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Abstract

Quantification of regional terrestrial carbon dioxide (CO2) fluxes is critical to our understanding of the carbon cycle. We

evaluate inverse estimates of net ecosystem exchange (NEE) of CO2 fluxes in temperate North America, and their sensitivity

to the observational data used to drive the inversions. Specifically, we consider the state-of-the-science CarbonTracker global

inversion system, which assimilates (i) in situ measurements (’IS’), 29 (ii) the Orbiting Carbon Observatory-2 (OCO-2) v9

column CO 2 (XCO2) retrievals over land (’LNLG’), (iii) OCO-2 v9 XCO 2 retrievals over ocean (’OG’), and (iv) a combination

of all these observational constraints (’LNLGOGIS’). We use independent CO2 observations from the Atmospheric Carbon

and Transport (ACT)-America aircraft mission to evaluate the inversions. We diagnose errors in the flux estimates using the

differences between modeled and observed biogenic CO2 mole fractions, influence functions from a Lagrangian transport model,

and root-mean-square error (RMSE) and bias metrics. The IS fluxes have the smallest RMSE among the four products, followed

by LNLG. Both IS and LNLG outperform the OG and LNLGOGIS inversions with regard to RMSE. Regional errors do not

differ markedly across the four sets of posterior fluxes. The CarbonTracker inversions appear to overestimate the seasonal cycle

of NEE in the Midwest and Western Canada, and overestimate dormant season NEE across the Central and Eastern US. The

CarbonTracker inversions may overestimate annual NEE in the Central and Eastern US. The success of the LNLG inversion

with respect to independent observations bodes well for satellite-based inversions in regions with more limited in situ observing

networks.
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Key Points:16

• The IS and LNLG inversions are the most reliable products of CarbonTracker in17

temperate North America, superior to OG or LNLGOGIS inversions.18

• Errors in these CarbonTracker regional flux estimates are not strongly dependent19

on the observational data sources.20

• CarbonTracker overestimates seasonal NEE for the Eastern and Central US, as21

a result, the annual NEE from CarbonTracker may underestimate continental up-22

take of CO2.23
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Abstract24

Quantification of regional terrestrial carbon dioxide (CO2) fluxes is critical to our un-25

derstanding of the carbon cycle. We evaluate inverse estimates of net ecosystem exchange26

(NEE) of CO2 fluxes in temperate North America, and their sensitivity to the observa-27

tional data used to drive the inversions. Specifically, we consider the state-of-the-science28

CarbonTracker global inversion system, which assimilates (i) in situ measurements (“IS”),29

(ii) the Orbiting Carbon Observatory-2 (OCO-2) v9 column CO2 (XCO2) retrievals over30

land (“LNLG”), (iii) OCO-2 v9 XCO2 retrievals over ocean (“OG”), and (iv) a combi-31

nation of all these observational constraints (“LNLGOGIS”). We use independent CO232

observations from the Atmospheric Carbon and Transport (ACT) - America aircraft mis-33

sion to evaluate the inversions. We diagnose errors in the flux estimates using the dif-34

ferences between modeled and observed biogenic CO2 mole fractions, influence functions35

from a Lagrangian transport model, and root-mean-square error (RMSE) and bias met-36

rics. The IS fluxes have the smallest RMSE among the four products, followed by LNLG.37

Both IS and LNLG outperform the OG and LNLGOGIS inversions with regard to RMSE.38

Regional errors do not differ markedly across the four sets of posterior fluxes. The Car-39

bonTracker inversions appear to overestimate the seasonal cycle of NEE in the Midwest40

and Western Canada, and overestimate dormant season NEE across the Central and East-41

ern US. The CarbonTracker inversions may overestimate annual NEE in the Central and42

Eastern US. The success of the LNLG inversion with respect to independent observa-43

tions bodes well for satellite-based inversions in regions with more limited in situ observ-44

ing networks.45

Plain Language Summary46

Biological CO2 fluxes, an important component of the earth’s climate system, re-47

main uncertain, especially at continental and sub-continental spatial domains. Differ-48

ent global CO2 observing systems imply significantly different net biological fluxes of CO2.49

