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Abstract

Machine learning (ML) techniques have become increasingly important in seismology and earthquake science. Lab-based studies

have used acoustic emission data to predict time-to-failure and stress state, and in a few cases the same approach has been

used for field data. However, the underlying physical mechanisms that allow lab earthquake prediction and seismic forecasting

remain poorly resolved. Here, we address this knowledge gap by coupling active-source seismic data, which probe asperity-

scale processes, with ML methods. We show that elastic waves passing through the lab fault zone contain information that

can predict the full spectrum of labquakes from slow slip instabilities to highly aperiodic events. The ML methods utilize

systematic changes in p-wave amplitude and velocity to accurately predict the timing and shear stress during labquakes. The

ML predictions improve in accuracy closer to fault failure, demonstrating that the predictive power of the ultrasonic signals

improves as the fault approaches failure. Our results demonstrate that the relationship between the ultrasonic parameters and

fault slip rate, and in turn, the systematically evolving real area of contact and asperity stiffness allow the gradient boosting

algorithm to ‘learn’ about the state of the fault and its proximity to failure. Broadly, our results demonstrate the utility of

physics-informed machine learning in forecasting the imminence of fault slip at the laboratory scale, which may have important

implications for earthquake mechanics in nature.
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Abstract: 17 

Machine learning (ML) techniques have become increasingly important in seismology and 18 

earthquake science.  Lab-based studies have used acoustic emission data to predict time-to-19 

failure and stress state, and in a few cases the same approach has been used for field data. 20 

However, the underlying physical mechanisms that allow lab earthquake prediction and seismic 21 

forecasting remain poorly resolved. Here, we address this knowledge gap by coupling active-22 

source seismic data, which probe asperity-scale processes, with ML methods.  We show that 23 

elastic waves passing through the lab fault zone contain information that can predict the full 24 

spectrum of labquakes from slow slip instabilities to highly aperiodic events.  The ML methods 25 

utilize systematic changes in p-wave amplitude and velocity to accurately predict the timing and 26 

shear stress during labquakes. The ML predictions improve in accuracy closer to fault failure, 27 

demonstrating that the predictive power of the ultrasonic signals improves as the fault 28 

approaches failure. Our results demonstrate that the relationship between the ultrasonic 29 

parameters and fault slip rate, and in turn, the systematically evolving real area of contact and 30 

asperity stiffness allow the gradient boosting algorithm to ‘learn’ about the state of the fault and 31 

its proximity to failure. Broadly, our results demonstrate the utility of physics-informed machine 32 

learning in forecasting the imminence of fault slip at the laboratory scale, which may have 33 

important implications for earthquake mechanics in nature. 34 

 35 

Keywords: 36 

Stick-slips; slow earthquakes; Friction; Machine Learning; Gradient boosted trees; XGBoost  37 
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Key points: 38 

1. Machine learning can be used on p-wave amplitude and velocity to predict the timing and 39 

shear stress evolution of laboratory seismicity. 40 

2. The ability of the ML algorithm to predict time-to-failure improves as the fault approaches 41 

failure. 42 

3. Predictions rely on the systematic reduction in elastic properties prior to failure, which is 43 

linked to a reduction in real area of contact.  44 
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1. Introduction: 45 

 Machine learning (ML) methods have followed improvements in geophysical techniques, 46 

instrumentation and data availability over the past decade to rapidly emerge as indispensable 47 

toolkits for the geophysical community (Bergen et al., 2019; Kong et al., 2019). For instance, 48 

significant effort has been devoted to using ML to improve event detection, arrival-time picking, 49 

phase association, and earthquake location (Yoon et al., 2015; Zhu and Beroza, 2018; Ross et al., 50 

2018; Perol et al., 2018; Wu et al., 2018; McBrearty et al, 2019; Trugman and Ross, 2019; 51 

Mousavi et al., 2020). Importantly, this has seen a revival in earthquake forecasting research, 52 

particularly focused on applying ML techniques to lab data on fault friction (Rouet-Leduc et al., 53 

2017, 2018) and rock damage (McBeck et al., 2020) to infer failure modes and predictability 54 

(Corbi et al., 2019). Notably, recent studies have successfully demonstrated that both cataloged 55 

(Lubbers et al., 2018) and continuous (Rouet-Leduc et al., 2017; Hulbert et al., 2019) acoustic 56 

emission (AE) data can be used to infer fault friction and predict the timing, shear stress, and in 57 

some cases the size of labquakes. Moreover, ML has been used to demonstrate that slow and fast 58 

earthquakes share similar physics (Hulbert et al., 2019). With varying degrees of success, these 59 

techniques can predict field observations of volcanic eruption (Ren et al., 2020) and subduction 60 

zone fault slip (Rouet-Leduc et al., 2019; Corbi et al., 2020; Hulbert et al., 2020).  61 

 Broadly, ML techniques can be grouped as supervised or unsupervised. The former 62 

involves predetermined features that are mapped to labeled datasets in order to construct a 63 

regression model that typically involves highly non-linear functions. Unsupervised learning 64 

models are used where such labeled datasets may not be available or the focus is on trying to 65 

identify patterns embedded within the data (e.g., Tan et al., 2006; Oliver et al., 2018; Bolton et 66 

al., 2019). Especially as applied to laboratory data, supervised ML techniques have relied on 67 
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systematic evolution of ‘features’ such as the AE energy (e.g., Rouet-Leduc et al., 2017, 2018).  68 

Indeed, based on the existing works, one could conclude that systematic changes in 69 

microseismicity (AE) indicative of fault zone criticality are required to successfully predict 70 

labquakes or tectonic fault slip.  However, while precursors are routinely documented in 71 

laboratory studies of fault failure and brittle fracturing (Brace et al., 1966; Scholz, 1968a; 72 

Sammonds et al., 1992; Hedayat et al., 2014; Kaproth and Marone, 2013; Scuderi et al., 2016; 73 

Shreedharan et al., 2020), observations of systematic precursors or foreshocks prior to 74 

earthquakes in nature are not routinely documented (Bakun et al., 2005; Niu et al., 2008; Main et 75 

al., 2012). Additionally, even when precursory slip is present, it may be masked by changes in 76 

elastic properties of the wallrock (Chiarabba et al., 2020; Shreedharan et al., 2021). Moreover, 77 

the underlying physics of ML prediction of lab earthquakes is poorly understood. One recent 78 

study by Bolton et al. (2020) demonstrated that the precursory increase in AE energy prior to 79 

fault failure is likely linked to preseismic fault slip.  Thus, the question arises of whether 80 

detection of preseismic fault slip and lab foreshocks are necessary conditions for ML-based 81 

prediction of lab earthquakes, and ultimately, whether the same is true for field observations.  82 

 Here, we use high-resolution time-lapse active seismic monitoring to document the 83 

evolution of p-wave amplitude and velocity during the lab seismic cycle of highly variable and 84 

aperiodic labquakes. We find that the gradient boosting ML algorithm (Friedman, 2001) can 85 

accurately predict both the timing and shear stress state of labquakes using a subset of the 86 

amplitude and velocity features. Interestingly, our results show that the ML predictive power 87 

improves as the fault approaches failure. Our previous works and those of others have 88 

established the physical links between systematic variations in ultrasonic attributes (p-wave 89 

amplitudes and velocities), fault zone preslip and wallrock stiffening throughout the laboratory 90 
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seismic cycle (Shreedharan et al., 2020, 2021). Further, these ultrasonic attributes can be linked 91 

to asperity scale mechanical parameters such as the real area of contact and asperity stiffness 92 

(Kendall and Tabor, 1971; Pyrak-Nolte et al., 1990; Hedayat et al., 2014; Kilgore et al., 2017; 93 

Shreedharan et al., 2019). Thus, by successfully training our ML algorithm on these ultrasonic 94 

attributes, we assign a physical underpinning for the predictive power of the ML approach.  95 

 96 

2. Methods: 97 

2.1.Friction experiments 98 

 We performed frictional shear experiments in a servo-controlled biaxial testing apparatus 99 

using a double-direct shear (DDS) configuration (Karner and Marone, 1998). We sheared two 100 

frictional interfaces created by mating three blocks of Westerly granite, with a fine layer (<200 101 

