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Abstract

The ACT-America Earth Venture mission conducted five airborne campaigns across four seasons from 2016-2019, to study the
transport and fluxes of Greenhouse gases across the eastern United States (US). Unprecedented spatial sampling of atmospheric
tracers (CO2, CO, and COS) related to biospheric processes offers opportunities to improve our qualitative and quantitative
understanding of seasonal and spatial patterns of biospheric carbon uptake.

Here, we examine co-variation of boundary layer enhancements of CO2, CO, and COS across three diverse regions: the
crop-dominated Midwest, evergreen-dominated South, and deciduous broadleaf-dominated Northeast. To understand the bio-
geochemical processes controlling these tracers, we compare the observed co-variation to simulated co-variation resulting from
model- and satellite- constrained surface carbon fluxes. We found indication of a common terrestrial biogenic sink of CO2

and COS and secondary production of CO from biogenic sources in summer throughout the eastern US. Stomatal conductance
likely drives fluxes through diffusion of CO2 and COS into leaves and emission of biogenic volatile organic compounds into the
atmosphere.

ACT-America airborne campaigns filled a critical sampling gap in the southern US, providing information about seasonal

carbon uptake in southern temperate forests, and demanding a deeper investigation of underlying biological processes and

climate sensitivities. Satellite- constrained carbon fluxes capture much of the observed seasonal and spatial variability, but

underestimate the magnitude of net CO2 and COS depletion in the Southeast, indicating a stronger than expected net sink in

late summer.
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Introduction

The supporting information contains additional text and figures focusing on simulation experiments for
background influences (Text S1) and associated figures (Figure S1-S2), along with additional figures demon-
strating (1) the calculation of boundary layer tracer enrichments from boundary layer and free troposphere
data (Figure S3) and (2) the influence of surface flux perturbations to biogenic CO emissions on atmospheric
tracer-tracer regressions (Figure S4).

Text S1 Simulation Experiment for Background Influence

Here, we examine the sensitivity of ACT BL samples to background influences, and evaluate a method
to account for background conditions empirically using data collected in the FT. Atmospheric BL signals
in North America contain a mixture of background air arriving from distant oceanic and terrestrial sources
outside of North America and more local- to regional- sources originating within North America. These latter
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surface influences (Figure 4) are a significant but incomplete component of observed variability. Background
air flowing into the WRF-Chem model domain contains substantial seasonal variability that is synchronized
with upstream surface influences, and thus can amplify surface-driven signals. Background air also contains
emissions from oceanic sources, which can offset biospheric uptake signals.

We examine the influence of background air on predicted signals by sampling observationally constrained
global atmospheric models using BL end points from the 500-particle back trajectories. Here, CO2 and CO
fields are determined by running posterior fluxes through GEOS-Chem and saving output every 3 hours at
the native horizontal grid (4° x 5° and 2° x 2.5°, respectively). Atmospheric COS fields are determined by an
independent 4DVar data assimilation system of the TM5 chemistry transport model (TM5-4DVAR), which
infers surface COS flux from NOAA surface observations, and projects optimized fluxes into the atmosphere
over the period 2000-2019 (4° x 6°; Ma et al., 2020). The back trajectory 500-particle ensembles contain a
mixture of particles that remain within the North America WRF domain over the 10 day period, as well as
particles that reach the boundary and exit (Figure S1). Most particles (> 90% on average) exit the domain
in winter time, while a larger percentage of particles remain within the domain in the summer (25-50% on
average) under a weaker and less advective jet-stream. We then average all particle endpoints together, and
repeat for each ACT-America BL flask sample receptor. Seasonal varations for each region and tracer show
a consistent pattern of peak concentration in spring, and gradual drawdown through later summer (Figure
S2). COS drawdown continues into fall, at which time CO2 becomes enriched and secondary production of
CO apparently increases. We find similar seasonal and regional patterns under fair weather condions as are
found for cold and warm air masses (top vs bottom row in Figure S2, respectively), with the exception of
amplified CO and COS enrichment in summer 2016 in the NE.

We then ask the question: How representative is FT air sampled by ACT-America of these background
influences? The main assumption here is that FT air within the continental interior is influenced more by
large scale horizontal advection (from boundaries) than by vertical mixing of underlying regional surface
exchange. To address this question, we compare seasonal variations of background air from BL particle end
points to samples from FT particle start points, using the same atmospheric models. Seasonal variations of
FT air (particle receptors) are indicated by markers in Figure S2. The two approaches agree with respect
to the timing and magnitude of seasonal drawdown and enrichment, including diverging patterns between
CO2/CO and COS in fall. Moreover, we find higher agreement between the approaches under fair weather
conditions than under cold and warm air masses, as indicated by a near doubling of RMSE values driven by
the Northeast region. .

These results suggest that BL and FT samples are more representative of the same air mass on fair weather
days, and consequently, that removing FT values provides a viable approach for estimating observed BL
enhancements in the ACT-America data with improved accuracy for fair weather conditions. More precisely,
the vertical difference, referred to here as tracer “enhancements” and defined as the difference between BL
and FT concentrations, gives a robust measure of observed regional surface flux influences, enabling direct
comparison between observed and predicted signals. We note that differences in transport between the
sampled fields (from GEOS-Chem and TM5) and particle back trajectories (from WRF-Chem) are unlikely
to have a significant influence on these results due to (1) our focus on regional scale conditions, (2) sampling
of 500 particle end points, (3) the use of observationally constrained transport fields.

References

Ma, J. et al. Inverse modelling of carbonyl sulfide: implementation, evaluation and implications for the global
budget. Atmos Chem Phys Discuss 2020, 1–39 (2020). https://doi.org/10.5194/acp-2020-603
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airborne-biogenic-tracers-co2-cos-and-co-supports-stronger-than-expected-growing-season-

photosynthetic-uptake-in-the-southeastern-us

Figure S1. Histagram showing the fequency of the percentage of 500 HYSPLIT particles released for each
flask receptor that remain inside the HYSPLIT domain over 10 day back trajectories, separated by season
(subpanels) and region (colors correspond to Figure 1 ). The mean percentage across flask receptors is shown
within each panel, along with the mean elapsed time (in days) of particles that either reach the boundary
(< 10 days) or stay within domain (10 days). This shows that a very small percentage of particles (< 10%)
stay within the domain in winter, independent of region, with most particles exiting the domain in ˜5 days.
More particles stay within the domain in summer, but the percentage is more variable across regions than
in winter.

Hosted file

image3.emf available at https://authorea.com/users/530971/articles/597922-covariation-of-

airborne-biogenic-tracers-co2-cos-and-co-supports-stronger-than-expected-growing-season-

photosynthetic-uptake-in-the-southeastern-us

Figure S2. Estimates of tracer background variability. The magnitude and variability of atmospheric tracer
concentrations are determined by a mixture of background air plus underlying terrestrial and ocean surface
influences. Surface influences (Figure 4 ) represent a significant but incomplete component of observed
variability. The background component is typically calculated by sampling the end points of particle back
trajectories, which consists of a mixture of air within the Hysplit domain and reaching the boundary (Figure
S1 ), and taking the average across particles. The background can also be estimated by sampling air in the
free troposphere (FT), representing the start point of HYSPLIT particels, which is primarily influenced by
large scale advection, and less so by underlying regional surface exchange. This figure compares these two
estimates (BL particle end points in solid, FT start points in markers) as sampled from atmospheric tracer
concentration fields from GEOS-Chem/TM5-4DVAR (for COS), as a function of tracer (panel), season (x-
axis), and region (color). Results using flask samples during fair weather days are shown in the top row, and
using cold and warm air masses in the bottom row. The root mean squared error (RMSE) between the two
estimates, averaged across seasons and regions, is provided within each panel. In general, the two approaches
agree well at seasonal scale with lowest RMSE during fair weather days, suggesting that removing FT values
provides a viable approach for estimating observed BL enhancements in the ACT-America data.

Hosted file

image4.emf available at https://authorea.com/users/530971/articles/597922-covariation-of-

airborne-biogenic-tracers-co2-cos-and-co-supports-stronger-than-expected-growing-season-

photosynthetic-uptake-in-the-southeastern-us

Figure S3. Observed tracer seasonal cycles, reconstructed for three ACT regions and from five ACT campaigns
shown in Figure 1. (Top Row) Observations are partitioned as atmospheric boundary layer (PBL) and
free troposhere (FT) using on-board thermodynamics and lidar data. (Bottom Row) Tracer enhancements
shown as difference between individual BL samples and seasonal-regional averaged FT samples (BL – FT).
Positive/negative values indicate higher/lower CO2 in the BL relative to the FT. Error bars represent the
standard error across individual flask samples.
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image5.emf available at https://authorea.com/users/530971/articles/597922-covariation-of-
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Figure S4. Surface flux drivers of observed tracer-tracer correlations in ACT-America South region in Summer
2016. This is similar to Figure 8 in the main text with the following exceptions (1) map of ACT flask samples
is removed, (2) the salt marsh experiment is excluded, (3) the biogenic CO2 flux perturbation is excluded,
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and (4) an additional perturbation experiment for biogenic CO flux is included. For (3), we decrease biogenic
CO flux by a factor of 2 in the south, which is denoted as “Posterior CO: Biogenic * 0.5” in several of the
subplot titles.

Tables

Table S1. Error covariance parameters for the GIM inversion. An exponential function was used to define
the prior error covariance matrix with monthly varying sill variance values, two temporal correlation lengths
(constant in time), and one spatial correlation length (constant in time). The two temporal correlation length
values were combined with the two model-data mismatch variance values to run four inversions which were
then averaged to produce the estimates in the study.

Sill variance
(pmol/m2/s)2 Dec, Jan, Feb Mar, Nov April, Oct May, Sept June, Aug July

2 3 4 5 10 20
Temporal
correlation
length
(days)

2 15

Spatial
correlation
length (km)

500

Model-data
mismatch
variance
(ppt2)

5 10

Table S2. Seasonal tracer-tracer correlations corresponding to Figure 5 of the main text. Observed correla-
tions are shown in the top row of each box. Posterior correlations are shown in the bottom row.

Tracer-Tracer Correlation Northeast South Midwest

CO2 vs CO 0.52 0.47 0.53
0.96 0.78 0.92

CO2 vs COS 0.75 0.90 0.75
0.41 0.67 0.72

COS vs CO 0.79 0.44 0.48
0.57 0.51 0.90

Table S3. Seasonal prediction-observation regression slopes corresponding to Figure 5 of the main text.
Regressions are shown for model priors and posteriors in the top and bottom row of each box, respectively.

Seasonal Correlation Northeast South Midwest

CO2 0.50 ± 0.04 0.33 ± 0.06 0.45 ± 0.08
0.83 ± 011 0.53 ± 0.11 0.85 ± 0.23

CO 0.97 ± 0.16 0.04 ± 0.39 1.05 ± 0.90
1.17 ± 0.76 -0.50 ± 0.96 2.33 ± 0.92

COS 0.56 ± 0.35 2.03 ± 0.31 1.30 ± 0.41
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Seasonal Correlation Northeast South Midwest

0.60 ± 0.29 1.59 ± 0.32 1.27 ± 0.40
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Abstract  26 

The ACT-America Earth Venture mission conducted five airborne campaigns across four 27 

seasons from 2016-2019, to study the transport and fluxes of Greenhouse gases across the 28 

eastern United States (US). Unprecedented spatial sampling of atmospheric tracers (CO2, CO, 29 

and COS) related to biospheric processes offers opportunities to improve our qualitative and 30 

quantitative understanding of seasonal and spatial patterns of biospheric carbon uptake. 31 

Here, we examine co-variation of boundary layer enhancements of CO2, CO, and COS across 32 

three diverse regions: the crop-dominated Midwest, evergreen-dominated South, and deciduous 33 

broadleaf-dominated Northeast. To understand the biogeochemical processes controlling these 34 

tracers, we compare the observed co-variation to simulated co-variation resulting from model- 35 

and satellite- constrained surface carbon fluxes. We found indication of a common terrestrial 36 

biogenic sink of CO2 and COS and secondary production of CO from biogenic sources in 37 

summer throughout the eastern US. Stomatal conductance likely drives fluxes through diffusion 38 

of CO2 and COS into leaves and emission of biogenic volatile organic compounds into the 39 

atmosphere.  40 

ACT-America airborne campaigns filled a critical sampling gap in the southern US, providing 41 

information about seasonal carbon uptake in southern temperate forests, and demanding a deeper 42 

investigation of underlying biological processes and climate sensitivities. Satellite- constrained 43 

carbon fluxes capture much of the observed seasonal and spatial variability, but underestimate 44 

the magnitude of net CO2 and COS depletion in the Southeast, indicating a stronger than 45 

expected net sink in late summer. 46 

 47 

1. Introduction  48 

The global terrestrial biosphere has removes 20% of fossil emissions from the atmosphere 49 