We use independent CO2 measurements from an extensive multi-seasonal aircraft cam-50

paign to evaluate biological CO2 flux estimates derived from four different observational51

systems entered into a common data analysis system. The observations include both ground-52

and satellite-based measurements. We found that one of the the satellite-based CO2 es-53

timates performs nearly as well as the estimates based on ground-based measurements.54

This suggests that the satellite data may serve to estimate regional variations in biolog-55

ical CO2 fluxes in portions of the globe with more limited ground-based observing net-56

works. The inversions appear to overestimate dormant season release of biological CO257

to the atmosphere, thus may underestimate the net uptake of CO2 by ecosystems in the58

Central and Eastern United States.59

1 Introduction60

Accurate quantification of carbon dioxide (CO2) fluxes from different sources is an61

important input to the design of climate policies (e.g. Masson-Delmotte et al., 2018; Keller62

et al., 2008; Ciais et al., 2014). CO2 flux related to terrestrial net ecosystem exchange63

(NEE) is one of the major components. It is challenging to quantify CO2 NEE fluxes64

due to complex biosphere processes, together with the biosphere- atmosphere interac-65

tions (e.g. Tian et al., 2016). Both bottom-up and top-down approaches (e.g. Pan et al.,66

2011; Hayes et al., 2012; Liu et al., 2017; Hu et al., 2019; Thompson et al., 2020) have67

been used to characterize and quantify CO2 NEE fluxes using data from a wide range68

of observation platforms.69

The top-down approach is an optimization framework to improve a priori flux es-70

timates, that are informed, for example, by ecosystem carbon-stock inventories or car-71

bon flux models (e.g. Haynes et al., 2019). Atmospheric CO2 measurements, on which72

the top-down method relies, can contribute powerful constraints to the bottom-up meth-73
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ods (e.g. Ogle et al., 2015). Different atmospheric CO2 measurement platforms such as74

boundary-layer CO2 mole fractions from ground-based networks (e.g. Andrews et al.,75

2014; Miles et al., 2012) and column-averaged CO2 mole fractions (XCO2) from satel-76

lites (e.g. Liu et al., 2020), aim to complement each other. Measurement biases, atmo-77

spheric transport errors, or representation errors, however, may cause difficulty in as-78

similating these measurements within the optimization process.79

Evaluating current top-down CO2 flux estimates from the different platforms with80

independent observations is a promising avenue to improve them. Chevallier et al. (2019)81

compares six global CO2 atmospheric inversions from the combinations of three mea-82

surements platforms (i.e Orbiting Carbon Observatory-2 - OCO-2 or Greenhouse Gas83

Observing Satellite - GOSAT column retrievals, and boundary-layer in situ measurements)84

using a large number of aircraft measurements in the free troposphere. They provide a85

cross-comparison among different inversion estimates as well as mole fraction-based com-86

parisons between inversions and the aircraft measurements. They found that differences87

in annual budgets are mainly located in the northern and tropical portions of the globe.88

The OCO-2-based inversion produced results close to the traditional in situ inversion,89

but the data they used did not allow them to distinguish between the quality of OCO-90

2-based fluxes and in situ-based fluxes. The global inversions are temporally and spa-91

tially resolved products, and many aircraft field campaigns take place at a regional scale.92

This opens up the opportunity for further in-depth regional evaluations.93

The Atmospheric Carbon and Transport – America (ACT-America) mission, con-94

ducted flights east of the Rocky Mountains in the United States (US) during Summer95

2016, Winter 2017, Fall 2017, Spring 2018, and Summer 2019 (Davis et al., 2018). The96

multi-seasonal aircraft CO2 sampling of ACT-America provides a unique opportunity97

for regional evaluation of CO2 flux estimates. Extensive atmospheric CO2 measurements98

from the atmospheric boundary layer to the upper free troposphere during four seasons99

from ACT-America enable researchers to rigorously assess and potentially distinguish100

the biases and accuracy of different inversion estimates for temperate North America.101