µm thickness and ~0.25 g/layer by mass) of quartz powder between the interfaces to simulate 102 

frictional wear material (Figure 1; Also see Shreedharan et al., 2020). The granite surfaces were 103 

roughened with #60 grit silicon carbide thus producing a mean roughness of ~20 µm. The 104 

surface roughness and the dusting of quartz powder (median particle size of 10.5 µm) have 105 

comparable dimensions; thus frictional processes include direct contact of the wall rock, wear, 106 

and internal deformation in the gouge. The fault normal stress was held constant via a fast-acting 107 

servocontroller. The biaxial testing apparatus is fully servo-controlled with independent 108 

hydraulic pistons supplying normal and shear loads. The experiments were instrumented with 109 

calibrated strain-gauge load cells to measure normal and shear stresses, and direct current 110 

differential transformers (DCDTs) to measure fault normal and shear displacement. An 111 

additional DCDT was attached to the center block close to one of the frictional interfaces, to 112 

measure fault slip (Figure 1).  All load cells used in this study have a resolution of ±5 N and the 113 
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DCDTs have a displacement resolution of ±0.1 µm. We acquired mechanical data at 10 kHz and 114 

averaged in real-time to 100 or 1000 Hz prior to recording. A constant shear displacement rate 115 

was prescribed for the longer, central block of the DDS configuration. In all experiments 116 

reported here, the samples had a constant nominal frictional contact area of 25 cm
2
 and were 117 

subjected to a 10 MPa normal stress. The prescribed background shear rate was set at 11 µm/s. 118 

All experiments were performed at a nominal room temperature range of 22 – 24 
o
C and the 119 

sample humidity was maintained at 100% to ensure reproducibility. We produced a spectrum of 120 

slip modes from slow to fast (Inset to Figure 1; Leeman et al., 2016) by varying the stiffness of 121 

the shear loading system (Shreedharan et al., 2020).  122 

   123 

2.2.Ultrasonic monitoring 124 

We conducted continuous seismic monitoring via ultrasonic pulses transmitted through 125 

the fault interfaces.  We used 500 kHz broadband, P-polarized lead-zirconate-titanate (PZT) 126 

crystals (Boston Piezo-Optics Inc. PZT-5A 0.5” diameter) and transmitted half-sine pulses every 127 

1 ms continuously throughout frictional shear. The PZT sensors were epoxied in blind holes 128 

within steel platens and positioned adjacent to the granite side blocks of the DDS configuration 129 

(See inset to Figure 1). Each pulse was sampled at 25 MHz, thus ensuring high temporal 130 

resolution in sampling. We use the first P-wave arrival to calculate travel-times and velocities, 131 

and take the largest peak-to-peak amplitude within the first 5 µs for acoustic transmissivity (Inset 132 

to Figure 1). Following Nagata et al. (2014), we report transmissivity, |T|, as 133 

|𝑇| =  √
𝐴𝐷𝐷𝑆

𝐴𝐼𝑛𝑡𝑎𝑐𝑡
     (1) 134 

In Eq. (1), the square root term accounts for the two frictional interfaces that the 135 

ultrasonic pulses traverse (Shreedharan et al., 2019). We calculate the velocity as the ratio of the 136 
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distance traversed by the wavelet to the travel time through the DDS blocks, after accounting for 137 

the time spent in steel and at interfaces. We refer readers to Shreedharan et al. (2021) for a 138 

detailed description of our velocity and transmissivity measurements.  139 

 140 

2.3.ML model – training and testing 141 

We analyze the acoustic and mechanical data using ML to predict the temporal evolution 142 

of shear stress and the time remaining prior to failure for multiple laboratory seismic cycles 143 

(Figure 2). Because we use a supervised learning approach, our first step involves data 144 

preparation and selection of features and labelled datasets. Previous studies have demonstrated 145 

that the P-wave amplitudes and velocities evolve systematically throughout the lab seismic cycle. 146 

This, in addition to their direct proxy relationship to asperity deformation mechanics, makes 147 

them good candidate features for our model. The labelled data, i.e., the ‘unknown’ datasets that 148 

we want to predict are the fault shear stress, time since the previous failure event and, 149 

importantly, the time remaining until failure. Figures 2a-b show the labelled data and Figures 2c-150 

d show the features used in this study. Note that while the shear stress is readily determined as 151 

part of regular data collection during the experiment, the time-since-failure and time-to-failure 152 

labels are measured from the shear stress data. The time-since-failure for an event is computed 153 

from the shear stress minimum of the previous event, which has a time-since-failure label of 0 s, 154 

to the shear stress maximum for the next event.  Conversely, the time-to-failure for each stick-155 

slip cycle is counted from the shear stress minimum at the end of the previous cycle, up to the 156 

shear stress maximum corresponding to the current cycle, which represents a time to failure of 0 157 

s (Figure 2b). During the coseismic portion of the cycle, i.e., the stress drop, the time-since and 158 

time-to-failure are set to zero and these data are not used for the ML regression.  159 
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As part of feature preparation, we smooth the features using a backward-looking 10-point 160 

moving average to reduce feature-side noise in the ML regression.  We then normalize the 161 

features for each labquake against the minimum value of the feature at the end of the previous 162 

cycle (Figure 2e-f). This is done to ensure that long-term trends in the features due to layer-163 

thinning, shear localization, wear product formation and smoothening of the granite surfaces do 164 

not overprint on their shorter-term evolution during the slip instabilities. Further, this ensures 165 

that the features in any slip instability are independent and have no ‘memory’ of the fault’s 166 

previous state in an earlier cycle. As a final feature engineering step, we estimate a time-167 

advanced version of the feature (amplitude or velocity). This is done by shifting the feature 168 

vector forward by five time steps (0.05 s). We use the original feature corresponding to time t 169 

and a time-advanced feature corresponding to time t – 0.05 s in our regression. The temporal 170 

evolution of the amplitude and velocity features includes an increasing and comparably 171 

decreasing gradient. When regressing these features against a monotonically varying label such 172 

as shear stress or time to failure, there ceases to exist a one-to-one functional mapping, i.e., non-173 

unique solutions. This results in poor performance by regression-based supervised learning 174 

techniques, as noted by previous works (Rouet-Leduc et al., 2017) because, for a given stick-slip, 175 

two data labels can correspond to the same feature value. We conducted a series of 176 

benchmarking tests and found that this ‘offsetting’ procedure solves the problem by informing 177 

the ML models whether the feature corresponding to a data label comes from the increasing or 178 

decreasing gradient space. Additionally, because we use a time-advanced offset, the new offset 179 

feature is backward-looking in time, thus eliminating any potential data leakage issues. This 180 

method is similar to and was derived from the sub-windowing procedure utilized by Hulbert et 181 

al. (2019) to solve a similar functional mapping problem in their ML regression. We note here 182 
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that the offsetting is a mathematical transformation rather than a physical one. Hence, the choice 183 

of an n-point offset is arbitrary and this parameter, in general, can and should be optimized to 184 

ensure good fits to the labelled data. We selected a 5-point offset for this study since it provided 185 

excellent fits to the test data without overfitting the training data. 186 

Subsequently, we split our labeled dataset and features into training and testing sets 187 

(Figure 1). In this study, we report on the results from a 70-30 split in a contiguous fashion, i.e., 188 

the initial 70% of the data were designated as the training set and the remaining 30% as the test 189 

dataset. Note that, unlike previous ML studies on experimental faults, which make use of 190 

windowing procedures to estimate features (Rouet-Leduc et al., 2017; Hulbert et al., 2019; 191 

Bolton et al., 2019; Corbi et al, 2019), our mechanical and ultrasonic data are synchronized in 192 

time. In other words, for each temporally evolving value of the labels (shear stress, time-since-193 

failure, time-to-failure), there exists a corresponding data-point in the feature-space (amplitudes, 194 

velocities). 195 

We use the gradient boosting ML algorithm based on decision trees (Friedman, 2001; 196 

Hulbert et al., 2019), to jointly analyze our acoustic and mechanical datasets. Specifically, we 197 

utilize an open-source implementation of this algorithm named XGBoost (Chen and Guestrin, 198 

2016).   Hyperparameter tuning is the first step in implementing this model. Hyperparameters 199 

define and determine the parameter-space of functions that can serve as potential models, and the 200 

model performance is significantly sensitive to the assigned hyperparameters. The XGBoost 201 

implementation has a suite of hyperparameters which must be optimized prior to training. In this 202 

study, we determine the optimal hyperparameters by implementing an Efficient Global 203 