(Arneth et al., 2017). The exact spatial distribution and underlying drivers of the terrestrial 50 

carbon sink has been a matter of debate for decades, but it is generally agreed to be split between 51 

the tropics and northern extra-tropics and driven by a combination of nutrient (CO2, N) 52 

fertilization, thermal fertilization, and land cover / land use change (Stephens et al., 2007; 53 

Schimel et al., 2015; Madani et al., 2020; Liu et al., 2020a). Global top-down inversion studies 54 

leveraging surface-based CO2 stations in northern latitudes (CarbonTracker, CT2019) indicate 55 



 3 

strong and persistent CO2 uptake in North America (NA) of ~0.6 Gt C yr-1 from 2001-2018 56 

(https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/), driven by temperate ecosystems in the 57 

eastern US (east of the Rockies) and in southern Canada (Peters et al., 2007). Recent inversion 58 

efforts that incorporate satellite-based CO2 observations support these estimates for temperate 59 

eastern North America, showing a statistically significant sink of similar magnitude (~0.5 Pg C) 60 

over the period 2010-2018 (Liu et al., 2020b). These results are encouraging as we move toward 61 

combined surface- and satellite-based inversion approaches to improve spatially and temporally 62 

integrated constraints of net CO2 exchange at regional and global scale, and advance regional-63 

scale understanding of terrestrial CO2 sinks (e.g., Byrne et al., 2020a,b).  64 

Airborne strategies focused on multi-tracer vertical profiles within continental interiors offer 65 

additional opportunities for studying spatially variable sources and sinks. Intensive airborne 66 

campaigns enable long-distance transect flights needed to sample multiple air masses across 67 

biologically diverse regions, sometimes multiple times per day, at spatial scales ranging from 68 

100-1000 km.  Moreover, airborne campaigns that fly into and out of the atmospheric boundary 69 

layer can sample air immediately in contact with the surface for increased sensitivity to local 70 

processes, as well as provide periodic sampling of background air in the free troposphere, thus 71 

accounting for the influence of long-range transport (Parazoo et al., 2016; Baier et al, 2020). 72 

These flight strategies provide a critical advantage over column integrated satellite data, and 73 

fixed-point tower data, by directly measuring spatial gradients in anthropogenic and biogenic 74 

land surface influence. 75 

Key to disentangling multiple anthropogenic and biogenic CO2 sources and sinks (agricultural 76 

activity, forest productivity, biomass burning, gas and oil extraction and consumption) is multi-77 

species sampling. Carbon monoxide (CO) and Carbonyl Sulfide (COS) are increasingly 78 

important atmospheric constituents for tracking biogenic activity and gross primary productivity 79 

(GPP; Campbell et al., 2008; Hudman et al., 2008). Plant uptake of atmospheric CO2 and COS 80 

are directly related to photosynthesis through stomatal conductance (Campbell et al., 2008; Berry 81 

et al., 2013). While the main source of atmospheric CO is incomplete combustion of biomass and 82 

fossil fuel, and subsequent oxidation of hydrocarbons, a nontrivial secondary source is biogenic 83 

volatile organic compounds (BVOCs) emitted from vegetation, which oxidize to produce CO 84 

accounting for ~18% of the global CO budget (Worden et al., 2019).  In the absence of biomass 85 
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burning and continued CO emissions from anthropogenic sources, the relative importance of 86 

secondary CO production increases.  87 

Airborne COS and CO observations provide a unique opportunity to more directly study 88 

biogeochemical processes related at multiple temporal and spatial scales. Boundary layer CO 89 

data collected during the ICARTT aircraft campaign in the eastern US in summer 2004 revealed 90 

strong emissions from isoprene sources centered in the Southeast US, which exceeded regionally 91 

integrated anthropogenic emissions that peak in the Northeast near the strongest combustion 92 

sources (Hudman et al., 2008). Vertical COS profiles collected from the NOAA / Global 93 

Monitoring Laboratory (GML) light aircraft network from 2005-2012 indicate a hotspot of 94 

growing season GPP arising from intense agricultural activity in the upper Midwest US, 95 

exceeding all other regions in the US (Hilton et al., 2017). This hotspot is consistent with 96 

satellite-based measurements of solar induced fluorescence (SIF), another important signal of 97 

biogenic activity and in particular the light reactions of photosynthesis (Guanter et al., 2014). 98 

Crops are also implicated in the large seasonal, regional depletion in BL CO2 observed by towers 99 

(Miles et al, 2012) and the large net annual CO2 fluxes inferred from those tower data (Schuh et 100 

al, 2013). Ecosystem model simulations of GPP show a range of spatial patterns in the eastern 101 

US, and only a subset of models are consistent with strong crop uptake in the Midwest inferred 102 

from SIF and COS (Guanter et al., 2014; Hilton et al., 2017). Multi-tracer data thus provide 103 

important proxies for studying spatial GPP variability, and offer unique benchmarks for 104 

improving model formulations of agricultural productivity, light capture by leaves, and CO2 105 

diffusion by stomatal conductance (Hilton et al., 2018; Whelan et al., 2020).   106 

Atmospheric Carbon and Transport (ACT) – America, is a NASA Earth Venture Suborbital 107 

airborne mission that targeted multi-species vertical profiles in the eastern US for improved 108 

understanding of CO2 sources and sinks (Davis et al, submitted; Wei et al, submitted). ACT-109 

America conducted five airborne campaigns across four seasons from 2016-2019, capturing 110 

vertical gradients of CO2, CO, and COS across three unique regions including the humid sub-111 

tropical, evergreen-dominated South, seasonally warm- to hot- crop-dominated Midwest, and the 112 

warm temperate, deciduous broadleaf forest dominated Northeast. A subset of ACT-America 113 

flights was coordinated with satellite overpasses from the Orbiting Carbon Observatory (OCO-114 

2), providing simultaneous measurements of column-integrated atmospheric CO2 and underlying 115 

SIF. The combination of ACT-America, OCO-2, and existing airborne measurement networks 116 
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from NOAA/GML (Sweeney et al., 2015) provides an unprecedented wealth of information 117 

about biological processes driving CO2 uptake across the central and eastern US.  118 

Here, we present a first interpretation of ACT-America tracer-tracer distributions, and their co-119 

variation, across the central and eastern US. We focus on three biologically-sensitive tracer 120 

species (CO2, CO, and COS), which are collected periodically in airborne flask samples (~10-50 121 

samples per region and campaign), and co-analyzed in the laboratory, providing high precision 122 

measurements collocated in space and time. We analyze the seasonal distribution of individual 123 

species, and their covariation, across the three unique ACT regions (Northeast, Midwest, and 124 

South) to gain a better understanding of the seasonal and spatial distribution of net CO2 sources 125 

and sinks, and the underlying biogenic and anthropogenic drivers.    126 

To facilitate interpretation of observed tracer distributions, we also analyze predicted signals 127 

obtained from high resolution atmospheric simulations forced by spatially-explicit surface fluxes 128 

of CO2, COS, and CO. We examine “top-down” fluxes from inverse methods constrained by 129 

multiple observational data-streams, and “bottom-up” model estimates, representing 130 

climatological prior fluxes going into inverse methods. We thus use predicted signals to link 131 

observed tracer distributions to spatial patterns in biogenic and anthropogenic driven surface 132 

fluxes, evaluate the state of bottom-up prior fluxes and information gain from inversion systems, 133 

and learn about “missing processes” from the residual of ACT-America comparisons.  134 

This study has three main objectives: (1) first interpretation of ACT-America tracer-tracer 135 

covariation, (2) examination of underlying surface flux drivers across diverse regions in the 136 

central and eastern US, and (3) evaluation of observed vs expected surface flux patterns, 137 

providing insight into processes that are missing from models. We accomplish these objectives in 138 

three main steps: (1) Establish observed correlation patterns between CO2, CO, and COS 139 

(Section 2.1), (2) Provide satellite constrained estimates of surface fluxes of CO2, CO, and COS 140 

accounting for multiple carbon sources and sinks including terrestrial and oceanic biological 141 

exchange, biomass burning and anthropogenic emissions (Section 2.2), (3) Convolve posterior 142 

surface fluxes with surface influence functions for attribution of observed correlation patterns 143 

(Section 2.3). We also use simulation experiments to evaluate the use of airborne free 144 

troposphere data to account for background influences from boundary layer data (Text S1). By 145 



 6 

using a model-data analysis framework, this study provides a deeper investigation into the 146 

processes driving observed CO2 patterns.   147 

2. Methods 148 

2.1 ACT-America Tracer Observations 149 

High quality CO2, CO, and COS trace gas mole fractions are collected in situ from two 150 

instrumented aircraft platforms, the NASA Langley Beechcraft B200 King Air and the NASA 151 

Goddard Space Flight Center's C-130 Hercules (Davis et al., 2018). The data are derived from 152 

laboratory measurements of whole air samples collected by Programmable Flask Package (PFP) 153 

onboard the two ACT-America aircraft (Bair et al., 2020). The two aircraft conducted five six-154 

week field campaigns spanning the Central and Eastern US (27S-49N, 106W-73W) covering 155 

all four seasons from 2016 through 2019, including late summer 2016 (July-August), winter 156 

2017 (February-March), fall 2017 (October-November), spring 2018 (April-May), and early 157 

summer 2019 (June-July). Each campaign focused on sampling three unique regions, which are 158 

defined here as Northeast (NE: 35-45N, 85-75W), Midwest (MW: 37-45N, 100-87W), and 159 

South (~28-37N, 100-85W). These regions (and corresponding flask samples) are shown in 160 

Figure 1, and color coded as blue, red, and green for the remainder of the paper.  161 

Approximately 10-12 flask samples were captured during each flight. We screen data for 162 

overlapping high quality samples of CO2, CO, and COS and fair-weather days (~50% of total 163 

samples, ranging from 32% in fall 2017 to 59% in summer 2019) using provided air mass flags 164 

(Wei et al., submitted). CO2 samples collected during summer 2016 were replaced by continuous 165 

data from in situ systems on board both aircraft due to CO2 depletion in undried flask air samples 166 

at water vapor levels above 1.7% (Baier et al., 2020). Moreover, nearly half of COS 167 

measurements analyzed during the first campaign failed to pass quality control criteria due to air 168 

sample contamination of COS measurements from o-rings, leading to reduced sample size in 169 

summer 2016 (52 flask samples) compared to subsequent campaigns (58-133). The total number 170 

of remaining samples per campaign ranges from 52-105 in the first three campaigns, and 171 

increases to 127 and 133 in the final two campaigns, respectively. In particular, we note a nearly 172 

factor of 3 increase in sample size from summer 2016 to summer 2019.  173 

Aircraft tracks were designed to be within (~300 m AGL) or above the boundary layer (BL) as 174 

observed by on-board thermodynamics and lidar data. We focus on enhancements of tracer 175 
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concentrations within BL relative to background variability in order to maximize sensitivity to 176 

local-regional (~100-500 km) surface flux influences. We estimate BL enhancements as the 177 

difference between BL and free troposphere (FT) flask data as indicated by metadata flags (Wei 178 

et al., submitted). Baier et al (2020) show that FT data provides an effective measure of 179 

background conditions for CO2 in winter. We provide additional simulation experiments using 180 

global atmospheric tracer simulations further justifying the use of FT data to define background 181 

conditions for all tracers and seasons studied here (Text S1). We denote BL enhancements (BL – 182 

FT) as ΔCO2, ΔCO, and ΔCOS. 183 

To estimate enhancements, we further sort data into BL and FT bins using provided flags, with 184 