OCO-2 gathers XCO2 measurements globally using nadir and glint observations102

over land, and glint observations over the oceans (Eldering, O’Dell, et al., 2017; Elder-103

ing, Wennberg, et al., 2017). The OCO-2 retrievals are continually being improved (e.g.104

Crowell et al., 2019; Miller & Michalak, 2020). Independent observation campaigns can105

test the ability of the OCO-2 v9-based inversions to estimate regional-scale fluxes with106

accuracy and precision. Temperate North America has one of the densest in situ-based107

greenhouse gas monitoring networks in the world. An evaluation of the OCO-2 v9 based108

flux estimates, along with the evaluation of in situ-based CO2 flux estimates together109

can be used to assess the complementary role of the two platforms. Additionally, a multi-110

platform strategy that combines in situ- and satellite- based platforms to constrain CO2111

NEE is promising but requires independent evaluation.112

In this study, we implement a method to evaluate the in situ-based, OCO-2 v9-based,113

and two-system-combined inversions of CO2 NEE in temperate North America using air-114

borne observations from the ACT-America mission. Specifically, We evaluate the state-115

of-the-science CarbonTracker global inversion system’s inverse NEE estimate for North116

America from four different set of observations, created as part of OCO-2 v9 model in-117

tercomparison project (MIP) (https://www.esrl.noaa.gov/gmd/ccgg/OCO2 v9mip/).118

We evaluate the capability of the four different observing systems to quantify CO2 NEE119

in temperate North America. The details of the evaluation framework are described in120

Section 2. Results and discussion are presented in Section 3. We conclude in Section 4.121

–3–
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Table 1. Aircraft data from four ACT-America campaigns used in the study

Flight months Flight days Flight (hours) ABL data (%)

Summer 2016 Jul-Aug 25 248 34
Winter 2017 Feb-Mar 25 218 35

Fall 2017 Oct-Nov 22 245 33
Spring 2018 Apr-May 26 261 32

2 Materials and Methods122

2.1 CarbonTracker CO2 NEE flux products123

We evaluate four CO2 flux products in the study, which are from CarbonTracker124

global inversion system (Jacobson et al., 2020). Following the protocol of OCO-2 v9 MIP,125

CarbonTracker performed a series of global CO2 flux experiments for 2015-2019 driven126

by a variety of observation platforms, including CO2 measurements from 1) in situ data127

(IS) compiled in the GLOBALVIEW+ 5.0 (Cooperative Global Atmospheric Data In-128

tegration Project, 2019) and NRT v5.1 (CarbonTracker Team, 2019) ObsPack products;129

2) the land nadir/land glint (LNLG) retrievals of column-integrated CO2 from OCO-2130

v9; 3) OCO-2 ocean glint (OG) v9 retrievals; and 4) a combination of the in-situ and satel-131

lite data (LNLGOGIS). These global flux products are mapped onto 1-degree grid cells132

at 3-hourly intervals (Figure S1).133

2.2 ACT-America aircraft campaign134

We use CO2 measurements from the Summer 2016, Winter 2017, Fall 2017, and135

Spring 2018 ACT-America campaigns. These are the times for which CO2 flux products136

are available from CarbonTracker, as part of the OCO-2 v9 MIP. Each ACT-America137

campaign flew over the same three sub-regions of the United States (US): the Mid-Atlantic,138

Midwest, and Gulf Coast. For most flight days, two aircraft (a NASA Langley B200 and139

a NASA Wallops C130) flew together measuring atmospheric CO2 mole fractions and140

other atmospheric variables in patterns designed to sample the variability in atmospheric141

GHGs within mid-latitude weather systems and the associated regional surface fluxes.142

All flights were conducted during midday hours (15-0 UCT) in order to sample well mixed143

atmospheric boundary layer (ABL) conditions. The detailed instrument, deployment and144

dataset of ACT-America are described in (Davis et al., 2018; Wei et al., in prep for this145

issue). The calibration of the CO2 measurements are described by (Baier et al., 2020).146

About 35% of the flight time was within the ABL, the portion of the atmosphere most147

sensitive to regional GHG surface fluxes. In this study, we use the ABL measurements148

excluding the take-off and landing portions, and aggregate these CO2 measurements across149