Optimization (EGO) function to minimize a misfit function (Jones et al., 1998). The optimal 204 

hyperparameters are determined via a five-fold cross-validation. Here, a subset of the training 205 
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data is modeled using a given set of hyperparameters and validated against the remaining 206 

training data. Once the hyperparameter ‘tuning’ step is complete, we train the ML model by 207 

performing regressions on the feature-label relationship. This step involves iteratively 208 

developing the structure of the gradient boosted decision trees. For a detailed description of this 209 

method, we refer the readers to the XGBoost documentation (xgboost.readthedocs.io) and 210 

Hulbert et al. (2019). Finally, the optimal model is tested and its performance is compared 211 

against the labels, i.e., the true experimental values of shear stress and time to failure. We 212 

evaluate the model performance in two ways: (1) a qualitative benchmark against a naïve 213 

constant-recurrence interval model for the time-to-failure and (2) a quantitative estimation of the 214 

model performance using the coefficient of determination (R
2
) and the root mean squared error 215 

(RMSE) for all labelled data. 216 

 217 

3. Results: 218 

3.1.Friction data and stick-slip periodicity 219 

Our lab results include the full spectrum of frictional slip modes from slow to fast 220 

labquakes. In particular, the experimental data are characterized by a range of aperiodic frictional 221 

slip instabilities (Figure 3) at the friction stability boundary (e.g., Gu et al., 1984; Leeman et al., 222 

2016). Figure 3a quantifies this frictional chaos by plotting the inter-event times as a cross-plot 223 

of time since the last instability Tprev and time to the next instability Tnext (See inset to Figure 1).  224 

Data that fall on the 1:1 line represent perfect periodicity, i.e., they are time and slip predictable 225 

events (eg. Shimazaki and Nakata, 1980). The 1:2 and 2:1 lines form an envelope representing 226 

period doubling (Veedu et al., 2020). Further, data points are colored by the magnitude of stress 227 

drop for these events. Broadly, while our data have periodicities between perfectly periodic and 228 
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doublets, the higher stress drop events are generally represented by more aperiodic behavior 229 

while the smaller events cluster tightly around the 1:1 line.  230 

We observe that stick-slip instability behavior and frictional chaos evolves with shear 231 

displacement, represented by increasing event number (Figure 3). Event numbers are calculated 232 

from the ML train-test catalog (Figure 1), i.e., between load point displacements of 18 – 21 mm, 233 

which contains 220 events. While the peak stress remains relatively constant throughout shear, 234 

the stress minimum during the coseismic phase increases with shear (Figure 3b). In other words, 235 

the fault starts off in a quasi-stable condition and becomes increasingly unstable. This is a 236 

common observation related to shear driven reduction in the friction critical slip distance (Dc) 237 

and increase in the friction rate parameter, (b-a), within the rate-state frictional framework (e.g., 238 

Marone, 1998b). The inter-event ratio from Figure 3a is plotted in Figure 3c as a function of 239 

event number, which is used here as a proxy for shear displacement. For the first ~50 events, the 240 

slip behavior is relatively periodic. As the stress drop increases with shear, the slip behavior 241 

becomes increasingly complex which makes this an ideal dataset to challenge ML approaches for 242 

prediction. 243 

 244 

3.2.Co-evolution of friction and elastic properties 245 

Fault zone elastic properties and frictional strength co-evolve in a systematic manner 246 

during the lab seismic cycle (Figure 4).  The fault zone elastic wave amplitude and velocity co-247 

evolve with shear stress and fault slip rate during both slow and fast slip lab earthquakes (Figure 248 

4a). The corresponding fault displacement, obtained from an onboard displacement sensor (Inset 249 

to Figure 1) and slip velocity, measured from the time derivative of this fault slip, also increase 250 

systematically as the fault approaches failure (Figure 4b). For our loading rate of 11 µm/s the 251 
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fault experiences peak slip rates of ~300 µm/s, and interseismic locking rates of under 0.1 µm/s 252 

for the largest, fastest events. The corresponding transmissivity and p-wave velocities are shown 253 

in Figures 4c-d. Note the strong inverse correlation between fault slip rate and the ultrasonic 254 

attributes, which is consistent with observations from previous ultrasonic studies of laboratory 255 

stick-slips (Nagata et al., 2014; Kilgore et al., 2017; Shreedharan et al., 2020, 2021). 256 

 257 

3.3.Machine learning models of shear stress, time-since and time-to-failure 258 

We document the training, testing and performance metrics of the XGBoost models for 259 

shear stress, time-since-failure and time-to-failure labels in Figures 5-7. For each label, we train 260 

and test three ML models: one for transmitted wave amplitude, one for velocity, and one for the 261 

combined features of amplitude and velocity. We do not use a separate validation set; rather we 262 

perform a five-fold cross-validation on the training datasets.  263 

We report the ML results of shear stress prediction using transmissivity (and its offset) as 264 

the sole feature (Figure 5a-b) and velocity (and its offset) as the sole feature (Figure 5d-e). Here, 265 

we quantify the model performance using a standard R
2
 metric (Figure 5).  Models trained with 266 

both amplitude and velocity have higher R
2
 metrics for training compared to the test set (Figure 267 

5), which is nominally expected since the models are bound to perform better on datasets they 268 

have previously ‘seen.’  Regardless, the test set has a reasonable model performance of R
2
 = 0.80 269 

for both amplitude and velocity-based ML models. Cross-plots of ML model estimates and 270 

experimentally measured values of shear stress show the model performance (Figures 5c,f), with 271 

the solid (1:1) line representing perfect predictions. We observe that the models tend to deviate 272 

from the experimental data early in the seismic cycle, i.e., the shear stress minima, and close to 273 

the middle of the cycle, approximately where the amplitudes and velocity features switch from 274 
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an increasing to decreasing gradient. However, the ML model performance improves as time to 275 

failure decreases (Figure 5g/h).  For both amplitude and velocity-based ML models the root 276 

mean squared error (RMSE) calculated over a 10-point moving window shows somewhat poor 277 

performance early in the lab seismic cycle (i.e., at ~ 3555.4 s) but improved performance later in 278 

the cycle, i.e., between 3556 – 3557 s (Figure 5g/h).  279 

Figure 6 shows a snapshot of the results from a training and testing exercise on the time-280 

since-failure data label. The ML performance using amplitudes and velocities as features are 281 

shown in Figures 6a-c and 6d-f respectively. The ML models perform better during the early 282 

parts of the seismic cycle (Figure 6c/f). In other words, the time-since-failure label is best 283 

predicted by the early portions of the amplitude and velocity evolution, immediately following a 284 

seismic event. Zooms of representative time-since-failure evolution over one seismic cycle, show 285 

the corresponding ML model and 10-point windowed RMSE evolution (Figures 6g-h). These 286 

plots show the superior fits to the experimental data early in the seismic cycle. Specifically, the 287 

RMSE is lowest (or nearly 0) in the initial ~1 s following a stick-slip event and then continually 288 

increases until the next stick-slip event.  289 

ML models focused on the time-to-failure label are the most pertinent for earthquake 290 

forecasting. Figures 7a-c show the results from a ML model created using amplitudes as the 291 

primary feature, and Figures 7d-f show the results form a model using velocities. Generally, we 292 

document poor performance early in the cycle (see Figures 7c,f between 2-4 s) when the time-to-293 

failure is highest. The model fits improve as the fault approaches failure. Figures 7g-h show 294 

representative stick-slip cycles with their associated RMSE for the amplitude- and velocity-295 

trained ML models. Again, we document a reducing RMSE as the fault approaches failure, i.e., 296 
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as the time-to-failure approaches zero, particularly in the final ~0.8 s or final ~22% of the 297 

interseismic period.  298 

 299 

3.4.Benchmarking performance against a naïve model 300 

As a final performance evaluation, we benchmark our ML results against a simple model 301 

of recurrence times constructed from an averaged recurrence interval for all events in a given 302 

experiment (Figure 8). Because it assumes a statistical average of all recurrence intervals, this 303 

model makes no implicit assumptions about and has no knowledge of the experiment or fault 304 

behavior (Figure 8). With an R
2
 = 0.49, the performance of this naïve model is relatively 305 

unreliable. When compared with our ML models (Figures 5-7) which have R
2
 metrics of 0.8 – 306 

0.9 over the entire slip cycle, it is clear that the XGBoost models deliver superior performance.  307 