BL data denoted by filled circles in Figure 1. The nature of this aircraft campaign is such that BL 185 

and FT data were not always collected in the same location. Rather, data were collected along 186 

level-altitude transects that were hundreds of kilometers long, and encompassed synoptic 187 

weather patterns, causing spatial disconnect between BL and FT samples. We therefore average 188 

all FT data collected in a single day to represent a mean background value per day. Specifically, 189 

for each day with at least one flask sample in the BL and FT, we take the mean value of all FT 190 

data, and subtract that from individual BL samples. By limiting the flight data to fair-weather 191 

conditions, we minimize large horizontal gradients associated for example with frontal 192 

boundaries (e.g., Baier et al 2020), increase the likelihood that the BL and FT data represent the 193 

same air mass, and minimize the potential for cloud convection to spread surface flux signatures 194 

into the FT.  195 

2.2 Posterior Tracer Surface fluxes 196 

In order to interpret the observed atmospheric tracer distributions, model atmospheric 197 

simulations are forced by surface fluxes of CO2, COS, and CO. In this study, we aim to use a set 198 

of surface fluxes that are consistent with various observational data-streams. These surface 199 

fluxes are derived from a combination of “top-down” (i.e., posterior fluxes constrained by 200 

atmospheric data) and “bottom-up” (i.e., prior fluxes derived from land-surface models or 201 

ancillary data). For CO2 and CO, we start with climatological “bottom-up” prior fluxes, and 202 

derive posterior fluxes using OCO-2 (for CO2) and MOPITT (for CO). For COS, we explore 203 

three independent process-based and data-constrained estimates of plant COS uptake. The data 204 

and methods used to calculate these fluxes are summarized below.  205 
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CO2 Flux 206 

Net CO2 flux is composed of the sum of net biosphere exchange (NBE, representing the sum of 207 

net ecosystem exchange (NEE) + biomass burning), air-sea net CO2 exchanges (Ocean), and 208 

fossil fuel emissions.  The net carbon balance and its constituent fluxes are derived from the 209 

Carbon Monitoring System Flux (CMS-Flux) system (http://cmsflux.jpl.nasa.gov).  The net or 210 

“total” flux is constrained over the period 2015-2019 against column integrated CO2 from OCO-211 

2 using a 4D-Var inversion system, based on the adjoint of the GEOS-Chem global transport 212 

model at 4 x 5 degree spatial resolution (Liu et al, 2014; Liu et al., 2020b and references 213 

therein). Over land, the posterior net carbon flux from CMS-Flux is attributed to NBE as it is the 214 

largest source of variability in atmospheric CO2. The resulting posterior NBE adjusts the prior or 215 

“bottom-up” NBE estimates from the CARDAMOM model-data fusion system, summarized in 216 

Bloom et al (2016, 2020), which itself is constrained by multiple data streams including GOME-217 

2 SIF, MODIS Leaf Area Index, above-ground biomass, and soil carbon for NEE, and 218 

FLUXCOM GPP and Global Fire Emissions Database version 4 (GFEDv4) for biomass burning.  219 

Additional prior fluxes in CMS-Flux include ocean and fossil emissions summarized in Brix et al 220 

(2015), Caroll et al (2020), and Oda et al (2018).  In order to link these fluxes to aircraft 221 

measurements, prior and posterior monthly fluxes are downscaled to 3-hour timescales for 222 

diurnal footprint analysis of ACT-America samples (Section 2.3) using ERA-interim reanalysis 223 

of global radiation and surface temperature, following the approach of Olson and Randerson 224 

(2001).   225 

CO Flux 226 

Posterior CO fluxes in CMS-Flux are derived using a similar 4D-Var approach as is used for 227 

CO2 (Jiang et al., 2015; Kopacz et al., 2009, 2010), using CO observations from Measurements 228 

of Pollution in the Troposphere (MOPITT) instrument. This approach is summarized in more 229 

detail in Bowman et al. (2017) and Worden et al. (2019). Following Jiang et al. (2011), each 230 

month is estimated independently with initial conditions supplied by a suboptimal Kalman filter 231 

(Parrington et al., 2008). The configuration for the CO inversion follows Jiang et al. (2013) 232 

where the control vector for CO emissions combines the combustion, biogenic, and methane CO 233 

sources. 234 
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Prior CO flux components used in the inversion include combustion CO sources (fossil fuel, 235 

biofuel, and biomass burning), and CO oxidation from biogenic non-methane VOCs and 236 

methane.  CO oxidation is assumed to be completed within the relatively coarse 4x5 scales and 237 

therefore are emitted at the surface. Precursor emissions of CO from biogenic sources are 238 

computed using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 239 

2.0 (Guenther et al., 2006). Biomass burning emissions are obtained from GFED4 (van der Werf 240 

et al., 2010). Anthropogenic emissions (fossil fuel and biofuel) combine off-line emission 241 

inventories from the Emission Database for Global Atmospheric Research global model 242 

(EDGAR v4.2; Olivier and Berdowski, 2001; 2012) and regional models over North America 243 

(Kuhns et al., 2003) propagating seasonal, weekly, and diurnal variation. Biogenic and biomass 244 

emissions are estimated at 3-hourly resolution, other fluxes are monthly.  245 

COS Flux 246 

We examine three independent process-based and data-constrained estimates of plant COS 247 

uptake from (1) the Simple Biosphere Model version 4 (SiB4) process model, (2) atmospheric 248 

data-constrained and independent geostatistical inverse modeling (GIM) framework, and (3) 249 

semi-empirical SIF-based constraint (GOPT). These products are described in more detail below. 250 

Other COS component fluxes prescribed in this study include soil uptake (Whelan et al., 2016), 251 

anthropogenic emissions (Kettle et al., 2002), and biomass burning (van der Werf et al., 2010). 252 

We note that SiB4 and GIM estimates are not year specific, and thus do not represent climate 253 

conditions at the time of ACT-America data collection.  254 

SiB4 255 

The Simple Biosphere Model (SiB4; Haynes et al., 2019a, 2019b) is a mechanistic and 256 

processed-based model that simulates land-atmosphere exchanges of energy, momentum and 257 

moisture, as well as the terrestrial carbon cycle.  By simulating biogeochemical and biophysical 258 

processes over heterogeneous vegetation, SiB4 not only provides estimates of water, energy and 259 

carbon fluxes, but it also predicts a wide variety of land characteristics and properties, including 260 

soil moisture, soil carbon pools, biomass, leaf area index (LAI), albedo, COS, and SIF. To create 261 

a self-consistent, predictive model, SiB4 combines elements from a prognostic phenology model 262 

[SiBpp; Stöckli et al., 2008; Stöckli et al., 2011], a crop model [SiBcrop; Lokupitiya et al., 2009; 263 

Corbin et al., 2010], and a terrestrial carbon pool model [SiB-CASA; Schaefer et al., 2008; 264 
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Schaefer et al., 2009] into a single modeling framework.  By combining the processes from these 265 

three previous versions of SiB and using tiles of plant functional types (PFTs) to represent land 266 

cover heterogeneity, we have created a model capable of investigating land surface properties 267 

and land-atmospheric exchanges on a variety of temporal and spatial scales.  268 

Plant uptake of atmospheric CO2 and COS are directly related to photosynthesis through 269 

diffusion by stomatal conductance and consumption by collocated reaction in the chloroplasts of 270 

leaves (Rubisco and carbonic anhydrase (CA), respectively) (Campbell et al., 2008; Berry et al., 271 

2013). Diffusion of gases including CO2, COS, and water vapor along the pathway from the 272 

atmosphere to leaf cell where biochemistry takes place is controlled by boundary layer, stomatal, 273 

and mesophyll conductance (Berry et al., 2013). The prognostic canopy air space in SiB4, and 274 

addition of mesophyll conductance scaling to Vcmax (and modulation by environmental 275 

conditions), enables direct calculations of plant COS uptake (Baker et al., 2003; Stockli and 276 

Vidale, 2005). We note that SiB4 also has its own representation of soil COS exchange, which is 277 

based on a respiration approach which assumes that more productive environments cause buildup 278 

of CA in the surface litter and near-surface soil, and thus respire more COS and as function of 279 

productivity (Berry et al., 2013). SiB4 based soil respiration of COS is used in place of Whelan-280 

based soil exchange in the analysis of SiB4-based COS results.  281 

GIM 282 

Atmospheric trace gas applications of the geostatistical inverse modeling (GIM) framework have 283 

primarily been used to estimate surface net ecosystem exchange CO2 fluxes (Michalak 2004) by 284 

coupling atmospheric trace gas observations to a model of atmospheric transport. The GIM 285 

framework allows for the incorporation of covariate datasets to help constrain the space-time 286 

patterns of surface flux estimates (Gourdji et al. 2008; Gourdji et al. 2012). The GIM approach 287 

used here optimizes plant COS fluxes over North America using COS observations from the 288 

NOAA airborne network (https://www.esrl.noaa.gov/gmd/ccgg/aircraft/) and remotely sensed 289 

SIF (GOME-2, Joiner et al. 2013) as a single covariate. SIF is used as a covariate to help the 290 

inversion capture the space time patterns of photosynthetic CO2 and hence plant COS fluxes. 291 

This approach is based on a North American regional CO2 inversion (Shiga et al 2018) using the 292 

same pre-computed footprint library created from the WRF-STILT atmospheric transport model 293 

(Nehrkorn et al. 2010) runs for NOAA's CarbonTracker Lagrange project 294 

https://www.esrl.noaa.gov/gmd/ccgg/aircraft/
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(https://www.esrl.noaa.gov/gmd/ccgg/carbontracker-lagrange/). The influence of the background 295 

is removed by subtracting the average of observations above 2.5 km in any given aircraft 296 

sampling profile from the observations in the lowest 1.5 km (boundary layer). To isolate plant 297 

COS fluxes, the influence from secondary COS fluxes from soils (Whelan et al. 2016), 298 

anthropogenic emissions (Zumkehr et al. 2018), and biomass burning (Stinecipher et al. 2019) 299 

have been removed by convolving these surface fluxes with the WRF-STILT footprints and then 300 

subtracting from the boundary layer observations. Plant COS fluxes are optimized yearly at 1x1 301 

spatial resolution over North America from 2008-2012 using four different sets of covariance 302 

parameters assuming two different model-data mismatch variances and two different temporal 303 

correlation lengths (see Table S1). A 5-year climatology of the monthly average of these four 304 

inversion runs is used here to reduce the impact of both data gaps and the impact of covariance 305 

parameter choices. 306 

GOPT 307 

As mentioned above, plant uptake of atmospheric COS is directly related to photosynthesis 308 

through diffusion modulated by stomatal conductance. Even though most terrestrial biosphere 309 

models include a representation of stomatal conductance enabling prediction of GPP, and 310 

multiple empirical-based methods exist for constraining GPP against satellite vegetation data 311 

(Anav et al., 2015), most models don’t simulate leaf COS uptake. To get around this limitation, 312 

we developed a simplified biome-specified linear regression method that converts GPP into COS 313 

plant uptake from the mechanism in the SIB4 model. Analysis of monthly mean plant COS and 314 

GPP output from SiB4 shows a biome-dependent linear relationship. Therefore, we compute the 315 

linear regressions from GPP to COS flux for broad MODIS-based biome classifications. We 316 

compute the slope ‘𝑘’ and intercept ‘𝑏’ in Equation 1 using SIB4’s GPP  and COS plant uptake 317 

data for each biome (ib). 318 

COS (𝑥, 𝑦) = 𝑘 (𝑖𝑏) × GPP (𝑥, 𝑦) + 𝑏 (𝑖𝑏)                       (1) 

By applying the consistent biome specified regression model, we can derive COS plant uptake 319 

from any GPP product. Here, we derived SIF-based GPP estimates following Parazoo et al 320 

(2014), where year-specific monthly GPP at each grid point is inferred from a precision-weight 321 

minimization of spaceborne SIF, which is regressed against global GPP from upscaled flux tower 322 

data (e.g., Frankenberg et al., 2011; Jung et al., 2011) and subjected to prior knowledge of GPP 323 
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from an ensemble of terrestrial ecosystem models (Sitch et al., 2015). Their method is updated 324 

here using OCO-2 measured SIF constraints. Monthly GPP is downscaled to 3 hours using the 325 

same approach for NBE, and then used in equation 1 to estimate COS.  326 

Total vs Biogenic Flux 327 

Seasonal maps of posterior CO2, CO, and COS flux (from GIM) are shown in Figure 2. The 328 

corresponding biogenic component is shown in Figure 3.  For CO2 and COS, total and biogenic 329 

fluxes show consistent magnitude and spatial distribution over the entire year. The main 330 

difference can be seen in the northeast and upper Midwest, where fossil fuel emissions are 331 

prevalent. Fossil emissions drive most of the COS flux and amplify CO2 emissions in winter, and 332 

offset much of the plant-driven COS drawdown in summer. The CO posterior is driven largely 333 

by hotspots of emissions from fossil fuel (year-round) and fires in summer. Biogenic emissions 334 

occur mainly in summer in the south, lower Midwest, and along in the mid-Atlantic regions, and 335 

show consistent magnitude from early to late summer (June – August).  336 

2.3 Atmospheric Signal Prediction 337 

The preceding posterior fluxes are derived from atmospheric models run at fairly coarse spatial 338 

resolution. As such, when these fluxes are propagated back to the atmosphere using the same 339 

atmospheric models run in forward simulation mode, they will not capture the variability seen in 340 

the ACT-America samples. To bridge those scales, we run the HYbrid Single-Particle 341 