30-s intervals (Figure 1, Table 1) to construct the receptors in the Lagrangian particle150

dispersion modeling that described in section 2.3.151

2.3 Influence functions for ACT flight data152

Upwind fluxes influence the aircraft samples. We explicitly quantify the source-receptor153

relationship (i.e influence function) using a Lagrangian particle dispersion model (FLEXPART-154

WRF) (Brioude et al., 2013) in a backward mode. The simulations of FLEXPART-WRF155

are driven by the 27-km WRF-Chem simulated meteorology from the base line simula-156

tion described in Feng et al. (2019a, 2019b) which were nudged to the 25-km ECMWF-157

ERA5 reanalysis data (Hersbach et al., 2020).158
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Figure 1. Boundary layer CO2 mole fractions (unit: ppmv) sampled during four ACT-

America campaigns.

We computed a suite of influence functions across 98 flight days, at the same spa-159

tial and temporal resolution of the meteorological driver (27 km and hourly) covering160

the entire domain (Figure 2). Each receptor of the influence function is the 30-s inter-161

val along flight tracks, characterized by a box with boundaries between the maximum162

and minimum latitude/longitude as well as between the maximum and minimum heights163

during the 30-s interval. Each receptor box released 5,000 particles and simulated their164

transport and dispersion backward for 10 days (Cui et al., 2015, 2017, 2019). A valida-165

tion of the suite of influence functions was conducted. Based on the same flux inputs,166

background values, and meteorological fields, we compared the FLEXPART-WRF sim-167

ulated CO2 mole fractions with the WRF-Chem forward simulations along flight tracks168

and found that they agreed well. The suite of influence functions plays a key role in our169

evaluation described in Section 2.4.2.170

2.4 Biogenic CO2 component171

2.4.1 Background determination172

To evaluate the surface fluxes in our domain, we subtract the CO2 background val-173

ues from the ACT CO2 measurements to obtain an estimate of the CO2 mole fraction174

enhancements and depletions caused by surface fluxes in the domain. A tracer indicat-175

ing CO2 mole fractions from the boundary condition of the domain (characterized with176

the CarbonTracker CO2 4-D simulations) is explicitly simulated in the WRF-Chem con-177

figuration (Feng et al., 2019a). We interpolated tracer values at each receptor point to178

represent the background-value elements in ybkg. For the ACT Summer 2016 campaign,179

we used the 4-D simulations of atmospheric CO2 mole fractions from the CarbonTracker180

–5–
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Figure 2. Examples of influence functions (unit: ppm/(µmol m-2 s-1)) used to quantify the

relationship between the upwind sources and downwind receptors along the flights. Ten-day

cumulative influence functions for two flight days are shown, including a fair-weather day, 13

August 2016 (left) and a frontal day, 21 August 2016 (right).

2017 product, while for the rest of the campaigns we used values from the CarbonTracker181

2019-Near Real Time version 2 product. Upper free tropospheric mole fractions can pro-182

vide another estimate of continental background conditions (Baier et al., 2020). We com-183

pare the simulated background mole fractions along ACT-America flight tracks above184

4,000 MSL with the corresponding ACT-America measurements and find good agree-185

ment (Figure S2). We do not explicitly compute uncertainty in the background in this186

study, but this comparison, and the work of Feng et al. (2019a) suggests that the un-187

certainty is less than about 1 ppm.188

2.4.2 ACT referenced biogenic CO2189

The atmospheric CO2 mole fraction continental enhancements and depletions in-190

clude the influence of different fluxes: biogenic, fossil fuel, fire, and oceanic. To focus on191

the land biogenic CO2 component, we remove the influence of the fossil fuel, fire, and192

oceanic sources on total CO2(y) by subtracting the component mole fraction enhance-193

ments simulated using the influence functions and flux estimates:194

yACTbio = y − ybkg −HEff −HEfire −HEocn (1)195

, where H represents the influence functions (see details in 2.3), which are used with the196

fluxes to produce the atmospheric CO2 mole fractions along flight tracks. Eff , Efire,197