 308 

4. Discussion: 309 

4.1.A physical basis for the evolution of fault zone elastic properties in the seismic cycle 310 

The evolution of elastic wave properties around fault zones has been extensively studied 311 

in the laboratory (eg. Stanchits et al., 2003; Paterson and Wong, 2005; Passelègue et al., 2018) 312 

and, to a smaller degree, on crustal faults (eg. Niu et al., 2008; Brenguier et al., 2008; Malagnini 313 

et al., 2019; Chiarabba et al., 2020). Specifically, systematic variations in the p-wave velocity 314 

field prior to fault failure in the laboratory over multiple slow and fast cycles has been 315 

documented (Kaproth and Marone, 2013; Tinti et al., 2016) and attributed to preseismic creep 316 

(Scuderi et al., 2016). Similarly, variations in p-wave amplitudes (or transmissivity or 317 

transmission coefficient) have been documented as arising from preseismic creep (Hedayat et al., 318 

2014; Shreedharan et al., 2020). In crustal faults, Malagnini et al. (2019) observed a preseismic 319 
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attenuation signal in the 20-40 Hz frequency range leading up to the 2004 M6 Parkfield 320 

earthquake, which they attributed to fluctuations in the fault zone crack density. However, the 321 

ultrasonic amplitudes can be connected to the microscopic asperity stiffness and during stable 322 

sliding, the real area of contact (Kendall and Tabor, 1971; Kilgore et al., 2017; Shreedharan et 323 

al., 2019). Formalized mathematically, when the ultrasonic pulse wavelength is significantly 324 

larger than the fault zone width as is the case here, the specific interface stiffness, ksp, is related 325 

to the transmissivity, |T|, as (Pyrak-Nolte et al., 1990; Kilgore et al., 2017) 326 

𝑘𝑠𝑝 =
𝜔𝜌𝑣𝑝

√
1

|𝑇|2
−1

      (2) 327 

Here, 𝜌 is the density of the surrounding medium (Westerly granite) and 𝑣𝑝 is the p-wave 328 

velocity through this medium. More recently, Shreedharan et al. (2021) demonstrated that while 329 

the ultrasonic amplitudes track fault creep, seismic velocity contains information about fault 330 

creep as well as shear stiffening of the wallrock. This ‘duality’ of information contained in the 331 

seismic velocities has been documented in crustal faults as well (Chiarabba et al., 2020). 332 

Based on Eq. (2), the strong inverse correlation between wave amplitude and the fault 333 

zone slip rate (Figure 4) can be interpreted as the interseismic and coseismic evolution of fault 334 

zone asperity stiffness. More specifically, immediately following a stick-slip event, the fault 335 

locks up and heals interseismically (Dieterich, 1972; Marone, 1998a; Kaproth and Marone, 336 

2014; McLaskey et al., 2012). During this period, the increasing amplitudes and velocities can be 337 

interpreted as an increase in asperity stiffness due to reduced slip rate. Similarly, the reduction of 338 

precursory amplitude and velocity at and after the onset of preslip can be interpreted as a 339 

reduction in asperity stiffness (or, perhaps, asperity destruction) due to welded contact junctions 340 

being broken by fault slip. While not a prominent feature of this dataset (Figure 4), the 341 

amplitudes and velocities are nominally distinctly out of phase due to the additional information 342 
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pertaining to shear stiffening contained in the velocity (See Figure 2 of Shreedharan et al., 343 

2021). In a physical model, this may be translated as an interseismic and preseismic reduction in 344 

wallrock crack density due to increased deviatoric stresses experienced by the wallrock during 345 

elastic strain energy build-up. Thus, by training our regression-based models on transmissivity 346 

and velocity, we are, by proxy, training our models on the systematic temporal evolution of the 347 

interface stiffness and bulk shear stiffening over multiple seismic cycles.  348 

 349 

4.2.Connecting ML model response to the physics of frictional sliding 350 

The supervised ML approach used in this study ‘learns’ from a regression between the 351 

features and labels; thus, no temporal information about a prior state of the fault is explicitly 352 

transferred from the experimental data to the ML model.  At any point in time, the coefficient of 353 

friction, µ, of the fault can be expressed within the rate and state frictional framework as a 354 

function of the fault slip velocity, V, and a state evolution term, 𝜃, as 355 

𝜇 = 𝜇0 + 𝑎 ln (
𝑉

𝑉0
) + 𝑏 ln (

𝜃

𝜃0
)    (3) 356 

Here, a and b are rate-state constants and the subscript ‘0’ denotes a reference variable. 357 

The frictional state term, at steady state is generally thought of as an average asperity lifetime 358 

and is described as the ratio of a characteristic slip distance, Dc, and the fault slip rate, V. The 359 

term 𝜃 can only be determined via an iterative inversion procedure by solving Eq. (3) 360 

simultaneously with a state-evolution law and an elastic coupling equation. However, Eq. (3) can 361 

be rearranged (Nagata et al., 2012) to redefine frictional state as 𝜑, where 362 

𝜑 = 𝑏 ln (
𝜃

𝜃0
) =  𝜇 − 𝜇0 − 𝑎 ln (

𝑉

𝑉0
)     (4) 363 

Phase plane cross-plots between the mechanical attributes of the fault (Figure 9a,b), i.e., 364 

between the friction coefficient, slip rate and frictional state (estimated using Eq. 4 with a = 365 
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0.0091), show the inter-relationships between the rate and state parameters described in Eq. (3) 366 

(Marone, 1998b). Similarly, cross-plots of the friction coefficient and the ultrasonic attributes 367 

(Figure 9c,d) are the relationships studied by the XGBoost models to optimize regressions for 368 

shear stress prediction (Figure 5). The phase plane plots in Figure 9 contain hysteretic loops for 369 

~10 slow and fast seismic cycles. Note the strong inverse correlation between the slip rate 370 

(Figure 9a) and the ultrasonic attributes (Figure 9c-d). Likewise, the frictional state evolution 371 

(Figure 9b) is more directly correlated with these attributes. Qualitatively, our data illustrate the 372 

relationships between ultrasonic amplitudes and state suggested by Nagata et al. (2014).  This 373 

implies a mechanical relationship between the physically determined asperity stiffness and the 374 

more empirical frictional state, thought to be an average asperity or contact junction lifetime. 375 

However, because our stick-slip cycles represent non-steady state, unstable slip behavior of the 376 

fault, no quantitative relationships between these parameters can be derived (Kame et al., 2014; 377 

Shreedharan et al., 2019). 378 

Here, we consider the potential relationships between the ML model results (Figures 5-7) 379 

and the physical basis for the variations in ultrasonic attributes throughout the seismic cycle 380 

(Figure 9e). For a multi-contact interface composed of numerous contact junctions interseismic 381 

healing phase is marked by increasing contact junction size and number of contacts. During this 382 

period the ultrasonic amplitudes and velocities increase (Ryan et al., 2018). Subsequently, as the 383 

fault creeps prior to failure, some of these contact junctions are destroyed and shrink in size or 384 

cease to exist. This is marked by a reduction in the transmissivity and fault zone velocity 385 

(Shreedharan et al., 2021). Finally, during the coseismic slip phase, a number of contact 386 

junctions are broken and the fault slips, releasing the stored strain energy in these asperities.  387 
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Recall that, for shear stress prediction (Figure 5) and time-to-failure prediction (Figure 7), 388 

the models perform somewhat poorly during the early portions of the seismic cycle, whereas the 389 

model performance is remarkably accurate as the fault approaches failure. In the case of time-390 

since-failure prediction (Figure 6), this trend is reversed and the ML model predictions are 391 

excellent post-seismically, immediately following a stick-slip event. This is consistent with the 392 

observations of Lubbers et al. (2018) who documented that the cataloged AEs early in the 393 

seismic cycle were better predictors of time-since-failure than time-to-failure. Surprisingly, our 394 

observations are in contrast with the model of Hulbert et al. (2019).  They document an inverse 395 

relationship between the duration of the next slip event and the acoustic energy early in the slip 396 

cycle of the current event. We report data at the same normal stress and, in turn, the same 397 

fractional asperity contact area (Shreedharan et al., 2019) for different stick-slip magnitudes 398 

whereas Hulbert et al. (2019) observe this inverse relationship on data collected at different 399 

normal stresses (and thus, different real contact areas). Because stick-slip magnitudes (Leeman et 400 

al., 2016) and AE amplitudes (and energy) scale with normal stress (Rivière et al., 2018), the 401 

different trends documented here and by Hulbert et al. (2019) could, in part, be explained by 402 

normal stress dependence (or a lack thereof) in the experimental designs. Moreover, the 403 

relationship between dynamics of AEs and active seismic data are unknown, which makes it 404 

harder to compare the results directly. However, we note that Hulbert et al. (2019) document 405 

better model fits to their shear stress data closer to failure rather than early in the seismic cycle. 406 