Lagrangian Integrated Trajectory (HYSPLIT) model (Draxler and Hess, 1997; Stein et al., 2015) 342 

in Stochastic Time-Inverted Lagrangian Transport (STILT)-emulation mode and driven by 343 

meteorological fields from the Weather Research and Forecasting Chemistry model (WRF-344 

Chem; Feng et al., 2019a) to estimates surface influence (footprint) predictions for ACT-345 

America flask samples.  346 

The WRF-Chem simulation is carried out using version 3.6.1. The domain of interest contains 347 

most of North America [170W - 60W, 20N – 75N] at 27 km horizontal resolution. The 348 

model has 50 levels up to 50 hPa with 20 levels in the lowest 1 km. The model meteorology is 349 

initialized every 5 days and driven with ERA5 reanalysis every 6 hours at 25-km horizontal 350 

resolution. The WRF-Chem dynamic is relaxed to ERA5 (Hersbach et al, 2020) meteorology 351 

every 6 hours using grid nudging. Each meteorological re-initialization is started at a 12-hour 352 

setback from the end of the previous 5-day run. The first twelve hours of every 5-day simulation 353 
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are considered spin-up and discarded from the final analysis. We also update sea surface 354 

temperature every 6 hours at 12-km resolution. Choices of the model physics parameterizations 355 

used in this experiment are documented as the baseline setup described in Feng et al (2019a; 356 

2019b). Specifically, MYNN 2.5 PBL scheme (Nakanishi and Niino, 2004) and Noah Land 357 

surface model (Chen and Dudia, 2001) are used for vertical mixing. 358 

WRF-HYSPLIT was run backward for 10 days, or until particles exit the North American 359 

continental boundary, roughly defined by the WRF-Chem domain above. For each back 360 

trajectory, 500 particles were released at each flask receptor location to generate footprints every 361 

15 minutes along the particle trajectories. Surface footprints were re-calculated on a 1-degree 362 

grid and saved at hourly intervals.  363 

We note several differences in summer influence patterns in 2016 and 2019. The NE region 364 

shows more local influence in 2016, and westerly and northerly influence in 2019. The MW 365 

region has a larger southerly component in 2016. The S region is more southerly and easterly in 366 

2016, and local/southerly in 2019. We also note a strong influence from the Gulf of Mexico in 367 

both years.  368 

3. Results 369 

Observed seasonal tracer distribution in the BL and FT, and corresponding enhancements (∆ = 370 

BL - FT), are shown in Figure S3 (top and bottom rows, respectively). Comparison to predicted 371 

enhancements, determined by convolving prior and posterior surface fluxes with HYSPLIT 372 

influence functions, is provided in Figure 5.  We refer to ∆ < 0 (BL < FT) as depletion and ∆ > 0 373 

(BL > FT) as enrichment. We also refer to CO production by biogenic VOCs as “biogenic CO 374 

emission”  375 

3.1 Observed Tracer Seasonal Enhancements 376 

We point out several important features regarding seasonal amplitude and timing of observed 377 

tracer variations, and seasonal covariance across tracers. In particular, ∆CO2 drawdown is 378 

consistently deeper and earlier in the BL compared to the FT across our three study regions, 379 

leading to net depletion in early and late summer, and net enrichment in fall, winter and spring 380 

(Figure S3). Focusing on BL enhancements, we note that the magnitude of peak ∆CO2 depletion 381 

roughly follows the north-south gradient, with deeper depletion in the NE and MW and 382 
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shallowest depletion in the S. The timing of peak depletion occurs in late summer in the NE, and 383 

early summer in MW and S. The seasonal and regional patterns are expected, but still 384 

encouraging given the inconsistent sampling of these regions in space and time.  385 

∆COS shows positive seasonal correlation with ∆CO2 in each region (r
2
 = [0.48, 0.90]; see Table 386 

S2), including similar seasonal timing and magnitude. ∆COS remains depleted on average in fall 387 

when ∆CO2 becomes enriched, but the summer-to-fall tendency (reduced depletion) is in the 388 

same direction. Interestingly, peak ∆CO occurs in early and late summer in MW and NE, 389 

respectively, corresponding to peak ∆COS and ∆CO2 depletion, producing seasonal anti-390 

correlation between ∆COS-∆CO and ∆CO2-∆CO in the MW and NE. Winter ∆CO enrichment in 391 

the MW and S is synchronized with peak ∆CO2 enrichment, and negligible ∆COS depletion.  392 

3.2 Comparison of Observed and Simulated Seasonal Enhancements 393 

Predicted signals from prior and posterior fluxes show surprisingly good agreement with 394 

observations in terms of seasonal timing, magnitude, and relative variability across tracers and 395 

regions (Figure 5 and Table S3). In most cases, predicted and observed tracer-tracer correlations 396 

have the same sign, including positive correlation of ∆CO2-∆COS in all three regions, and 397 

negative correlation of ∆CO2-∆CO and ∆COS-∆CO in the NE and S regions. Similar seasonal 398 

and tracer-correlation patterns are found for prior and posterior flux estimates, with the following 399 

caveats: (1) significantly improved agreement in seasonal magnitude in ∆CO2 posteriors (mean 400 

regression slope per region increases from 0.43 to 0.74; Table S3), (2) degraded seasonal 401 

amplitude but improved structure in the ∆CO posterior, and (3) regionally dependent 402 

performance in COS flux estimates. With these considerations, we can use the observationally-403 

constrained model simulations to interpret seasonal and spatially variable biospheric influences 404 

on observed enhancement patterns, through comparison of posterior flux and surface influence 405 

maps (Figure 2-4) as discussed below.  406 

We focus first on summer ∆CO2 depletion in the NE region. The predominant surface influences 407 

occur within the Appalachian deciduous broadleaf forests, where posterior COS and CO2 fluxes 408 

show regionally strong sinks, and CO flux shows a locally strong source. COS and CO2 biogenic 409 

sinks are only slightly offset by anthropogenic emissions, while the CO source is persistent year-410 

round but amplified by summer biogenic sources. The difference in timing of peak surface CO2 411 

uptake (early summer 2019) and peak ∆CO2 depletion (late summer 2016) points to other 412 
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important influences besides the seasonal change in surface flux magnitude. In this case, we note 413 

a shift in the location and magnitude of the surface influence function, from a locally strong NE 414 

influence in late summer 2016, centered near a local sink hotspot in West Virginia, to a weaker 415 

westerly influence in early summer 2019. The shift in upstream influence is most likely driven 416 

by differences in predominant weather patterns on the sampling days and locations in 2016 vs 417 

2019; other possible factors are discussed in more detail in Section 4.   418 

Summer depletion in the MW region is driven by strong COS and CO2 uptake across the Central 419 

Great Plains and into southern Canada. Enhanced depletion in summer 2019 is consistent with 420 

stronger influence over crop dominated landscapes in the upper Midwest. Screening flask data by 421 

geographic region of influence shows a decrease in the magnitude of ∆CO2 and ∆COS depletion 422 

on the two days with the strongest southerly influence (from -13 ppm to -5 ppm for ∆CO2 and -423 

80 ppt to -67 ppt for ∆COS, on average). By contrast, these same days show a relative increase in 424 

∆CO enrichment, aligned with a biogenic CO source along the Mississippi River in southern 425 

Arkansas (Figure 3). Likewise, reduced ∆CO2 and ∆COS depletion in summer 2016 (relative to 426 

summer 2019) is linked to a pattern of predominantly southerly influence in 15 of 19 flask 427 

samples. Screening for days with more northerly influence increases depletion of ∆CO2 and 428 

∆COS (from -6 ppm to -11 ppm for ∆CO2 and -39 ppt to -53 ppt for ∆COS), and decreases ∆CO 429 

enrichment (from 18 ppb to 17 ppb). These results suggest a strong influence of crops and 430 

northern ecosystems on biogenic drawdown CO2 and COS in the MW, a weak influence of crops 431 

on CO, and potential biogenic source of CO along the southern portion of the Mississippi River 432 

(which is overestimated in posterior estimates). 433 

Flask data collected in the S region show a much stronger offshore surface and background 434 

influence compared to other regions. The reduced terrestrial influence compared to MW and NE 435 

regions partially explains the relatively weak magnitude of summer ∆CO2 depletion. It’s worth 436 

noting, however, increased ∆COS depletion and ∆CO enrichment in summer 2016 (in the S), 437 

corresponding to increased influence from the southeast US where biogenic CO emissions and 438 

COS uptake are prevalent (but potentially underestimated in our prior and posterior models). We 439 

also find a strong local influence along the Mississippi river in summer 2019 where posterior CO 440 

emissions peak. This surface posterior CO source appears to have the same biogenic origin as 441 
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southerly influenced MW flask samples, and is most likely responsible for the predicted ∆CO 442 

enrichment spike in summer 2019, which is overestimated compared to observations.  443 

Observed ∆CO2 enrichment in the NE region in winter is consistent with fossil emissions and 444 

annually persistent CO emissions (Zumkehr et al., 2018). Observed and simulated ∆CO2 show 445 

diverging patterns in spring, with excessive depletion in predicted signals, indicative of excessive 446 

prior and posterior biogenic uptake. We find similar patterns in the S and MW regions, with less 447 

local fossil CO and COS influence (near Chicago) in spring. 448 

3.3 Tracer-tracer spatial correlations across individual BL flasks 449 

The analysis in Section 3.2 focused on seasonally averaged tracers and their covariations, 450 

providing an informative assessment of regionally and seasonally integrated fluxes. We are also 451 

interested in how the spatial distribution of fluxes affects the correlation between individual flask 452 

samples. For this, we examine the spatial covariance between tracers across individual flasks per 453 

region and season, for observed and predicted enhancements. The results are plotted as seasonal 454 

regression slopes in Figure 6, with values that are significant from zero and well correlated (R
2
 > 455 

0.25) denoted by symbols. An example regression for a single season and region is shown in 456 

Figure 7 A-B. The number of BL samples per region ranges from 8 (S region, summer 2016) to 457 

78 (NE region, summer 2019).  458 

From an observational perspective, most regions and seasons show no significant spatial 459 

covariation. However, we note several important covariations that facilitate our interpretation of 460 

seasonal tracer depletion and enrichment. In particular, the S region shows persistent and 461 

significant negative correlation between ∆CO2-∆CO and ∆COS-∆CO, and positive correlation 462 

between ∆CO2-∆CO, from early summer through late fall. These patterns are consistent with 463 

land-based biological depletion of ∆CO2 (plant-driven ∆COS and ∆CO2 depletion increases with 464 

∆CO enrichment), but only lead to net regional ∆CO2 depletion from early to late summer with 465 

surface influences over the southern US (more discussion below). These tracer-tracer patterns 466 

continue into fall, but are inconsistent with ∆CO2 enrichment, and occur as surface influences 467 

shift offshore, making inferences of a persistent southern biogenic CO2 sink into fall 468 

inconclusive.  469 

Predicted enhancements from prior and posterior fluxes capture the negative ∆COS-∆CO 470 

correlation in summer 2019, and increased regression slope in summer 2016, but underestimate 471 
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the slope of regression by a factor of two (Figure 6; -1.67 +/- 0.29 vs -0.852 +/- 0.14). Predicted 472 

signals also underestimate the slope of ∆CO2-∆COS regression by a factor of 3 (0.0675 +/- 0.026 473 

vs .0265 +/- 0.018). The results suggest that models underestimate southern growing season CO2 474 

uptake, and ∆CO2 depletion, due to weak photosynthetic drawdown upstream of flask samples.  475 

We can investigate the effect of flux spatial variability on late summer ∆COS-∆CO correlation, 476 

and subsequent model bias, in more detail through closer examination of individual flask 477 

samples. Only three total days of campaign data were collected in summer 2016, with two days 478 

(Aug 27-28) influenced primarily by the southeast US (easterly influence swath in Figure 4), 479 

with high ∆CO and low ∆COS air, and the other day (Aug 24) under more local to southerly 480 

influence from Gulf inflow, with high ∆COS and low ∆CO air (Figure 7A). It follows that the 481 

observed ∆COS-∆CO negative correlation is driven in large part by covariance of CO precursor 482 

emissions and COS uptake in the southeast US. As such, increasing the biogenic component of 483 

posterior CO2 (NBE) and COS (plant) uptake by factors of two each in the southeast region, 484 

defined here as 90-80W, 28-36N, substantially improves the agreement between predicted and 485 

observed tracer-tracer correlation patterns in the S region (Figure 7B). Regression slopes 486 

increase by ~50% for ∆COS-∆CO (from -0.852 to -1.48 ppt / ppb), ~30% for ∆CO2-∆COS (from 487 