Eocn represent CO2 fluxes from the fossil fuel, fire, and oceanic sources in the domain.198

Eff , Efire, Eocn are obtained from the CarbonTracker system as part of OCO2 v9 MIP.199

Eff is obtained from the ODIAC2018 fossil fuel emission inventory, Efire is from the200

GFED4.1s wildfire inventory respectively, and Eocn is from the posterior ocean fluxes201

of the IS, LNLG, OG, or LNLGOGIS experiments, respectively.202

Meanwhile, the modeled biogenic CO2 enhancements/depletions along the ACT203

flight tracks are also calculated as well from the four CO2 NEE flux products (Ebio, see204

section 2.1) respectively:205

ymodelbio = HEbio (2)206

–6–
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2.5 Evaluation framework and experimental design207

To distinguish and rank the different flux products, we calculate the root-mean-208

square error (RMSE) between ymodelbio and yACTbio. The value of ymodelbio is calculated209

using the influence functions and the flux products at the native spatial and temporal210

resolutions (i.e 3-hourly, 1x1 degree). The flux product associated with the smaller RMSE211

value indicates the better performance, and vice versa. The RMSE analysis is applied212

for all data during each campaign as well as the entire four campaign datasets.213

The mole fraction-based analysis above is the net result of upwind biogenic fluxes.214

It is hence difficult to identify the sub-regional and ecosystem-specific sources of these215

divergences between the aircraft observations and simulations from the flux products with-216

out further diagnosis (Rayner, 2020). Therefore, in the study, we also conduct the flux-217

based evaluation to further diagnose the errors of flux products at the sub-regional scale.218

We apply the Bayesian solution to optimize the flux products using the ACT-America219

data and define a equation to be the differences between the flux products and their op-220

timizations by ACT-America.221

ε = BHT (HBHT + R)−1(ymodelbio − yACTbio) (3)222

, where H (dimension: m x n, m: receptors, n: states (spatial clusters associated with223

the time intervals) is the influence function, R (dimension: m x m) and B (dimension:224

n x n) represent the covariance of the model-data mismatch and the prior flux errors,225

respectively. ε (dimension: n x 1) is a spatially- and temporally- resolved quantity and226

it represents the errors in the flux product compared with the ACT-America referenced227

fluxes. ε is in units of µmol/m²/s and it has positive and negative signs. A lower mag-228

nitude of ε indicates the flux product is closer to the ACT referenced value. Positive val-229

ues in ε identify grid clusters where flux products overestimate the NEE of CO2, and vice230

versa.231

We explicitly solve ε in the function (equation 3). R is assumed to be squared resid-232

ual between ymodelbio and yACTbio. B is given to be 100% relative uncertainty of the flux233

product initially, and we then apply a regularization parameter to B to tune the balance234

between the contributions of the model-data mismatch and the constraints of the prior235

estimation(Cui et al., 2015). For this study, we focus on the seasonal-level evaluations,236

thereby we combine all data from each campaign (i.e each season) as one case, and de-237

rive the corresponding spatially- and temporally-resolved values of ε. We focus on the238

grid cells associated with the large values of influence functions for each campaign (de-239

tails refer to Figure S3), and aggregate these grid cells in each sub-domain (i.e R1, R2,240

and R3 in Figure 3) according to the different ecoregions classified in the CarbonTracker241

system and obtain total 36, 36, 37 and 33 grid clusters for the four cases, respectively242

(more details in Figure S4). R is treated as the diagonal matrix in the study. We aggre-243

gated the time intervals from the native 3-hourly intervals to the daytime (14-01 UTC)244

and nighttime (02-13 UTC) scales of each day and used an e-folding temporal correla-245

tion scale (20days) to the same time period of day in the prior flux errors. We then cal-246

culate the weighted average of ε (without or within its sign) during each campaign, based247

on the temporal information constrained by HTH for each domain (i.e. R1, R2, and R3),248

to identify the seasonal error levels for the flux products.249

3 Results and Discussion250

As described in Section 2.5, we use both mole fraction-based and flux-based met-251

rics to evaluate the four sets of NEE inversion products (e.g IS, LNLG, OG, and LNL-252