Thus, our results are qualitatively consistent in this regard. Based on our observations of the 407 

accurate model fits early in the cycle for time-since-failure and later in the cycle for time-to-408 

failure, we posit that the early, interseismic ultrasonic attributes have significant predictive 409 

power and may contain information about the past state of the fault (Interseismic healing in 410 



Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

 20 

Figure 9e). This is qualitatively similar to the idea that aftershock duration may be linked to 411 

mainshock size (Dieterich, 1994; Lubbers et al., 2018) although no evidence for this assertion 412 

appears to exist in crustal faults (Ziv, 2006). Likewise, the ultrasonic attributes after the onset of 413 

preslip likely contain predictive power about the future state of the fault (Preseismic creep phase 414 

in Figure 9e), i.e., timing and size of the imminent failure (Rouet-Leduc et al., 2017; 415 

Shreedharan et al., 2020).  416 

For each of the ML feature sets we studied, the model performance suffers during the 417 

middle of the seismic cycle, as the fault begins to unlock. We propose that this occurs because 418 

the frictional asperities experience a competition between healing, which strengthens contact 419 

junctions, and preslip, which rejuvenates contacts. These competing mechanisms translate into 420 

nearly zero rate-of-change for the features (Figure 4) at the onset of preslip, which in turn, results 421 

in poor regression fits because the monotonically varying data labels are associated with nearly 422 

constant features. For instance, in the limited number of stick-slip instabilities plotted in Figure 423 

9c,d, notice that the p-wave amplitudes and velocities are relatively constant at ~71 a.u. and 5719 424 

m/s respectively, for friction coefficients in the range of 0.575 – 0.59, i.e., during the transition 425 

from interseismic healing to preseismic creep.  426 

Taken together, our ML model predictions (Figures 5-7) and the physical mechanisms 427 

behind the evolution of the ultrasonic parameters (Figure 4, 9) indicate that even a relatively 428 

simple regression, incorporating no explicit temporal information, can provide insights into the 429 

mechanics of fault stability and earthquake nucleation, at least on the laboratory scale. More 430 

specifically, because the ultrasonic (amplitude/velocity) evolution is physically related to healing 431 

and preslip-driven interfacial asperity stiffness variations, and shear stiffening of the wallrock, 432 
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the ML model is able to infer the state of the fault and proximity to failure from these 433 

microphysical variations.  434 

These results have important implications for faulting and earthquake forecasting on the 435 

crustal scale, particularly near shallow subduction zones (Reasenberg, 1999), and in regions 436 

where elastodynamic foreshocks (Dodge et al., 1996; Ellsworth and Bulut, 2018) and slow 437 

aseismic creep fronts (Melbourne and Webb, 2002) have been detected prior to a mainshock. 438 

Preseismic crustal velocity anomalies have been observed prior to a limited number of 439 

earthquakes (eg. Niu et al., 2008; Chiarabba et al., 2020). Thus, these ML methods could 440 

potentially be applied to such regions and, particularly around repeating earthquakes or shallow 441 

slow earthquakes, if velocity or attenuation trends are available over multiple seismic cycles.  442 

 443 

5. Conclusions: 444 

We study the feasibility of predicting the timing and shear stress of laboratory 445 

earthquakes using high resolution measurements of transmitted wave amplitude and velocity.  446 

Our data provide the first test of using active source seismic data to predict labquakes.  We find 447 

that supervised machine learning is capable of predicting the timing and shear stress state of 448 

labquakes with reasonable accuracy. Moreover, our results indicate that post-seismic increases in 449 

the ultrasonic amplitudes and velocities, often associated with fault and frictional healing, may 450 

contain memory of the past state of the fault. Importantly, our predictions of fault time-to-failure 451 

improve in accuracy prior to failure, indicating that fault preslip, which reduces ultrasonic 452 

amplitude and velocity, has significant predictive power in the context of imminent failure. 453 

Finally, the physical underpinning of the systematic changes in ultrasonic attributes is grounded 454 

in the deformation mechanics and the evolution of stiffness of microscopic load-bearing 455 
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asperities. Hence, we are able to assign a physical model for the inner workings of predictive 456 

‘black-box’ ML models. Overall, our study demonstrates the utility of ML techniques in the 457 

study of fault mechanics at the laboratory scale and serves to motivate future pursuits in the quest 458 

to improve earthquake forecasting and hazard preparedness in crustal faults. 459 

 460 

  461 
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 468 

Figures 469 

Figure 1. Data for one complete experiment showing the shear stress evolution as a function of 470 

load point displacement. Unload-reload cycles at ~2 and 3 mm promote shear localization and 471 

steady state shear. Training and test data come from 18-20 mm and 20-21 mm of shear 472 

displacement, respectively. Insets show: schematic of the experiment setup, zoom of slow and 473 

fast labquakes with definitions of time-since-failure (Tprev) and time-to-failure (Tnext), and a 474 

sample elastic wave with the wavelet (blue) used to measure p-wave travel time and amplitude. 475 

 476 

Figure 2. Data labels (a,b) and feature engineering (c-f) for the ML models. (a) Shear stress over 477 

multiple lab seismic cycles showing a complex range of stress drops and recurrence intervals; (b) 478 

Time-since- (dashed) and time-to-failure (solid) for the events in Panel a; (c and d) raw (green) 479 

and smoothed (black) p-wave amplitude (c) and velocity (d); (e and f) relative changes in p-wave 480 

amplitude (e) and velocity (f) normalized against the start of each stick-slip cycle (black) and an 481 

offset vector (blue) of the normalized amplitudes. 482 

  483 
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Figure 3. Complexity and periodicity of the labquake recurrence interval. (a) Cross-plot of time 484 

elapsed since the previous event and time remaining to the next event colored by labquake stress 485 

drop. Fiducial lines for 1:2 and 2:1 represent period doubling and 1:1 represents perfectly 486 

periodic events. (b) Evolution of peak and minimum shear stress for multiple events in the 487 

training and testing datasets, plotted by event number and thus increasing shear displacement. 488 

Note that stress drop increases slightly with shear (c) Ratio of time since previous and time to 489 

next event plotted by event number. The dashed lines at 0.5 and 2 represent the envelopes for 490 

period doubling. A ratio of 1 represents perfectly periodic events. 491 

 492 

Figure 4. Evolution of the mechanical and ultrasonic data over multiple laboratory seismic 493 

cycles. Temporal evolution of (a) Shear stress (b) slip (black) and slip rate (blue) estimated from 494 

the onboard slip sensor.  Note that the fault is nearly locked for a big fraction of the seismic cycle 495 

(c) Transmissivity and (d) p-wave velocity.  Note that both transmitted wave amplitude (c) and 496 

velocity show clear precursory changes prior to failure.  497 

 498 

Figure 5. Shear stress prediction using ML. (a-c) Prediction using amplitudes as features 499 

showing (a) Training (b) Testing dataset and (c) model performance expressed as a cross-plot of 500 

experimental shear stress versus ML model results with 1:1 line indicating perfect model 501 

accuracy. (d-f) Prediction using velocities as features showing (d) Training (e) testing dataset and 502 

(c) model performance. Detailed comparison for a representative seismic cycle showing data 503 

(black) and model (blue) trained on amplitude (g) and velocity(h).  In both panels the lower plot 504 

(grey) shows the RMSE misfit. 505 

 506 
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Figure 6. Time-since-failure prediction. (a-c) Prediction using amplitudes as features showing 507 

(a) Training (b) Testing dataset and (c) model performance expressed as a cross-plot of 508 

experimental shear stress versus ML model results with 1:1 line indicating perfect model 509 

accuracy. (d-f) Prediction using velocities as features showing (d) Training (e) testing dataset and 510 

(c) model performance. Detailed comparison for a representative seismic cycle showing data 511 

(black) and model (blue) trained on amplitude (g) and velocity(h).  In both panels the lower plot 512 

