-230Th-226Ra and 235U-
231Pa disequilibria in young lavas produced by mantle melting, Geochimica et Cos-
mochimica Acta, 64(10), 1809-1817.

-39—

QAGU PUBL
Earth and Space Science

Supporting Information for

pyUserCalc: A revised Jupyter notebook calculator for uranium-series disequilibria
in basalts

Elkins, Lynne J." and Spiegelman, Marc?

1 University of Nebraska-Lincoln, Lincoln, NE, USA, lelkins@unl.edu 2 Lamont-Doherty Earth Observatory of
Columbia University, Palisades, NY, USA, mspieg@Ideo.columbia.edu

Additional Supporting Information (Files uploaded separately)

Caption for Data Set S1

Introduction

The provided file is a compressed directory containing the following files:

e README.md

e pyUserCalc_manuscript.ipynb
e pyUserCalc-v3.1.ipynb

e twolayermodel.ipynb

e UserCalc.py

as well as a “data” directory containing three sample data files:
e sample.csv
e simple_sample.csv

e sample_twolayer_model.csv

This file directory can be used to access and run the pyUserCalc code described in the
manuscript using a standard Python distribution and Jupyter browser environment.

Data Set S1. The provided file is a compressed directory that contains Python and
Jupyter notebook code files. The directory, once uncompressed, can be used to access
and run the model code described in the manuscript using a standard Python
distribution (such as Anaconda) and Jupyter browser environment, like JupyterLab or
Jupyter Notebook. The README.md text file explains what code is in the directory. The
directory file pyUserCalc_manuscript.ipynb is a Jupyter notebook version of the full
manuscript, where the reader can actively run and test the embedded Python code cells.
The file pyUserCalc-v3.1.ipynb is a Jupyter notebook containing the fully functional code
for production work with the model. twolayermodel.ipynb is a Jupyter notebook tool for
producing two-layer mantle input data files. UserCalc.py is a Python file containing the
UserCalc driver and model classes, as well as some convenient visualization methods that
can be imported using either of the notebook files. The “data” directory contains the
sample data files, sample.csv and simple_sample.csv, which are used for example
calculations in the two notebook files and also provide a useful template for other data
input files, as well as the output from the two layer calculator,
sample_twolayer_model.csv.

The supporting directory is also provided in a public Git repository
(https://gitlab.com/ENKI-portal/pyUsercalc); if preferred, readers can request a free ENKI
GitLab account and access and run these code files online using the ENKI JupyterLab
browser environment. To do this, the reader should 1) register for a GitLab account
(https://qgitlab.com/ENKI-portal), log into the ENKI cloud server (https://server.enki-
portal.org/hub/login), close the welcome screen, open a Terminal window and type “git
clone https://gitlab.com/ENKI-portal/pyUsercalc.git” to clone the repository, and then
open the desired notebook files in the pyUserCalc directory.

Alternately, the manuscript notebook is provided for direct access using a binder
container (https://mybinder.org/v2/gl/ENKI-
portal%2FpyUsercalc/master?filepath=pyUserCalc_manuscript.ipynb).

	Data Set S1. The provided file is a compressed directory that contains Python and Jupyter notebook code files. The directory, once uncompressed, can be used to access and run the model code described in the manuscript using a standard Python distribut...
	The supporting directory is also provided in a public Git repository (https://gitlab.com/ENKI-portal/pyUsercalc); if preferred, readers can request a free ENKI GitLab account and access and run these code files online using the ENKI JupyterLab browser...
	Alternately, the manuscript notebook is provided for direct access using a binder container (https://mybinder.org/v2/gl/ENKI-portal%2FpyUsercalc/master?filepath=pyUserCalc_manuscript.ipynb).