GOGIS). First, the mole fraction-based RMSE analysis are shown in Figure 4. We found253

that the IS flux product has the best performance among the four products during the254

summer, fall, and spring, and has the second-best performance during the winter time.255

The performance of the LNLG flux product is second in most seasons and best in the256
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Figure 3. Three sub-domains are determined in the study: R1 denotes the Midwestern US

and Western Canada areas; R2 denotes the Eastern US area; and R3 denotes the Southern US

area. We only focus on the grid cells associated with the high values of the influence functions in

the three domains. Details are described in Support Information. The background is the map of

CO2 NEE fluxes from the IS product, which are averaged values over July and August of 2016.

winter. The OG flux product has the worst performance across the winter, fall, and spring.257

The RMSE values integrated over four campaigns show that IS has the best aggregate258

performance at the annual level, followed by LNLG, OG, and LNLGOGIS. The multi-259

platform product (LNLGOGIS) performs similarly to the OG flux inversion.260

We calculated the averaged absolute values of ε by campaign in Figure 5, based261

on equation (3). In general, the four flux products show similar spatial patterns during262

all four campaigns. The similar spatial patterns indicate that the spatial distributions263

of errors in the NEE of CO2 estimates are not strongly dependent on the observational264

system used. All flux inversions show the largest errors in the Central and Eastern US265

during the summer time. There are larger errors in the Southern and Eastern US than266

other areas during the spring. The inversions in winter time show the smallest errors.267

Although the overall spatial patterns of errors are similar, some differences among the268

flux products can still be observed at the sub-regional scale. For example, LNLG and269

LNLGOGIS have similar overall performance with IS in Eastern and Southern US, but270

much worse than IS in Midwest and Western Canada.271

We further calculate the seasonally averaged ε including the signs for the three sub-272

domains (Figure 6, and the corresponding spatial maps are shown in Figure S5) to iden-273

tify the seasonal errors for these regions in the flux products. Again, the spatial patterns274

of the seasonal errors in these CarbonTracker regional flux estimates are not strongly de-275

pendent on the observational data sources. During the summertime, we found that all276

inversions overestimate NEE of CO2 in the Eastern US (so the magnitude of net pho-277

tosynthesis is underestimated), but significantly underestimate the flux (net photosyn-278

thesis is too large in magnitude) in the Midwest US and western Canada area from the279

LNLG and LNLGOGIS products. The LNLGOGIS product also underestimates NEE280

fluxes in the Southern US. The IS fluxes show the overall minimum errors across the three281

areas. The LNLG fluxes show similar errors with the IS fluxes in the Eastern and South-282

–8–
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Figure 4. The Root-Mean-Square-Error (RMSE) between ymodelbio and yACTbio from the four

flux products are shown, for each ACT campaign (Summer 2016, Winter 2017, Fall 2017, and

Spring 2018), and combined four campaigns (“overall”).

µm
ol

e 
m

-2
s-1

IS LNLG OG LNLGOGIS

Summer 
2016

Winter
2017

Fall
2017

Spring
2018

Figure 5. Spatial maps of the seasonally averaged ε values without the positive and negative

signs corresponding to the four flux products during each ACT-America campaign, respectively.
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2
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2
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Figure 6. The integrated regional errors (ε values) refer to the daily flux estimation from the

four flux products shown for each ACT-America campaign, respectively.

ern US, but larger errors than IS in the Midwest US and Western Canada area in sum-283

mer. Dormant season NEE is generally overestimated in the inversions. The LNLG fluxes284

show a larger overestimate of NEE in Midwest and Western Canada during the winter-285

time compared with IS, but show a smaller overestimate of NEE in the Eastern and South-286

ern US areas. During the fall, all inversions overestimate NEE of CO2 in the Eastern US287

and underestimate NEE of CO2 in the Southern US. The IS fluxes show fewer errors than288

the LNLG fluxes in the Midwest US and Western Canada and Southern US, but LNLG289

also shows a similar overestimate of NEE in the Eastern US during the fall. The OG fluxes290

show the largest errors across the three domains. All inversions overestimate NEE of CO2291

in the Southern US during spring. The LNLG flux biases are similar in pattern and mag-292

nitude to the IS fluxes for the three domains.293

Extrapolating these results across seasons suggests that the inversions generally am-294

plified the seasonal cycle of NEE in Midwest and Western Canada by underestimating295

summer NEE or overestimating dormant season NEE, especially for the LNLG products.296