(grey) shows the RMSE misfit. 513 

 514 

Figure 7. Time-to-failure prediction. (a-c) Prediction using amplitudes as features showing (a) 515 

Training (b) Testing dataset and (c) model performance expressed as a cross-plot of experimental 516 

shear stress versus ML model results with 1:1 line indicating perfect model accuracy. (d-f) 517 

Prediction using velocities as features showing (d) Training (e) testing dataset and (c) model 518 

performance Detailed comparison for a representative seismic cycle showing data (black) and 519 

model (blue) trained on amplitude (g) and velocity(h).  In both panels the lower plot (grey) 520 

shows the RMSE misfit. 521 

 522 

Figure 8. Naïve model for benchmarking performance. Time to failure for the experimental data 523 

(black) and a model (green) based on constant recurrence interval.  The low R
2
 value shows that 524 

the naïve model predicts earthquake failure times poorly. 525 

 526 

Figure 9. Phase plane cross-plots of (a) friction and slip velocity expressed as a ratio of the slip 527 

velocity to loading rate on a logarithmic scale (b) friction and frictional state expressed on a 528 

logarithmic scale (c) friction and p-wave amplitudes (d) p-wave velocity. The interseismic 529 
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locking (green), preseismic creep (blue) and coseismic slip (orange) phases are annotated in each 530 

plot. 531 

 532 

References 533 

Bakun, W. H., Aagaard, B., Dost, B., Ellsworth, W. L., Hardebeck, J. L., Harris, R. A., ... & 534 
Michael, A. J. (2005). Implications for prediction and hazard assessment from the 2004 535 
Parkfield earthquake. Nature, 437(7061), 969-974. 536 

Bergen, K. J., Johnson, P. A., Maarten, V., & Beroza, G. C. (2019). Machine learning for data-537 
driven discovery in solid Earth geoscience. Science, 363(6433). 538 

Bolton, D. C., Shokouhi, P., Rouet‐Leduc, B., Hulbert, C., Rivière, J., Marone, C., & Johnson, P. 539 
A. (2019). Characterizing acoustic signals and searching for precursors during the laboratory 540 
seismic cycle using unsupervised machine learning. Seismological Research Letters, 90(3), 541 
1088-1098. 542 

Bolton, D. C., Shreedharan, S., Rivière, J., & Marone, C. (2020). Acoustic Energy Release 543 
During the Laboratory Seismic Cycle: Insights on Laboratory Earthquake Precursors and 544 
Prediction. Journal of Geophysical Research: Solid Earth, 125(8), e2019JB018975. 545 

Brace, W. F., Paulding Jr, B. W., & Scholz, C. H. (1966). Dilatancy in the fracture of crystalline 546 
rocks. Journal of Geophysical Research, 71(16), 3939-3953. 547 

Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N. M., Nadeau, R. M., & Larose, E. 548 
(2008). Postseismic relaxation along the San Andreas fault at Parkfield from continuous 549 
seismological observations. science, 321(5895), 1478-1481. 550 

Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. 551 
In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and 552 
data mining (pp. 785-794). 553 

Chiarabba, C., De Gori, P., Segou, M., & Cattaneo, M. (2020). Seismic velocity precursors to the 554 
2016 Mw 6.5 Norcia (Italy) earthquake. Geology. 555 

Corbi, F., Sandri, L., Bedford, J., Funiciello, F., Brizzi, S., Rosenau, M., & Lallemand, S. (2019). 556 
Machine learning can predict the timing and size of analog earthquakes. Geophysical 557 
Research Letters, 46. https://doi.org/ 10.1029/2018GL081251   558 

Corbi, F., Bedford, J., Sandri, L., Funiciello, F., Gualandi, A., & Rosenau, M. (2020). Predicting 559 
imminence of analog megathrust earthquakes with Machine Learning: Implications for 560 
monitoring subduction zones. Geophysical Research Letters, 47(7), e2019GL086615. 561 

Dieterich, J. H. (1972). Time‐dependent friction in rocks. Journal of Geophysical 562 
Research, 77(20), 3690-3697. 563 

Dieterich, J. (1994). A constitutive law for rate of earthquake production and its application to 564 
earthquake clustering. Journal of Geophysical Research: Solid Earth, 99(B2), 2601-2618. 565 

Dodge, D. A., Beroza, G. C., & Ellsworth, W. L. (1996). Detailed observations of California 566 
foreshock sequences: Implications for the earthquake initiation process. Journal of 567 
Geophysical Research: Solid Earth, 101(B10), 22371-22392. 568 

Ellsworth, W. L., & Bulut, F. (2018). Nucleation of the 1999 Izmit earthquake by a triggered 569 
cascade of foreshocks. Nature Geoscience, 11(7), 531-535. 570 



Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

 27 

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of 571 
statistics, 1189-1232. 572 

Gu, J. C., Rice, J. R., Ruina, A. L., & Simon, T. T. (1984). Slip motion and stability of a single 573 
degree of freedom elastic system with rate and state dependent friction. Journal of the 574 
Mechanics and Physics of Solids, 32(3), 167-196. 575 

Hedayat, A., Pyrak‐Nolte, L. J., & Bobet, A. (2014). Precursors to the shear failure of rock 576 
discontinuities. Geophysical Research Letters, 41(15), 5467-5475. 577 

Hulbert, C., Rouet-Leduc, B., Johnson, P. A., Ren, C. X., Rivière, J., Bolton, D. C., & Marone, 578 
C. (2019). Similarity of fast and slow earthquakes illuminated by machine learning. Nature 579 
Geoscience, 12(1), 69-74. 580 

Hulbert, C., Rouet-Leduc, B., Jolivet, R., & Johnson, P. A. (2020). An exponential build-up in 581 
seismic energy suggests a months-long nucleation of slow slip in Cascadia. Nature 582 
communications, 11(1), 1-8. 583 

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive 584 
black-box functions. Journal of Global optimization, 13(4), 455-492. 585 

Kame, N., Nagata, K., Nakatani, M., & Kusakabe, T. (2014). Feasibility of acoustic monitoring 586 
of strength drop precursory to earthquake occurrence. Earth, Planets and Space, 66(1), 41. 587 

Kaproth, B. M., & Marone, C. (2013). Slow earthquakes, preseismic velocity changes, and the 588 
origin of slow frictional stick-slip. Science, 341(6151), 1229-1232. 589 

Kaproth, B. M., and C. Marone, Evolution of elastic wave speed during shear-induced damage 590 
and healing within laboratory fault zones, J. Geophys. Res. Solid Earth, 119, 591 
10.1002/2014JB011051, 2014. 592 

Karner, S. L., & Marone, C. (1998). The effect of shear load on frictional healing in simulated 593 
fault gouge. Geophysical research letters, 25(24), 4561-4564. 594 

Kendall, K., & Tabor, D. (1971). An utrasonic study of the area of contact between stationary 595 
and sliding surfaces. Proceedings of the Royal Society of London. A. Mathematical and 596 
Physical Sciences, 323(1554), 321-340. 597 

Kilgore, B., Beeler, N. M., Lozos, J., & Oglesby, D. (2017). Rock friction under variable normal 598 
stress. Journal of Geophysical Research: Solid Earth, 122(9), 7042-7075. 599 

Kong, Q., Trugman, D. T., Ross, Z. E., Bianco, M. J., Meade, B. J., & Gerstoft, P. (2019). 600 
Machine learning in seismology: Turning data into insights. Seismological Research Letters, 601 
90(1), 3-14. 602 

Leeman, J. R., Saffer, D. M., Scuderi, M. M., & Marone, C. (2016). Laboratory observations of 603 
slow earthquakes and the spectrum of tectonic fault slip modes. Nature communications, 7(1), 604 
1-6. 605 

Lubbers, N., Bolton, D. C., Mohd‐Yusof, J., Marone, C., Barros, K., & Johnson, P. A. (2018). 606 
Earthquake catalog‐based machine learning identification of laboratory fault states and the 607 
effects of magnitude of completeness. Geophysical Research Letters, 45(24), 13-269. 608 

Main, I. G., Bell, A. F., Meredith, P. G., Geiger, S., & Touati, S. (2012). The dilatancy–diffusion 609 
hypothesis and earthquake predictability. Geological Society, London, Special 610 
Publications, 367(1), 215-230. 611 