+0.0265 to +0.033 ppm / ppt), and ~300% for ∆CO2-∆CO (from -0.018 to -0.05 ppm / ppb). For 488 

∆CO2-∆COS, we note that increasing the posterior biogenic COS flux alone actually degrades 489 

the correlation, and that the combination of COS and CO2 is needed (Figure 7H). The need for 490 

increased COS and CO2 uptake, and no change in CO, is consistent with seasonal comparisons 491 

(Figure 6), which show that posteriors underestimate observed ∆CO2 and ∆COS depletions at 492 

regional scale in late summer 2019. While a change in biogenic CO flux does not appear to be 493 

necessary, we note that decreasing the biospheric CO emission by a factor of 2 further increases 494 

the predicted ∆COS-∆CO slope by 20% (to -1.78 ppt / ppb) in much closer agreement with the 495 

observed slope (Figure S4), demonstrating the important correlation of biogenic COS and CO 496 

fluxes in the south. By contrast, reducing CO fossil emissions by half increases the ∆COS-∆CO 497 

slope by 2%. 498 

The ∆COS-∆CO correlation is further improved by considering salt marsh emissions as an 499 

additional process not typically encountered in regional COS budgets. Salt marsh ecosystems are 500 

a large emitters of COS. Instantaneous saline wetland emissions range from ~0 to 300 pmol m
-2

 501 
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s
-1

 (Whelan et al., 2018). A surface flux campaign along the Texas shore of the Gulf of Mexico, 502 

within the footprint of Aug 24 ACT-America data analyzed here, estimated an average flux from 503 

vegetated plots of ~60 pmol m
-2

 s
-1

, with larger values in July sometimes exceeding 110 pmol m
-

504 

2
 s

-1
 (Whelan et al., 2013). To assess the sensitivity of predicted ∆COS-∆CO correlations in the S 505 

region to salt marshes, we add salt marsh emissions to our total posterior COS flux by assuming 506 

a mean value of 70 pmol m
-2

 s
-1

 in July within gulf coast pixels and that vegetated salt marshes 507 

comprise ~200 km
2
 of the Texas Gulf Coast in 2016 (extrapolating from Armatage et al., 2015). 508 

We note that the objective here is not to capture salt marshes exactly, but rather to provide a 509 

realistic estimate to demonstrate sensitivity of airborne tracer-tracer correlation patterns. 510 

Including salt marsh COS emissions increases the spatial gradient of COS fluxes, which acts on 511 

the spatial gradient of atmospheric signals in a small but non-trivial way, and increases the slope 512 

of regression of ∆COS-∆CO by 5%, from -1.48 to -1.55 (not shown).   513 

4. Discussion 514 

We analyzed boundary layer enhancements (BL – FT) of biologically-sensitive tracer species 515 

(CO2, COS, CO) collected by ACT-America aircraft campaigns over four seasons and five 516 

campaigns from 2016-2019 against a corresponding set of independent, satellite-constrained 517 

surface fluxes to determine the spatial and seasonal influence of plant uptake on atmospheric 518 

CO2 enhancements. We find a strong gradient of ∆CO2 and ∆COS drawdown from north to 519 

south, peaking in the northeast US in late summer, consistent with wider geographic region of 520 

influence in northern regions (eastern US + Canada) and limited upwind influence area in the S 521 

region. Our main result indicates a common terrestrial biogenic sink of CO2 and COS and 522 

biogenic source of CO in summer spread mostly evenly throughout the eastern US, driven by 523 

uptake of CO2 and COS by vegetation, and emission of biogenic VOCs, through stomatal 524 

conductance. In general, the magnitude, timing, and regional dependence of the summer CO2 525 

sink is well estimated by a CMS-Flux inversion system constrained by OCO-2 observed column 526 

CO2, and represents a significant improvement over model-based estimates (based on increase in 527 

mean seasonal regression with observed values from 0.43 to 0.73).  528 

We provide evidence that the magnitude of the terrestrial CO2 sink, however, is underestimated 529 

by prior and satellite constrained models in the temperate humid forests in the southeast US. In 530 

particular, strong depletion of ∆CO2 and ∆COS and enrichment of ∆CO is observed in flask data 531 
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from August 27-28, 2016 in the southern US. The resulting significant negative regression 532 

between ∆COS and ∆CO is underestimated by predicted signals, and requires a factor of two or 533 

more larger biogenic uptake than is estimated by CO2 and COS inversion models. 534 

Our main results are broadly consistent with findings from a similar study led by Hilton et al 535 

(2017), who benchmarked land surface estimates of COS uptake against airborne COS profiles, 536 

and found models with strong crop driven GPP uptake in the Midwest to be the most consistent 537 

with observations. However, we argue that this finding must be reframed in the context of 538 

unprecedented sampling of the southern US offered by ACT-America, and in particular the 539 

meteorological conditions during the two days from August 27-28, 2016 with surface influences 540 

originating in the southeast US, which otherwise have negligible influence on the findings here 541 

or in Hilton et al (2017). As such, regionally focused ACT-America flights suggest that GPP 542 

activity is driving summer CO2 sinks throughout the eastern US, with the strongest sinks in the 543 

Midwest and Northeast regions, and stronger than expected sinks in the Southeast. 544 

This also highlights a potential limitation in using spaceborne SIF to constrain GPP and COS 545 

together. While our SIF constrained COS models (GIM and OCO-2 SIF) capture the basic 546 

structure of the annual cycle, they do not capture the depth of growing season COS depletion in 547 

the Northeast and Southern regions with as much fidelity as in the Midwest. SIF provides a well-548 

known indicator for GPP in crop regions which are typically irrigated and not subject to water 549 

stress, and can continue to photosynthesis in high light / high temperature conditions conducive 550 

to both increased SIF and stomatal conductance. As such, one possible implication is that SIF 551 

does not provide as accurate a measure of COS and/or GPP in the late growing season in 552 

temperate evergreen and deciduous forests in the South and Northeast, respectively, due to 553 

increased dissipation of light through other pathways such as sustained nonphotochemical 554 

quenching (e.g., Raczka et al 2019). 555 

All three regions show observed net depletion of ∆COS and enrichment of ∆CO2 and ∆CO in 556 

Fall 2017, significantly so in the Northeast, which points to a GPP sink of COS and CO2 in the 557 

fall but of insufficient magnitude to offset soil respiration and fossil fuel emissions (Baier et al., 558 

2020). Moreover, all models underestimate fall ∆COS depletion, and underestimate ∆CO2 and 559 

∆CO enrichment. While underestimated plant GPP uptake represents a common model culprit in 560 

the summer, it is unlikely to explain the divergent patterns of ∆COS and ∆CO2 in fall, the latter 561 
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of which would require larger compensating low biases in respiration and/or fossil emissions. 562 

We do note, however, systematic model underestimates of ∆CO2 enrichment in winter and 563 

spring, when soils and plants are less active, suggesting that CO2 respiration sources are 564 

underestimated. This points to the possibility of fossil emissions as the additional fall CO2 565 

source, and soils as a missing fall COS sink.  566 

While seasonal tracer behavior follows expected patterns from seasonally variable biogenic 567 

sources, it also reflects year to year variability in weather, upstream surface influence, and 568 

climate. Our findings are based on the reconstructed seasonal cycle derived from five 6-week 569 

snapshots (winter, spring, early summer, late summer, fall) over a period of four years. We 570 

caution the reader about over-interpretation of our seasonal cycle as climatologically persistent 571 

features. Interannual variability in climate drivers, ecosystem response, emissions change, flask 572 

sampling frequency and location, atmospheric winds, background variability, and upstream 573 

surface influences can have strong impacts on observed variability within a given year, season, 574 

and weather system. For example, we note a factor of 3 fewer samples in the Northeast region in 575 

summer 2016 vs summer 2019, different surface influence regions between each campaign, 576 

extreme flooding in Louisiana in summer 2016 followed by a drought pattern in the south in 577 

2016, which likely increased water limitation in plants in late summer, and extreme flooding in 578 

the Midwest in summer 2019 which delaying planting of crops (Yin et al., 2020). We also note 579 

that our background calculation, derived from limited data in the free troposphere, is subject to 580 

uncertainty especially in cases when BL and FT air do not share the same air mass. Except for 581 

the two days from August 27-28, 2016, the South region is influenced almost entirely by 582 

offshore background flow from the Gulf of Mexico. While unlikely, it is possible that conditions 583 

exist for which ∆CO2 depletion is stronger in the South than in the Northeast, for example under 584 

a stably stratified atmosphere and more direct influence from the southeast US. While continuous 585 

observations of COS are a challenge, there exists a wealth of continuous in situ CO2 data from 586 

ACT-America and surface towers in the Southeast (in Alabama and Mississippi) over the same 587 

period as the flask samples analyzed here (Miles et al., 2018). We recommend future efforts 588 

leveraging these data for more targeted study of surface influences from this critical region than 589 

is possible from our airborne based flask analysis.  590 

Finally, while our predicted signals show high fidelity in capturing observed patterns of 591 

variability, we note several key model limitations. Satellite CO2 and CO inversions are 592 
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constrained by column integrated observations, which are subject to spatially coherent and 593 

poorly constrained biases, and strongly dependent on transport models, which are subject to 594 

horizontal and vertical transport uncertainty (Parazoo et al., 2012; Schuh et al., 2020). Posterior 595 

fluxes are spatially coarse, ranging from 2 x 2.5 in the CO inversion model and 4 x 5 in CO2 596 

inversion model, making it difficult to separate anthropogenic emissions from biogenic fluxes in 597 

dense urban regions such as the Northeast, or separate land from ocean along the Gulf Coast. 598 

Future efforts should examine CT2019 North America 1 x 1 posterior fluxes for more detailed 599 

assessment of seasonal CO2 uptake in the South region. We also note that top-down inversion 600 

estimates are derived as monthly means, and then temporally downscaled to daily resolution 601 

using solar radiation, and thus do not capture the true day-to-day variability as seen in the flask 602 

data. Additionally, our SIF-based estimates (GOPT) assume a linear relationship between SIF 603 

and GPP, and furthermore derive the relationship to COS using a linear model derived from SiB4 604 

output. These estimates provide a realistic first guess, but more sophisticated SIF models 605 

accounting for non-photochemical quenching (e.g., Parazoo et al., 2020) are needed for accurate 606 

predictions of COS and GPP from observed SIF.  607 

5. Conclusions 608 

ACT-America airborne campaigns acquired vertically-resolved observations of biologically 609 

sensitive carbon species including CO2, COS, and CO in flask samples, providing unprecedented 610 

insight into the seasonal and spatial distribution of carbon sinks across diverse bioclimatic 611 

regions in the eastern US. Our model-observation tracer-tracer analysis of boundary layer flask 612 

enhancements supports previous findings that biogenic CO2 drawdown, and subsequent timing 613 

and magnitude of ∆CO2 depletion, is spatially variable across the eastern US. Crops in the upper 614 

Midwest drive strong ∆CO2 and ∆COS depletion from early to late summer. Temperate forest in 615 

the Northeast drive strong ∆CO2 and ∆COS depletion in late summer. The unprecedented ACT-616 

America flask samples uncovered evidence that humid temperate forests in the poorly 617 

constrained South continue to photosynthesize and absorb CO2 and COS (and emit CO through 618 

biogenic VOC precursor emissions) deeper into the growing season than expected by model 619 

priors and posteriors. However, additional sampling in the South is needed to conclusively 620 

constrain the carbon dynamics of this under-sampled region. Predicted atmospheric signals based 621 

on satellite constrained inversion fluxes reproduce much of the observed seasonal and regional 622 
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variability, as well as variability across tracers, and indicate a stronger than expected sink of CO2 623 

in humid temperate forests in the southeast. Ongoing analysis of ACT-America data with respect 624 

to independent satellite-constrained fluxes is needed to understand the impact of confounding 625 

sources of variability in temporally sparse airborne acquisitions (e.g., interannual variability in 626 

climate, transport, surface influence, and background flow), and refine missing carbon source 627 

and sink processes.  628 

6. Data Availability 629 

ACT-America flask observations for all 5 airborne campaigns from 2016-2019 are archived at 630 