When we consider ε results across the four campaigns we found that the annual NEE297

of CO2 fluxes have the positive errors in in Midwest and Western Canada and Eastern298

US from the IS and LNLG fluxes, but the LNLG fluxes show negative errors in the South-299

ern US. The IS fluxes have the best seasonal performance and LNLG has the best an-300

nual performance across the three areas (i.e the Central and Eastern temperate North301

America).302

The seasonally averaged ε by daytime and nighttime for each case are calculated303

as well (Figure S6 and S7), respectively. The spatial patterns of the errors during the304

daytime and nighttime largely match those found for the daily NEE error estimates in305

–10–
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Figure 6. During the summertime, opposing patterns of ε (negative values during the306

daytime, and positive values during the nighttime) in Midwest and Western Canada sug-307

gest that both nighttime respiration and net daytime photosynthesis are overestimated308

in the area. Both positive biases during daytime and nighttime in the Eastern US sug-309

gest overestimated biogenic respiration in this region. During the wintertime, positive310

biases seen in day and night from IS and LNLG in Midwest and Western Canada indi-311

cate that respiration is overestimated in the region. The magnitudes of errors in day and312

night from all flux products are small in the Eastern US. Opposing patterns of ε (neg-313

ative values during the daytime, and positive values during the nighttime) are seen in314

the Southern US. Consequently, the overall daily errors in these areas are small in Fig-315

ure 6. In the fall, opposing patterns of ε (negative values during the daytime, and pos-316

itive values during the nighttime) are seen again in the Southern US. In the spring, op-317

posing patterns of ε (negative values during the daytime, and positive values during the318

nighttime) in the three domains suggest that both nighttime respiration and net day-319

time photosynthesis are overestimated in these areas.320

4 Conclusions321

We implement a framework to evaluate the NEE of CO2 flux estimations across322

the Central and Eastern United States and some of Western Canada. We use this ap-323

proach on the posterior fluxes from the CarbonTracker global flux inversion system, which,324

for the OCO2 v9 MIP, was run with four different atmospheric CO2 data sources.325

This study suggests that, in terms of regional variability in NEE of CO2, the in situ326

(IS) inversion and the inversion using the land-nadir, land-glint (LNLG) observations327

from OCO-2 v9 are likely to be the most reliable products of the CarbonTracker system,328

superior to inversions based on the OCO-2 v9 ocean-glint (OG) or all data platforms (LNL-329

GOGIS) data sets. We found, using a error diagnosis metric, that IS generally outper-330

forms the inversions based on OCO-2 v9 observations, but the differences between the331

IS inversion and the LNLG inversion are relatively small. The OG and LNLGOGIS in-332

versions are clearly inferior to the IS and LNLG inversions with respect to this error met-333

ric analysis, and warrant further investigations. This strong performance of the LNLG334

inversion as compared to the IS inversion is encouraging when considering inverse flux335

estimates in regions of the world where the in situ observing network is sparse.336

The spatially resolved errors for the regional fluxes in CarbonTracker are not strongly337

dependent on the observational data source. Our results suggest that CarbonTracker over-338

estimates seasonal NEE for the Central and Eastern US, and that, as a result, the an-339

nual NEE from CarbonTracker may underestimate continental uptake of CO2 (annual340

mean NEE too positive). Summer NEE is positively biased in the Eastern US and neg-341

atively biased in Midwest and Western Canada, yielding relatively little total seasonal342

bias across the continent in summer. In the dormant seasons, the CarbonTracker inver-343

sions appear generally to overestimate NEE. It is possible that the FLEXPART-WRF344

transport model used in our evaluation system may be biased. Conclusive assessment345

of the magnitude of the errors in seasonal NEE from CarbonTracker will depend on a346

more rigorous assessment of the transport models, which is currently being conducted.347