Malagnini, L., Dreger, D. S., Bürgmann, R., Munafò, I., & Sebastiani, G. (2019). Modulation of 612 
seismic attenuation at Parkfield, before and after the 2004 M6 earthquake. Journal of 613 
Geophysical Research: Solid Earth, 124(6), 5836-5853. 614 

Marone, C. (1998a). The effect of loading rate on static friction and the rate of fault healing 615 
during the earthquake cycle. Nature, 391(6662), 69-72. 616 



Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

 28 

Marone, C. (1998b). Laboratory-derived friction laws and their application to seismic 617 
faulting. Annual Review of Earth and Planetary Sciences, 26(1), 643-696. 618 

McBeck, J., Aiken, J. M., Ben-Zion, Y., & Renard, F. (2020). Predicting the proximity to 619 
macroscopic failure using local strain populations from dynamic in situ X-ray tomography 620 
triaxial compression experiments on rocks. Earth and Planetary Science Letters, 543, 116344. 621 

McBrearty, I. W., Delorey, A. A., & Johnson, P. A. (2019). Pairwise association of seismic 622 
arrivals with convolutional neural networks. Seismological Research Letters, 90(2A), 503-623 
509. 624 

McLaskey, G. C., Thomas, A. M., Glaser, S. D., & Nadeau, R. M. (2012). Fault healing 625 
promotes high-frequency earthquakes in laboratory experiments and on natural 626 
faults. Nature, 491(7422), 101-104. 627 

Melbourne, T. I., & Webb, F. H. (2002). Precursory transient slip during the 2001 Mw= 8.4 Peru 628 
earthquake sequence from continuous GPS. Geophysical Research Letters, 29(21), 28-1. 629 

Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake 630 
transformer—an attentive deep-learning model for simultaneous earthquake detection and 631 
phase picking. Nature communications, 11(1), 1-12. 632 

Nagata, K., Nakatani, M., & Yoshida, S. (2012). A revised rate‐and state‐dependent friction law 633 
obtained by constraining constitutive and evolution laws separately with laboratory data. 634 
Journal of Geophysical Research: Solid Earth, 117(B2).  635 

Nagata, K., Kilgore, B., Beeler, N., & Nakatani, M. (2014). High‐frequency imaging of elastic 636 
contrast and contact area with implications for naturally observed changes in fault 637 
properties. Journal of Geophysical Research: Solid Earth, 119(7), 5855-5875. 638 

Niu, F., Silver, P. G., Daley, T. M., Cheng, X., & Majer, E. L. (2008). Preseismic velocity 639 
changes observed from active source monitoring at the Parkfield SAFOD drill 640 
site. Nature, 454(7201), 204-208. 641 

Olivier, Gerrit, Julien Chaput, and Brian Borchers. "Using supervised machine learning to 642 
improve active source signal retrieval." Seismological Research Letters 89.3 (2018): 1023-643 
1029. 644 

Passelègue, F. X., Pimienta, L., Faulkner, D., Schubnel, A., Fortin, J., & Guéguen, Y. (2018). 645 
Development and Recovery of Stress‐Induced Elastic Anisotropy During Cyclic Loading 646 
Experiment on Westerly Granite. Geophysical Research Letters, 45(16), 8156-8166. 647 

Perol, T., Gharbi, M., & Denolle, M. (2018). Convolutional neural network for earthquake 648 
detection and location. Science Advances, 4(2), e1700578. 649 

Pyrak‐Nolte, L. J., Myer, L. R., & Cook, N. G. (1990). Transmission of seismic waves across 650 
single natural fractures. Journal of Geophysical Research: Solid Earth, 95(B6), 8617-8638.  651 

Reasenberg, P. A. (1999). Foreshock occurrence before large earthquakes. Journal of 652 
Geophysical Research: Solid Earth, 104(B3), 4755-4768. 653 

Ren, C. X., Peltier, A., Ferrazzini, V., Rouet‐Leduc, B., Johnson, P. A., & Brenguier, F. (2020). 654 
Machine learning reveals the seismic signature of eruptive behavior at piton de la fournaise 655 
volcano. Geophysical Research Letters, 47(3), e2019GL085523. 656 

Rivière, J., Lv, Z., Johnson, P. A., & Marone, C. (2018). Evolution of b-value during the seismic 657 
cycle: Insights from laboratory experiments on simulated faults. Earth and Planetary Science 658 
Letters, 482, 407-413. 659 

Ross, Z. E., Meier, M. A., Hauksson, E., & Heaton, T. H. (2018). Generalized seismic phase 660 
detection with deep learning. Bulletin of the Seismological Society of America, 108(5A), 661 
2894-2901. 662 



Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

 29 

Rouet‐Leduc, B., Hulbert, C., Lubbers, N., Barros, K., Humphreys, C. J., & Johnson, P. A. 663 
(2017). Machine learning predicts laboratory earthquakes. Geophysical Research 664 
Letters, 44(18), 9276-9282. 665 

Rouet‐Leduc, B., Hulbert, C., Bolton, D. C., Ren, C. X., Riviere, J., Marone, C., ... & Johnson, P. 666 
A. (2018). Estimating fault friction from seismic signals in the laboratory. Geophysical 667 
Research Letters, 45(3), 1321-1329. 668 

Rouet-Leduc, B., Hulbert, C., & Johnson, P. A. (2019). Continuous chatter of the Cascadia 669 
subduction zone revealed by machine learning. Nature Geoscience, 12(1), 75-79. 670 

Ryan, K. L., Rivière, J., & Marone, C. (2018). The role of shear stress in fault healing and 671 
frictional aging. Journal of Geophysical Research: Solid Earth, 123(12), 10-479.  672 

Sammonds, P. R., Meredith, P. G., & Main, I. G. (1992). Role of pore fluids in the generation of 673 
seismic precursors to shear fracture. Nature, 359(6392), 228-230. 674 

Scuderi, M. M., Marone, C., Tinti, E., Di Stefano, G., & Collettini, C. (2016). Precursory 675 
changes in seismic velocity for the spectrum of earthquake failure modes. Nature 676 
geoscience, 9(9), 695-700. 677 

Scholz, C. H. (1968). Microfracturing and the inelastic deformation of rock in compression. 678 
Journal of Geophysical Research, 73(4), 1417-1432. 679 

Shimazaki, K., & Nakata, T. (1980). Time‐predictable recurrence model for large earthquakes. 680 
Geophysical Research Letters, 7(4), 279-282. 681 

Shreedharan, S., Rivière, J., Bhattacharya, P., & Marone, C. (2019). Frictional state evolution 682 
during normal stress perturbations probed with ultrasonic waves. Journal of Geophysical 683 
Research: Solid Earth, 124(6), 5469-5491. 684 

Shreedharan, S., Bolton, D. C., Rivière, J., & Marone, C. (2020). Preseismic fault creep and 685 
elastic wave amplitude precursors scale with lab earthquake magnitude for the continuum of 686 
tectonic failure modes. Geophysical Research Letters, 47(8), e2020GL086986. 687 

Shreedharan, S., Bolton, D. C., Rivière, J., & Marone, C. (2021). Competition between preslip 688 
and deviatoric stress modulates precursors for laboratory earthquakes. Earth and Planetary 689 
Science Letters. 690 

Stanchits, S. A., Lockner, D. A., & Ponomarev, A. V. (2003). Anisotropic changes in P-wave 691 
velocity and attenuation during deformation and fluid infiltration of granite. Bulletin of the 692 
Seismological Society of America, 93(4), 1803-1822. 693 

Tan, P. N., M. Steinbach, and V. Kumar (2006). Cluster analysis: basic concepts and algorithms, 694 
in Introduction to Data Mining, Vol. 8, Addision-Wesley, Boston, Massachusetts, 487–568. 695 

Tinti, E., Scuderi, M., Scognamiglio, L., Di Stefano, G., Marone, C., & Collettini, C. (2016). On 696 
the evolution of elastic properties during laboratory stick‐slip experiments spanning the 697 
transition from slow slip to dynamic rupture. Journal of Geophysical Research: Solid Earth, 698 
121(12), 8569-8594. 699 

Trugman, D. T., & Ross, Z. E. (2019). Pervasive foreshock activity across southern California. 700 
Geophysical Research Letters, 46(15), 8772-8781. 701 

Veedu, D.M., Giorgetti, C., Scuderi, M., Barbot, S., Marone, C., & Collettini, C. (2020). 702 
Bifurcations at the Stability Transition of Earthquake Faulting. Geophysical Research 703 
Letters, 47(19), e2020GL087985. 704 

Wu, Y., Lin, Y., Zhou, Z., Bolton, D. C., Liu, J., & Johnson, P. (2018). DeepDetect: A cascaded 705 
region-based densely connected network for seismic event detection. IEEE Transactions on 706 
Geoscience and Remote Sensing, 57(1), 62-75. 707 



Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

 30 

Yoon, C. E., O’Reilly, O., Bergen, K. J., & Beroza, G. C. (2015). Earthquake detection through 708 
computationally efficient similarity search. Science advances, 1(11), e1501057. 709 

Zhu, W., & Beroza, G. C. (2019). PhaseNet: a deep-neural-network-based seismic arrival-time 710 
picking method. Geophysical Journal International, 216(1), 261-273. 711 

Ziv, A. (2006). Does aftershock duration scale with mainshock size?. Geophysical research 712 
letters, 33(17). 713 



Figure 1.