ORNL (https://doi.org/10.3334/ORNLDAAC/1593). Prior and posterior surface fluxes for CO2 631 

(NBE) are available at https://cmsflux.jpl.nasa.gov/get-data/nbe-2020. COS fluxes derived using 632 

the GIM model are available as monthly average values from 2008-2012 at 633 

https://zenodo.org/record/4304602#.X8kSj6pKjIE. HYSPLIT footprints used in the calculation 634 

of predicted atmospheric tracer signals are currently available at 635 

ftp://aftp.cmdl.noaa.gov/pub/baier/, but will move to 636 

ftp://aftp.cmdl.noaa.gov/products/carbontracker/lagrange/footprints/ACT/ during the review 637 

process. Other surface fluxes including prior and posterior CO, and COS derived from the GOPT 638 

method will be made available at https://cmsflux.jpl.nasa.gov/. Other datasets including COS 639 

from SiB4, and assimilated atmospheric COS concentrations from the COS-OCS model (see 640 

Supplemental) are currently available upon request, and will be archived during the review 641 

process.  642 

7. Acknowledgements 643 

The Atmospheric Carbon and Transport (ACT) - America project is a NASA Earth Venture 644 

Suborbital 2 project funded by NASA’s Earth Science Division.  Penn State investigators were 645 

supported by NASA Grant NNX15AG76G.  Bianca Baier acknowledges CIRES ACT grant 646 

number NNX15AJ06G. We acknowledge Arlyn Andrews and Kirk Thoning for provision of 647 

gridded HYSPLIT footprints in netCDF format, NOAA/GML laboratory personnel who have 648 

conducted measurements of CO2/CO/COS in flasks for ACT flasks and network sites, and 649 

especially Ben Miller for making COS measurements during ACT-America and conducting the 650 

QA/QC on the contaminated flask samples. Maarten Krol is supported by funding from the 651 

European Research Council (ERC) under the European Union’s Horizon 2020 research and 652 

https://urldefense.us/v3/__https:/doi.org/10.3334/ORNLDAAC/1593__;!!PvBDto6Hs4WbVuu7!ebE6Zvqkwx2nfOOx9lht3m2kvGSh-JcpiAl8iT3GlY_9dxEzzy5Uwy1GPzAKTyDhW69ZCeHGVk0N$
https://cmsflux.jpl.nasa.gov/get-data/nbe-2020
https://urldefense.us/v3/__https:/zenodo.org/record/4304602*.X8kSj6pKjIE__;Iw!!PvBDto6Hs4WbVuu7!bfaLfIFuPP493BAaIc9h4a-Li-zjjl77h4TpvCr6Y7VWSImQJWGblLVSWpzIMwuZo7d_VenKnkPT$
ftp://aftp.cmdl.noaa.gov/pub/baier/
ftp://aftp.cmdl.noaa.gov/products/carbontracker/lagrange/footprints/ACT/
https://cmsflux.jpl.nasa.gov/


 23 

innovation program under grant agreement No 742798 (http://cos-ocs.eu). This research was 653 

carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract 654 

with the National Aeronautics and Space Administration (NASA).  655 

 656 

8. References 657 

Armitage AR, Highfield WE, Brody SD, Louchouarn P (2015) The Contribution of Mangrove 658 

Expansion to Salt Marsh Loss on the Texas Gulf Coast. PLoS ONE 10(5): e0125404. 659 

https://doi.org/10.1371/journal.pone.0125404 660 

Arneth, A., Sitch, S., Pongratz, J., Stocker, B. D., Ciais, P., Poulter, B., … Zaehle, S. (2017). 661 

Historical carbon dioxide emissions caused by land-use changes are possibly larger than 662 

assumed. Nature Geoscience, 10(2), 79–84. https://doi.org/10.1038/ngeo2882 663 

Baier, B. C., Sweeney, C., Choi, Y., Davis, K. J., DiGangi, J. P., Feng, S., et al. (2020). 664 

Multispecies assessment of factors influencing regional CO2 and CH4 enhancements during the 665 

winter 2017 ACT-America campaign. Journal of Geophysical Research: Atmospheres, 125, 666 

e2019JD031339. https://doi.org/10.1029/2019JD031339   667 

Baker, I., A. S. Denning, N. Hanan, L. Prihodko, M. Uliasz, P. L. Vidale, K. Davis, and P. 668 

Bakwin (2003), Simulated and observed fluxes of sensible and latent heat and CO2 at the 669 

WLEF-TV tower using SiB2.5, Global Change Biol., 9(9), 1262–1277. 670 

Berry, J., Wolf, A., Campbell, J.E., Baker, I., Blake, N., Blake, D., Denning, A.S., Kawa, S.R., 671 

Montzka, S.A., Seibt, U. and Stimler, K., 2013. A coupled model of the global cycles of carbonyl 672 

sulfide and CO2: A possible new window on the carbon cycle. Journal of Geophysical Research: 673 

Biogeosciences, 118(2), pp.842-852. 674 

Bloom, A. A., Exbrayat, J.-F., van der Velde, I. R., Feng, L., & Williams, M. (2016). The 675 

decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, 676 

pools, and residence times. Proceedings of the National Academy of Sciences, 113(5), 1285–677 

1290. https://doi.org/10.1073/pnas.1515160113 678 

Bloom, A. A., K. W. Bowman, J. Liu, A. G. Konings, J. R. Worden, N. C. Parazoo et al, Lagged 679 

effects dominate the inter-annua variability of the 2010-2015 tropical carbon balance, 680 

Biogeosciences., https://doi.org/10.5194/bg-2019-459, in review, 2020.  681 

Bowman, K. W., Liu, J., Bloom, A. A., Parazoo, N. C., Lee, M., Jiang, Z., … Wunch, D. (2017). 682 

Global and Brazilian Carbon Response to El Niño Modoki 2011–2010. Earth and Space Science, 683 

4(10). https://doi.org/10.1002/2016EA000204 684 

Brix, H., Menemenlis, D., Hill, C., Dutkiewicz, S., Jahn, O., Wang, D., … Zhang, H. (2015). 685 

Using Green’s Functions to initialize and adjust a global, eddying ocean biogeochemistry general 686 

circulation model. Ocean Modelling, 95, 1–14. https://doi.org/10.1016/j.ocemod.2015.07.008 687 

Byrne, B., Liu, J., Lee, M., Baker, I., Bowman, K. W., Deutscher, N. M., … Wunch, D. (2020a). 688 

Improved Constraints on Northern Extratropical CO2 Fluxes Obtained by Combining Surface-689 

Based and Space-Based Atmospheric CO2 Measurements. Journal of Geophysical Research: 690 

Atmospheres, 125(15). https://doi.org/10.1029/2019JD032029 691 

https://doi.org/10.5194/bg-2019-459
https://doi.org/10.1016/j.ocemod.2015.07.008
https://doi.org/10.1029/2019JD032029


 24 

Byrne, B., Liu, J., Bloom, A. A., Bowman, K. W., Butterfield, Z., Joiner, J., … Yin, Y. (2020b). 692 

Contrasting regional carbon cycle responses to seasonal climate anomalies across the east‐west 693 

divide of temperate North America. Global Biogeochemical Cycles. 694 

https://doi.org/10.1029/2020gb006598 695 

Campbell, J.E., Carmichael, G.R., Chai, T., Mena-Carrasco, M., Tang, Y., Blake, D.R., Blake, 696 

N.J., Vay, S.A., Collatz, G.J., Baker, I. and Berry, J.A., 2008. Photosynthetic control of 697 

atmospheric carbonyl sulfide during the growing season. Science, 322(5904), pp.1085-1088. 698 

Carroll, D., Menemenlis, D., Adkins, J.F., Bowman, K.W., Brix, H., Dutkiewicz, S., Fenty, I., 699 

Gierach, M.M., Hill, C., Jahn, O. and Landschützer, P., 2020. The ECCO‐Darwin data‐700 

assimilative global ocean biogeochemistry model: Estimates of seasonal to multidecadal surface 701 

ocean pCO2 and air‐sea CO2 flux. Journal of Advances in Modeling Earth Systems, 12(10), 702 

p.e2019MS001888. 703 

Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface– Hydrology Model with the Penn 704 

State–NCAR MM5 Model- ing System. Part I: Model Implementation and Sensitivity, Mon. 705 

Weather Rev., 129, 569–585, 2001.  706 

Corbin, K. D., A. S. Denning, E. Y. Lokupitiya, A.E. Schuh, K. J. Davis, N. Miles, S. 707 

Richardson, and I. T. Baker, 2010:  Assessing the Impact of Crops on Regional CO2 Fluxes and 708 

Atmospheric Concentrations.  Tellus, 62B, 521-532. 709 

Davis, K.J., M.D. Obland, B. Lin, T. Lauvaux, C. O'Dell, B. Meadows, E.V. Browell, J.P. 710 

DiGangi, C. Sweeney, M.J. McGill, J.D. Barrick, A.R. Nehrir, M.M. Yang, J.R. Bennett, B.C. 711 

Baier, A. Roiger, S. Pal, T. Gerken, A. Fried, S. Feng, R. Shrestha, M.A. Shook, G. Chen, L.J. 712 

Campbell, Z.R. Barkley, and R.M. Pauly. 2018. ACT-America: L3 Merged In Situ Atmospheric 713 

Trace Gases and Flask Data, Eastern USA. ORNL DAAC, Oak Ridge, Tennessee, 714 

USA. https://doi.org/10.3334/ORNLDAAC/1593 715 

Davis, K.J., E.V. Browell, S. Feng, T. Lauvaux, M. Obland, S. Pal, B. Baier, D.F. Baker, I. 716 

Baker, Z.R. Barkley, K. Bowman, A.S. Denning, J.P. Digangi, J. Dobler, A. Fried, T. Gerken, K. 717 

Keller, B. Lin, A. Nehrir, C. O’Dell, L. Ott, A. Roiger, A. Schuh, Y. Wei, B. Weir, C. Williams, 718 

and M. Xue. Design and Implementation of the Atmospheric Carbon and Transport (ACT) – 719 

America Earth Venture Suborbital Mission, submitted to Earth and Space Sciences.  720 

Draxler, R.R. and Hess, G.D., 1997. Description of the HYSPLIT4 modeling system. 721 

Feng, S., T. Lauvaux, K. Klaus, K. Davis, P. Rayner, T. Oda, K. Gurney, 2019: A road map for 722 

improving the treatment of uncertainties in high-resolution regional carbon flux estimates. 723 

Geophys. Res. Lett., 46. https://doi.org/10.1029/2019GL082987 724 

Feng, S., T. Lauvaux, K. Davis, K. Keller, Y. Zhou, C. Willimans, A. Schuh, J. Liu, I. Baker. 725 

Seasonal characteristics of model uncertainties from biogenic fluxes, transport, and large-scale 726 

boundary inflow in atmospheric CO2 simulations over North America, 2019. Journal of 727 

Geophysical Research: Atmospheres,124, 14,325–14,346, 728 

https://doi.org/10.1029/2019JD031165 729 

Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S., Lee, J., … Kuze, A. 730 

(2011). New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant 731 

fluorescence with gross primary productivity. Geophysical Research Letters, 38(17). 732 

https://doi.org/10.1029/2020gb006598
https://urldefense.us/v3/__https:/doi.org/10.3334/ORNLDAAC/1593__;!!PvBDto6Hs4WbVuu7!ebE6Zvqkwx2nfOOx9lht3m2kvGSh-JcpiAl8iT3GlY_9dxEzzy5Uwy1GPzAKTyDhW69ZCeHGVk0N$
https://doi.org/10.1029/2019GL082987
https://doi.org/10.1029/2019JD031165


 25 

Gourdji, S.M., Mueller, K.L., Schaefer, K. and Michalak, A.M. 2008. Global monthly averaged 733 

CO2 fluxes recovered using a geostatistical inverse modeling approach: 2. Results including 734 

auxiliary environmental data. Journal of Geophysical Research 113(D21). 735 

Gourdji, S.M., Mueller, K.L., Yadav, V., et al. 2012. North American CO2 exchange: inter-736 

comparison of modeled estimates with results from a fine-scale atmospheric inversion. 737 

Biogeosciences 9(1), pp. 457–475. 738 

Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A., … Griffis, T. J. (2014). 739 

Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. 740 

Proceedings of the National Academy of Sciences, 111(14), E1327–E1333. 741 

https://doi.org/10.1073/pnas.1320008111 742 

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of 743 

global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols 744 

from Nature), Atmos.  Chem. Phys., 6, 3181–3210, doi:10.5194/acp-6- 3181-2006, 2006. 745 