Nevertheless, we demonstrate that this continental-scale, multi-season airborne dataset348

provides sufficient data to distinguish among inverse flux estimates and posterior iden-349

tify flux biases, resulting in better understanding of the true NEE from North America.350

We propose to extend this evaluation framework to other flux products from both351

top-down or bottom-up methods, such as other members of the OCO-2 v9 MIP and any352

available continental-scale biogenic CO2 flux estimates. We hypothesize that these stud-353

ies will yield insights that are applicable across the globe, especially in midlatitude ecosys-354

tems.355
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Text S1. The averaged CO2 NEE flux maps corresponding to each campaign time period

are shown in Figure S1, to illustrate the estimation of CO2 NEE flux from the different

products. In the study, we evaluated the four flux products for the ecoregions in the

three domains with the day/night intervals during the campaign. We only evaluated the

spatially and temporally resolved fluxes which were constrained by the aircraft campaign.

Figure S2 shows the comparisons between background values of CO2 mole fractions

along flight tracks (> 4,000 m MSL) and the ACT-America measured CO2. The difference

(> 4,000 m MSL) between the background values and the ACT CO2 measurements up

to 1.1, 0.45, 0.65, and 0.37 ppm, for the four campaigns, respectively. The differences are

much smaller than the ambient CO2 mole fractions.

In this study, the suitable regions restricted by HTH are analyzed. For the compu-

tational efficiency, we only focused on the grid cells associated with the large values of

influence functions. Specifically, the grid cells associated with the values of the accumu-

lated influence functions (each campaign) that are greater than the 65th percentile of the

accumulated influence functions are considered. The corresponding maps are shown in

Figure S3.

Figure S4 shows the eco-regions are considered for each campaign in the study. The eco-

regions are defined in CarbonTracker system (https://www.esrl.noaa.gov/gmd/ccgg/

carbontracker/CT2019B doc.php#tth sEc9). ACT-America covers 17 different ecosys-

tems. We aggregate the grid cells by ecosystems in each of the three domain (shown in

Figure 3) to obtain the grid clusters used in our analysis.
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The spatial map of ε values, at the seasonal level, refer to the daily, daytime and

nighttime flux estimation from the four flux products are shown in Figure S5, Figure S6

and Figure S7, respectively.
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Figure S1. Average CO2 NEE from four flux products corresponding to the ACT-America

campaign periods, respectively. ACT-Summer2016: July-August; ACT-Winter2017: January-

March; ACT-Fall2017: September-November; ACT-Spring2018: April-May.
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Figure S2. Vertically (every 500m interval) averaged CO2 mole fractions are shown from

the ACT-America measurements (“ACT”) as well as the background values simulated by WRF-

Chem (see Feng et al., 2019a, ”Bkg CO2”), for each campaign. All flight data are included except

take-off and landing portions.
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Figure S3. The values of the accumulated influence functions colored by percentile levels, for

each campaign.
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0. ocean; 1. Conifer Forest; 2. Broadleaf Forest; 3. Mixed Forest; 4. Crass/Shrub; 5. Tropical Forest; 6. Shrub/Woods; 
7. Semitundra; 8. Fields/Woods/Savanna; 9. Northern Taiga; 10. Forest/Field; 11. Wetland; 12. Shrub/Tree/Suc;
13. Crops; 14. Conifer Snowy/Coastal; 15. Wooded Tundra,  16. Water

0   1   2   3    4   5   6  7    8   9  10 11 12 13 14 15 16 

R1 R2

R3

Figure S4. The maps of ecoregions are considered in the study for each campaign.
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Figure S5. The spatial map of ε values refer to the daily mean flux estimation from the four

flux products shown for each ACT-America campaign, respectively.
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Figure S6. The spatial map of ε values refer to the daytime flux estimation from the four flux

products shown for each ACT-America campaign, respectively.
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Figure S7. The spatial map of ε values refer to the nighttime flux estimation from the four

flux products shown for each ACT-America campaign, respectively.
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