0 2 4 6 8 10 12 14 16 18 20

Loadpoint displacement (mm)

0

1

2

3

4

5

6

7
S

h
e

a
r 

s
tr

e
s
s
 (

M
P

a
)

0
.2

 M
P

a 10 μm

p5271

1 s

T
next

T
prev

S
tr

e
ss

 d
ro

p

Shear load

Normal 

   load

Quartz 

gouge

Slip displacement

transducer

20 22 24 26 28
Travel time (μs)

2
0

0
0

 a
.u

.

p
-w

a
v

e
 

a
rr

iv
a

l

Train Test

Fa
st

 s
li

p

S
lo

w
 s

li
p



Figure 2.



5.7

5.8

5.9

6

6.1
S

h
e

a
r 

s
tr

e
s
s
 (

M
P

a
)

4700

4800

4900

5000

5100

p
-w

a
v
e

 a
m

p
lit

u
d

e
 (

a
.u

.)

5715

5720

5725

p
-w

a
v
e

 v
e

lo
c
it
y
 (

m
/s

)

0

1

2

3

4

R
e

c
u

rr
e

n
c
e

 t
im

e
 (

s
)

p
-w

a
v
e

 a
m

p
lit

u
d

e
 (

%
)

p
-w

a
v
e

 v
e

lo
c
it
y
 (

%
)

3150 3155 3160 3165 3170

0

1

2

3

3150 3155 3160 3165 3170

0

0.05

0.1

Time (s)

Original feature

Time-advanced offset

Smoothed feature

Raw feature

(a)

(c)

(e)

(b)

(d)

(f )

Time to failure

Time since failure



Figure 3.



0 1 2 3 4

Time to next event, T
next

 (s)

0

1

2

3

4

T
im

e
 s

in
c
e

 l
a

s
t 
e

v
e

n
t,
 T

p
re

v
 (

s
)

0.1

0.2

0.3

0.4

0.5

0.6

1:1

2:1

1:
2

S
tr

e
s
s
 d

ro
p

 (
M

P
a

)

0 50 100 150 200

Event number

5.2

5.4

5.6

5.8

6

S
h

e
a

r 
s
tr

e
s
s
 (

M
P

a
)

Peak stress

Minimum stress

0 50 100 150 200

Event number

0

0.5

1

1.5

2

T
p

re
v

 /
 T

n
e

x
t

Period doubling

Period doubling

(a) (b) (c)



Figure 4.



5

5.5

6

18.6

18.7

18.8

10
-1

10
0

10
1

10
2

0.4

0.405

0.41

3550 3560 3570 3580

5710

5715

5720

Time (s)

p
-w

a
v

e
 v

e
lo

ci
ty

 (
m

/s
)

Tr
a

n
sm

is
si

v
it

y
Fa

u
lt

 s
li

p
 (

m
m

)
S

h
e

a
r 

st
re

ss
 (

M
P

a
)

S
li

p
 r

a
te

 (
µ

m
/s

)

(a)

(b)

(c)

(d)



Figure 5.



5.6

5.8

6

5.6

5.8

6

S
h

e
a

r 
st

re
ss

 (
M

P
a

)

P
re

d
ic

te
d

 s
h

e
a

r 
st

re
ss

 (
M

P
a

)

Measured data (MPa)Time (s) Time (s)

Training set Test set

Measured shear stress XGBoost model prediction

(a) (b) (c)

(d) (e) (f )

Trained on amplitude

Trained on velocity

R2 = 0.88 R2 = 0.80

R2 = 0.86 R2 = 0.80

Performance

3553 3554 3555 3556 3557

Time (s)

5.7

5.8

5.9

6

S
h

e
a

r 
s
tr

e
s
s
 (

M
P

a
)

0.04

0.08

0.12

0.16

3553 3554 3555 3556 3557

Time (s)

5.7

5.8

5.9

6

0.04

0.08

0.12

0.16

R
M

S
E

 (
M

P
a

)

5.6 5.8 6  3390 3400 3410 3420 3550 3560 3570 3580

(g) (h)

(g)

(h)

Train
Test



Figure 6.



1

2

3

1

2

3

3390 3400 3410 3420 3550 3560 3570 3580 0 2 4

T
im

e
 s

in
ce

 la
st

 e
v

e
n

t 
(s

)

P
re

d
ic

te
d

 T
S

F
 (

s)

Measured TSF (s)Time (s) Time (s)

Measured TSF XGBoost model prediction

Training set Test set Performance

3553 3554 3555 3556 3557

Time (s)

0

1

2

3

4

T
im

e
 s

in
c
e

 f
a

ilu
re

 (
s
)

0.5

1

1.5

2

3553 3554 3555 3556 3557

Time (s)

0

1

2

3

4

0.5

1

1.5

2

R
M

S
E

 (
s
)

(a)

(d)

Trained on amplitude

Trained on velocity

R2 = 0.86

R2 = 0.85

(b) (c)

(e) (f )R2 = 0.83

R2 = 0.78(g)

(h)

(g) (h)

Train
Test



Figure 7.



1

2

3

1

2

3

3390 3400 3410 3420 3550 3560 3570 3580 0 2 4T
im

e
 t

o
 n

e
x

t 
e

ve
n

t 
(s

)

P
re

d
ic

te
d

 T
T

F
 (

s)

Measured TTF (s)Time (s) Time (s)

Measured TTF XGBoost model prediction

(a) (b) (c)

(d) (e) (f )

Trained on amplitude

Trained on velocity

R2 = 0.88

R2 = 0.86

R2 = 0.80

R2 = 0.80

Training set Test set Performance

3553 3554 3555 3556 3557

Time (s)

0

1

2

3

4

T
im

e
 t
o

 f
a

ilu
re

 (
s
)

0.5

1

1.5

2

3553 3554 3555 3556 3557

Time (s)

0

1

2

3

4

0.5

1

1.5

2

R
M

S
E

 (
s
)

(g) (h)

(g)

(h)

Train
Test



Figure 8.



3550 3560 3570 3580

Time (s)

0

1

2

3

4

T
im

e
 t
o

 f
a

ilu
re

 (
s
)

Experimental data

Naïve constant recurrence interval model
R

2
 = 0.49



Figure 9.



10
-2

10
-1

10
0

10
1

10
2

V/V
0

0.55

0.56

0.57

0.58

0.59

0.6

0.61
C

o
e

ff
ic

ie
n

t 
o

f 
fr

ic
ti
o

n
, 

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04

Frictional state,  = b log( /
0
)

68 69 70 71

p-wave amplitude

0.55

0.56

0.57

0.58

0.59

0.6

0.61

C
o

e
ff
ic

ie
n

t 
o

f 
fr

ic
ti
o

n
, 

5710 5712 5714 5716 5718 5720

p-wave velocity (m/s)

(b)(a)

(c) (d)

Preseismic creep

C
o

se
is

m
ic

 s
lip

Interseismic locking

Interseismic healing

Preseismic creep

Coseismic slip

Coseismic slip

Interseismic healing

Preseismic creep

C
o

se
is

m
ic

 s
lip

Interseismic locking

Preseismic creep

      Interseismic healing

increases asperity stiffness
Coseismic slip further 

   destroys asperities

Preseismic creep destroys 

    some weak asperities

(e)


	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6
	Figure 7 legend
	Figure 7
	Figure 8 legend
	Figure 8
	Figure 9 legend
	Figure 9