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and 746 

Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 747 

(MEGAN2.1): an extended and updated framework for modeling biogenic emissions Geosci. 748 

Model Dev., 5, 1471-1492, 2012.  749 

Haynes, K.D., I.T. Baker, A.S. Denning, R. St ̈ockli, K. Schaefer, E.Y. Lokupitiya, J.M. Haynes 750 

(2019). Representing ecosystems using dynamic prognostic phenology based on biological 751 

growth stages: Part 1. Implementation in the Simple Biosphere Model (SiB4). Accepted for 752 

Pulication in J. Adv. Mod. Earth Sy.  753 

Haynes, K.D., I.T. Baker, A.S. Denning, S. Wolf, G. Wohlfahrt, G. Kiely, R.C. Minaya (2019). 754 

Representing ecosystems using dynamic prognostic phenology based on biological growth 755 

stages: Part 2. Grassland carbon cycling. Accepted for Pulication in J. Adv. Mod. Earth Sy.  756 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., et al. (2020). 757 

The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 758 

1999–2049. https://doi.org/10.1002/qj.3803 759 

Hilton, T. W., Whelan, M. E., Zumkehr, A., Kulkarni, S., Berry, J. A., Baker, I. T., … Elliott 760 

Campbell, J. (2017). Peak growing season gross uptake of carbon in North America is largest in 761 

the Midwest USA. Nature Climate Change, 7(6), 450–454. https://doi.org/10.1038/nclimate3272 762 

Hilton, T. W. (2018). Photosynthesis in high definition. Nature Climate Change, 8(1), 20–21. 763 

https://doi.org/10.1038/s41558-017-0040-6 764 

Hudman, R. C., Murray, L. T., Jacob, D. J., Millet, D. B., Turquety, S., Wu, S., … Sachse, G. W. 765 

(2008). Biogenic versus anthropogenic sources of CO in the United States. Geophysical 766 

Research Letters, 35(4), 1–5. https://doi.org/10.1029/2007GL032393 767 

Jiang, Z., Jones, D. B. A., Kopacz, M., Liu, J., Henze, D. K., & Heald, C. (2011). Quantifying 768 

the impact of model errors on top-down estimates of carbon monoxide emissions using satellite 769 

observations. Journal of Geophysical Research, 116, D15306. 770 

https://doi.org/10.1029/2010JD015282 771 

Jiang, Z., Jones, D. B. A., Worden, H. M., Deeter, M. N., Henze, D. K., Worden, J., … Schuck, 772 

T. J. (2013). Impact of model errors in convective transport on CO source estimates inferred 773 

https://doi.org/10.1002/qj.3803
https://doi.org/10.1029/2007GL032393
https://doi.org/10.1029/2010JD015282


 26 

from MOPITT CO retrievals. Journal of Geophysical Research: Atmospheres, 118, 2073–2083. 774 

https://doi.org/10.1002/jgrd.50216 775 

Jiang, Z., Worden, J. R., Jones, D. B. A., Lin, J. T., Verstraeten, W. W., & Henze, D. K. (2015). 776 

Constraints on Asian ozone using Aura TES, OMI and Terra MOPITT. Atmospheric Chemistry 777 

and Physics, 15(1), 99–112. https://doi.org/10.5194/acp-15-99-2015 778 

Joiner, J., Guanter, L., Lindstrot, R., et al. 2013. Global monitoring of terrestrial chlorophyll 779 

fluorescence from moderate-spectral-resolution near-infrared satellite measurements: 780 

methodology, simulations, and application to GOME-2. Atmospheric measurement techniques 781 

6(10), pp. 2803–2823. 782 

Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., … 783 

Williams, C. (2011). Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, 784 

and sensible heat derived from eddy covariance, satellite, and meteorological observations. 785 

Journal of Geophysical Research: Biogeosciences, 116(3), 1–16. 786 

https://doi.org/10.1029/2010JG001566 787 

Kettle, A. J., Kuhn, U., von Hobe, M., Kesselmeier, J. & Andreae, M. O. Global budget of 788 

atmospheric carbonyl sulfide: temporal and spatial variations of the dominant sources and sinks. 789 

J. Geophys. Res. 107, (2002).  790 

Kopacz, M., Jacob, D. J., Henze, D. K., Heald, C. L., Streets, D. G., & Zhang, Q. (2009). 791 

Comparison of adjoint and analytical Bayesian inversion methods for constraining Asian sources 792 

of carbon monoxide using satellite (MOPITT) measurements of CO columns. Journal of 793 

Geophysical Research, 114, D04305. https://doi.org/10.1029/2007JD009264 794 

Kopacz, M. et al. Global estimates of CO sources with high resolution by adjoint inversion of 795 

multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES). Atmos. Chem. Phys. 10, 855–796 

876 (2010).  797 

Kuhns, H., Green, M., and Etyemezian, V.: Big Bend Regional Aerosol and Visibility 798 

Observational (BRAVO) Study Emissions Inventory, Report prepared for BRAVO Steering 799 

Committee, Desert Research Institute, Las Vegas, Nevada, 2003. 800 

Liu, J., Bowman, K., Lee, M., Henze, D., Bousserez, N., Brix, H., … Nassar, R. (2014). Carbon 801 

monitoring system flux estimation and attribution: impact of ACOS-GOSAT XCO2 sampling on 802 

the inference of terrestrial biospheric sources and sinks. Tellus B, 66, 22486. 803 

https://doi.org/10.3402/tellusb.v66.22486 804 

Liu, J., & Wennberg, P. O. (2020a). Observational Constraints on the Response of High ‐ 805 

Latitude Northern Forests to Warming. 806 

Liu, J., Baskaran, L., Bowman, K., Schimel, D., Bloom, A.A., Parazoo, N.C., Oda, T., Carroll, 807 

D., Menemenlis, D., Joiner, J. and Commane, R., 2020b. Carbon Monitoring System Flux Net 808 

Biosphere Exchange 2020 (CMS-Flux NBE 2020). Earth System Science Data Discussions, 809 

pp.1-53. 810 

Lokupitiya E., S. Denning, K. Paustian, I. Baker, K. Schaefer, S. Verma, T. Meyers, C.J. 811 

Bernacchi, A. Suyker, M. Fischer (2009).  Incorporation of Crop Phenology in Simple Biosphere 812 

Model (SiBcrop) to Improve Land-Atmosphere Carbon Exchanges from Croplands.  Biogeosci., 813 

6, 969-986 814 

https://doi.org/10.1029/2007JD009264
https://doi.org/10.3402/tellusb.v66.22486


 27 

Madani, N., N. C. Parazoo, J. S. Kimball, A. P. Ballantyne, S. Saatchi, P. I. Palmer, Z. Liu, T. 815 

Tagesson, A. Bloom, Amplified global gross primary productivity due to temperature increase is 816 

offset by reduced productivity due to water constraint, AGU Advances, In Press 817 

Michalak, A.M. 2004. A geostatistical approach to surface flux estimation of atmospheric trace 818 

gases. Journal of Geophysical Research 109(D14). 819 

Miles, N. L., S. J. Richardson, K. J. Davis, T. Lauvaux, A. E. Andrews, T. O. West, V. Bandaru, 820 

and E. R. Crosson, 2012. Large amplitude spatial and temporal gradients in atmospheric 821 

boundary layer CO2 mole fractions detected with a tower-based network in the U.S. upper 822 

Midwest, J. Geophys. Res., 117, G01019, doi:10.1029/2011JG001781. 823 

Miles, N.L., S.J. Richardson, D.K. Martins, K.J. Davis, T. Lauvaux, B.J. Haupt, and S.K. Miller. 824 

2018. ACT-America: L2 In Situ CO2, CO, and CH4 Concentrations from Towers, Eastern USA. 825 

ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1568 826 

Nakanishi, M. and Niino, H.: An improved Mellor-Yamada Level-3 model with condensation 827 

physics: Its design and verification, Bound.-Lay. Meteorol., 112, 1–31, 828 

https://doi.org/10.1023/B:BOUN.0000020164.04146.98, 2004.  829 

Nehrkorn, T., Eluszkiewicz, J., Wofsy, S.C., et al. 2010. Coupled weather research and 830 

forecasting–stochastic time-inverted lagrangian transport (WRF–STILT) model. Meteorology 831 

and Atmospheric Physics 107(1–2), pp. 51–64. 832 

Oda, T., Maksyutov, S. and Andres, R.J., 2018. The Open-source Data Inventory for 833 

Anthropogenic Carbon dioxide (CO2), version 2016 (ODIAC2016): A global, monthly fossil-834 

fuel CO2 gridded emission data product for tracer transport simulations and surface flux 835 

inversions. Earth system science data, 10(1), p.87. 836 

Olivier, J. G. J. and Berdowski, J. J. M.: Global emissions sources and sinks, in: The Climate 837 

System, edited by: Berdowski, J., Guicherit, R., and Heij, B. J., A. A. Balkema Publishers/Swets 838 

& Zeitlinger Publishers, Lisse, the Netherlands, 33–78, 2001. 839 

Olsen, S. C., & Randerson, J. T. (2004). Differences between surface and column atmospheric 840 

CO2 and implications for carbon cycle research, Journal of Geophysical Research, 109, D02301. 841 

https://doi.org/10.1029/ 2003JD003968 842 

Parazoo, N. C., A. S. Denning, S. R. Kawa, S. Pawson, and R. Lokupitiya, 2012: CO2 flux 843 

estimation errors associated with moist atmospheric processes, Atmos. Chem. Phys., 12, 6405-844 

6416. 845 

Parazoo, N. C., Bowman, K., Fisher, J. B., Frankenberg, C., Jones, D. B. A., Cescatti, A., … 846 

Montagnani, L. (2014). Terrestrial gross primary production inferred from satellite fluorescence 847 

and vegetation models. Global Change Biology, 20(10). https://doi.org/10.1111/gcb.12652 848 

Parazoo, N. C., Commane, R., Wofsy, S. C., Koven, C. D., Sweeney, C., Lawrence, D. M., … 849 

Miller, C. E. (2016). Detecting regional patterns of changing CO2 flux in Alaska. Proceedings of 850 

the National Academy of Sciences of the United States of America, 113(28). 851 

https://doi.org/10.1073/pnas.1601085113 852 

Parazoo,
, 
N. C., T. Magney, I Baker, B Raczka, C Bacour, F Maignan, A Norton, Y Zhang, M 853 

Shi, N MacBean, D. R. Bowling, S. P. Burns, P. D. Blanken, J. Stutz, K Grossman, C 854 

Frankenberg, 2020: Wide Discrepancies in the Magnitude and Direction of Modelled SIF in 855 

https://doi.org/10.1073/pnas.1601085113


 28 

Response to Light Conditions, Biogeosciences, 17 (13), 3733-3755, https://doi.org/10.5194/bg-856 

17-3733-2020. 857 

Parrington, M., Jones, D. B. A., Bowman, K. W., Horowitz, L. W., Thompson, A. M., Tarasick, 858 

D. W., & Witte, J. C. (2008). Estimating the summertime tropospheric ozone distribution over 859 

North America through assimilation of observations from the tropospheric emission 860 

spectrometer. Journal of Geophysical Research, 113, D18307. 861 

https://doi.org/10.1029/2007JD009341 862 

Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., … Tans, 863 

P. P. (2007). An atmospheric perspective on North American carbon dioxide exchange: 864 

CarbonTracker. Proceedings of the National Academy of Sciences of the United States of 865 

America, 104(48), 18925–18930. https://doi.org/10.1073/pnas.0708986104 866 

Raczka, B., Porcar-Castell, A., Magney, T., Lee, J. E., Köhler, P., Frankenberg, C., … Bowling, 867 

D. R. (2019). Sustained Nonphotochemical Quenching Shapes the Seasonal Pattern of Solar-868 

Induced Fluorescence at a High-Elevation Evergreen Forest. Journal of Geophysical Research: 869 

Biogeosciences, 124(7), 2005–2020. https://doi.org/10.1029/2018JG004883 870 

Schaefer K., T. Zhang, A.G. Slater, L. Lu, A. Etringer, I. Baker (2009).  Improving Simulated 871 

Soil Temperatures and Soil Freeze/Thaw at High-Latitude Regions in Simple Biosphere/ 872 

Carnegie-Ames-Stanford Approach Model.  J. Geophys. Res., 114 (F02021), 873 

doi:10.1029/2008JF001125. 874 

Schaefer K., G.J. Collatz, P. Tans, A.S. Denning, I. Baker, J. Berry, L. Prihodko, N. Suits, A. 875 

Philpott (2008).  Combined Simple Biosphere/Carnegie-Ames-Stanford Approach Terrestrial 876 

Carbon Cycle Model.  J. Geophys. Res., 113 (G03034), doi:10.1029/2007JG000603. 877 

Schuh, Andrew E., Thomas Lauvaux, Tris West, A. Scott Denning, Kenneth J. Davis, Natasha 878 

Miles, Scott Richardson, Marek Uliasz, Erandathie Lokupitiya, Daniel Cooley, Arlyn Andrews, 879 

and Stephen Ogle, 2013. Evaluating atmospheric CO2 inversions at multiple scales over a highly-880 

inventoried agricultural landscape. Global Change Biology. 9, 1424-1439, doi: 881 

10.1111/gcb.12141 882 

Schuh, A.E., Jacobson, A.R., Basu, S., Weir, B., Baker, D., Bowman, K., Chevallier, F., Crowell, 883 

S., Davis, K.J., Deng, F. and Denning, S., 2019. Quantifying the impact of atmospheric transport 884 

uncertainty on CO2 surface flux estimates. Global biogeochemical cycles, 33(4), pp.484-500. 885 

Schimel, D., Stephens, B. B., & Fisher, J. B. (2015). Effect of increasing CO 2 on the terrestrial 886 

carbon cycle. Proceedings of the National Academy of Sciences, 112(2), 436–441. 887 

https://doi.org/10.1073/pnas.1407302112 888 

Shiga, Y.P., Tadić, J.M., Qiu, X., Yadav, V., Andrews, A.E., Berry, J.A. and Michalak, A.M., 889 

2018. Atmospheric CO2 observations reveal strong correlation between regional net biospheric 890 

carbon uptake and solar‐induced chlorophyll fluorescence. Geophysical Research Letters, 45(2), 891 

pp.1122-1132. 892 

Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., … 893 

Myneni, R. (2015). Recent trends and drivers of regional sources and sinks of carbon dioxide. 894 

Biogeosciences, 12(3), 653–679. https://doi.org/10.5194/bg-12-653-2015 895 

https://doi.org/10.5194/bg-17-3733-2020
https://doi.org/10.5194/bg-17-3733-2020
https://doi.org/10.1029/2007JD009341
https://doi.org/10.1073/pnas.1407302112


 29 

Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J., Cohen, M.D. and Ngan, F., 2015. 896 

NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the 897 

American Meteorological Society, 96(12), pp.2059-2077. 898 

Stephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Peters, W., Bruhwiler, L., … Denning, 899 

A. S. (2007). Weak northern and strong tropical land carbon uptake from vertical profiles of 900 

atmospheric CO2. Science, 316(5832), 1732–1735. https://doi.org/10.1126/science.1137004 901 

Stinecipher, J.R., Cameron‐Smith, P.J., Blake, N.J., et al. 2019. Biomass burning unlikely to 902 

account for missing source of carbonyl sulfide. Geophysical Research Letters 46(24), pp. 14912–903 

14920. 904 

Stöckli, R. and Vidale, P.L., 2005. Modeling diurnal to seasonal water and heat exchanges at 905 

European Fluxnet sites. Theoretical and applied climatology, 80(2-4), pp.229-243. 906 

Stöckli, R., D. M. Lawrence, G.-Y. Niu, K. W. Oleson, P. E. Thornton, Z. L. Yang, G. B. Bonan, 907 

S. Denning, and S. W. Running (2008a), Use of FLUXNET in the Community Land Model 908 

development, J. Geophys. Res., 113(G1), doi:10.1029/2007JG000562. 909 

Stöckli, R., T. Rutishauser, D. Dragoni, J. O'Keefe, P. E. Thornton, M. Jolly, L. Lu, and S. 910 

Denning (2008b), Remote sensing data assimilation for a prognostic phenology model, J. 911 

Geophys. Res., 113(G4), G04021, doi:10.1029/2008JG000781. 912 

Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J.A., Andrews, A.E., 913 

Lang, P.M., Neff, D., Dlugokencky, E. and Miller, J.B., 2015. Seasonal climatology of CO2 914 

across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas 915 

Reference Network. Journal of Geophysical Research: Atmospheres, 120(10), pp.5155-5190 916 

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., 917 

Morton, D. C., DeFries, R. S., Jin,Y., and van Leeuwen, T. T.: Global fire emissions and the 918 

contribution of deforestation, savanna, forest, agricultural, and peat fires (1997– 2009), Atmos. 919 

Chem. Phys., 10, 11707–11735, doi:10.5194/acp- 10-11707-2010, 2010. 920 

van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. 921 

Data 9, 697-720 (2017). 922 

Wei, Y., R. Shrestha, S. Pal, T. Gerken, J. McNelis, D. Singh, M.M. Thornton, A.G. Boyer, 923 

M.A. Shook, G.Chen, B.C. Baier, Z.R. Barkley, J.D. Barrick, J.R. Bennett, E.V. Browell, J.F. 924 

Campbell, L.J. Campbell, Y. Choi, J. Collins, J. Dobler, M. Eckl, S. Feng, A. Fiehn, A. Fried, 925 

J.P. Digangi, R. Barton-Grimley, H. Halliday, T. Klausner, S. Kooi, J. Kostinek, T. Lauvaux, B. 926 

Lin, M. McGill, B. Meadows, N.L. Miles, A.R. Nehrir, J.B. Nowak, M. Obland, C. O’Dell, 927 

R.M.P. Fao, S.J. Richardson, D. Richter, A. Roiger, C. Sweeney, J. Walega, P. Weibring, C.A. 928 

Williams, M.M. Yang, Y. Zhou, & K.J. Davis. The Atmospheric Carbon and Transport (ACT) – 929 

America Datasets: Description, Management, and Delivery. submitted to Earth and Space 930 

Sciences. 931 

Whelan, M.E., Hilton, T.W., Berry, J.A., Berkelhammer, M., Desai, A.R. and Campbell, J.E. 932 

2016. Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake. 933 

Atmospheric Chemistry and Physics 16(6), pp. 3711–3726. 934 

Whelan, M. E., Anderegg, L. D. L., Badgley, G., Campbell, J. E., Commane, R., Frankenberg, 935 

C., … Worden, J. (2020). Scientific Communities Striving for a Common Cause: Innovations in 936 



 30 

Carbon Cycle Science. Bulletin of the American Meteorological Society, 101(9), E1537–E1543. 937 

https://doi.org/10.1175/bams-d-19-0306.1 938 

Worden, H. M., Bloom, A. A., Worden, J. R., Jiang, Z., Marais, E. A., Stavrakou, T., Gaubert, 939 

B., and Lacey, F.: New constraints on biogenic emissions using satellite-based estimates of 940 

carbon monoxide fluxes, Atmos. Chem. Phys., 19, 13569–13579, https://doi.org/10.5194/acp-19-941 

13569-2019, 2019. 942 

Yin, Y., Byrne, B., Liu, J., Wennberg, P., Davis, K. J., Magney, T., et al. (2020). Cropland 943 

carbon uptake delayed and reduced by 2019 Midwest floods. AGU Advances, 1, 944 

e2019AV000140. https://doi.org/10.1029/2019AV000140 945 

Zumkehr, A., Hilton, T.W., Whelan, M., et al. 2018. Global gridded anthropogenic emissions 946 

inventory of carbonyl sulfide. Atmospheric environment 183, pp. 11–19. 947 

 948 

  949 

https://doi.org/10.1029/2019AV000140


 31 

Figure Captions  950 

Figure 1. Total remaining Portable Flask Package (PFP) samples per campaign after screening 951 

for fair weather days and overlapping high quality CO2, COS, and CO data. Samples are color 952 

coded by region (Red = Midwest (MW), Green = South (S), Blue = Northeast (NE)). Filled 953 

circles denote boundary layer samples (altitude < 2 km agl).  954 

Figure 2. Posterior surface fluxes of CO2, CO, and COS corresponding to the five ACT-America 955 

campaigns from 2016-2019. Flux maps are time-resolved (1-3 hour) but plotted here as the two-956 

month average over each campaign period in order of season and month(s) of year. Posterior 957 

fluxes are constrained by satellite observations using global top-down inversion methods for CO2 958 

and CO, and bottom-up geostatistical inversion methods for COS (GIM). Prior fluxes from 959 

which posterior fluxes are derived are not shown, but exhibit similar spatial patterns which are 960 

scaled up or down using inverse methods. Surface fluxes of COS derived using the SIB4 model 961 

and OCO-2 SIF constraints (GOPT) are not shown. Time resolved fluxes are then convolved 962 

with 10-day HYSPLIT footprints for each flask sample, which are shown in Figure 4.   963 

Figure 3. Same as Fig 2, but for plant component of total flux.   964 

Figure 4. Concentration footprints corresponding to boundary layer flask data collected during 965 

five ACT campaigns. Footprints are organized by campaign (columns, in order of season and 966 

month(s) of year) and flask sampling region (Northeast in top row; South in middle row; 967 

Midwest in bottom row).  Footprints for Footprints are derived for each flask sample using 968 

surface influence functions from the HYSPLIT langrangian back-trajectory model, and 969 

convolved with time resolved prior and posterior fluxes to determine predicted signals for 970 

comparison with observed signals. Footprints shown here represent a data-collection time 971 

average, with footprints from individual samples summed over the previous 10 days, and then 972 

averaged across all samples within each region for each campaign.  973 

Figure 5. Observed and satellite constrained (prior and posterior) seasonal tracer enhancement (∆ 974 

= FT – BL), separated by region (columns).  Observed enhancements as in Figure S3. Satellite 975 

constrained fluxes are convolved with WRF-STILT footprints to determine atmospheric 976 

concentrations at ACT flask samples. Prior fluxes are derived from a range of natural and 977 

anthropogenic model and inventory estimates (see main text). Posterior CO2 fluxes (top row) are 978 
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constrained by OCO-2 CO2. COS fluxes are derived from SiB4, the GIM geostatisical inversion, 979 

and OCO-2 SIF linear regression model. Posterior CO derived from MOPITT CO.  980 

Figure 6. Multi-tracer spatial regression. Each point represents the slope of the spatial regression 981 

between tracer enhancements across all boundary layer samples within a single season and 982 

region, including ∆CO2 and ∆CO (top row), ∆CO2 and ∆COS (middle row), and ∆COS and ∆CO 983 

(bottom row). Observed regressions are shown in black, simulated regressions in color, and 984 

regions are color coded. Markers represent points with statistically significant regressions (slope 985 

significantly different from zero, r
2
 > 0.25). Simulated regressions are based on prior (dotted) 986 

and posterior (dashed fluxes). Only results for SIB4 (dotted) and GIM (dashed) are shown for 987 

∆COS regressions. 988 

Figure 7. Surface flux drivers of observed tracer-tracer correlations in ACT-America South 989 

region in Summer 2016.  (A,E,I) Observed ∆CO and ∆COS mole fractions show distinct spatial 990 

gradients, with lower ∆CO / higher ∆COS to the southwest (Aug 24, 2016) and higher ∆CO / 991 

lower ∆COS to the northeast (Aug 27-28, 2016). (B-J) Observed and simulated tracer-tracer 992 

regression slopes for ∆COS-∆CO (top), ∆CO2-∆COS (middle), and ∆CO2-∆CO (bottom). (B,F,J) 993 

Observed regressions, (C,G,K) Posterior regressions, (D,H,L) Posterior regressions based on 994 

perturbed fluxes of ∆COS and ∆CO2, determined by multiplying biogenic flux components 995 

within the southern region (90°W-80°W, 28°N-36°N) by a factor of 2 (denoted by * in title).  996 
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Observed CO vs COS

slope = -1.67 +/- 0.29
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Posterior COS: Biogenic * 1

slope = -0.852 +/- 0.14

0 20 40 60 80
CO (ppb)

-120

-100

-80

-60

-40

-20

0

20

C
O

S 
(p

pt
)

Posterior COS: Biogenic * 2

slope = -1.48 +/- 0.32
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Observed CO2 vs COS

slope = 0.0675 +/- 0.026
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Posterior COS: Biogenic * 1
Posterior CO2: Biogenic * 1

slope = 0.0265 +/- 0.018
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Posterior COS: Biogenic * 2
Posterior CO2: Biogenic * 2

slope = 0.033 +/- 0.013
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Observed CO2 vs CO

slope = -0.0962 +/- 0.056
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Posterior CO2: Biogenic * 1

slope = -0.018 +/- 0.018
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Posterior CO2: Biogenic * 2

slope = -0.0506 +/- 0.025
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