Modeling phytoplankton blooms and inorganic carbon responses to sea-ice variability in the West Antarctic Peninsula (WAP)

Cristina Schultz¹, Scott C. Doney¹, Judith Hauck², Maria Kavanaugh³, and Oscar Schofield⁴

¹University of Virginia ²Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research ³Oregon State University ⁴Rutgers University

November 24, 2022

Abstract

The ocean coastal-shelf-slope ecosystem west of the Antarctic Peninsula (WAP) is a biologically productive region that could potentially act as a large sink of atmospheric carbon dioxide. The duration of the sea-ice season in the WAP shows large interannual variability. However, quantifying the mechanisms by which sea ice impacts biological productivity and surface dissolved inorganic carbon (DIC) remains a challenge due to the lack of data early in the phytoplankton growth season. In this study, we implemented a circulation, sea-ice and biogeochemistry model (MITgcm-REcoM2) to study the effect of sea ice on phytoplankton blooms and surface DIC. Results were compared with satellite sea-ice and ocean color, and research ship surveys from the Palmer Long Term Ecological Research (LTER) program. The simulations suggest that the annual sea-ice cycle has an important role in the seasonal DIC drawdown. In years of early sea-ice retreat there is a longer growth season leading to larger seasonally integrated net primary production (NPP). Part of the biological uptake of DIC by phytoplankton, however, is counteracted by increased oceanic uptake of atmospheric CO_2 . Despite lower seasonal NPP, years of late sea-ice retreat show larger DIC drawdown, attributed to lower air-sea CO_2 fluxes and increased dilution by sea-ice melt. The role of dissolved iron and iron limitation on WAP phytoplankton also remains a challenge due to the lack of data. The model results suggest sediments and glacial meltwater are the main sources in the coastal and shelf regions, with sediments being more influential in the northern coast.

1	
2	Modeling phytoplankton blooms and inorganic carbon responses to
3	sea-ice variability in the West Antarctic Peninsula (WAP)
4	
5	C. Schultz ^{1,2,3} , S. C. Doney ¹ , J. Hauck ⁴ , M. T. Kavanaugh ⁵ , O. Schofield ⁶
6	
7	¹ University of Virginia, Department of Environmental Sciences, Charlottesville, VA, USA
8	² Woods Hole Oceanographic Institution, Woods Hole, MA, USA
9	³ Massachusetts Institute of Technology, Department of Earth and Atmospheric Sciences,
10	Cambridge, MA, USA
11	⁴ Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar und Meeresforschung, Bremerhaven,
12	Germany
13	⁵ Oregon State University, College of Earth, Ocean, and Atmospheric Sciences, Corvallis, OR, USA
14	⁶ Rutgers University, Center for Ocean Observing Leadership, New Brunswick, NJ, USA
15	
16	Corresponding author: Cristina Schultz (<u>cs3xm@virginia.edu)</u>
17	
18	
19	 Longer growth season in years of early sea-ice retreat lead to higher seasonally
20	integrated NPP, despite lower chlorophyll in January
21	• Sea ice is important for DIC drawdown by controlling duration of phytoplankton bloom,
22 23	 In the WAP, sedimentary iron has a larger role in the northern coast and shelf, glacial
24	meltwater likely the main source in the south
25	
26	
27	
28	
29	

31 Abstract

32 The ocean coastal-shelf-slope ecosystem west of the Antarctic Peninsula (WAP) is a biologically 33 productive region that could potentially act as a large sink of atmospheric carbon dioxide. The 34 duration of the sea-ice season in the WAP shows large interannual variability. However, 35 quantifying the mechanisms by which sea ice impacts biological productivity and surface 36 dissolved inorganic carbon (DIC) remains a challenge due to the lack of data early in the 37 phytoplankton growth season. In this study, we implemented a circulation, sea-ice and 38 biogeochemistry model (MITgcm-REcoM2) to study the effect of sea ice on phytoplankton 39 blooms and surface DIC. Results were compared with satellite sea-ice and ocean color, and 40 research ship surveys from the Palmer Long Term Ecological Research (LTER) program. The 41 simulations suggest that the annual sea-ice cycle has an important role in the seasonal DIC 42 drawdown. In years of early sea-ice retreat there is a longer growth season leading to larger 43 seasonally integrated net primary production (NPP). Part of the biological uptake of DIC by 44 phytoplankton, however, is counteracted by increased oceanic uptake of atmospheric CO_2 . 45 Despite lower seasonal NPP, years of late sea-ice retreat show larger DIC drawdown, attributed 46 to lower air-sea CO₂ fluxes and increased dilution by sea-ice melt. The role of dissolved iron and 47 iron limitation on WAP phytoplankton also remains a challenge due to the lack of data. The 48 model results suggest sediments and glacial meltwater are the main sources in the coastal and 49 shelf regions, with sediments being more influential in the northern coast.

50

51

52

1. Introduction

53

The Southern Ocean (south of 44°S) plays a crucial role in the global carbon cycle, acting as a major sink for modern anthropogenic CO₂ and modulating, on longer time-scales, oceanatmosphere CO₂ partitioning through variations in the biological carbon pump, surface nutrient utilization, and deep-ocean ventilation (Gruber and Doney, 2019). Contemporary air-sea CO₂ fluxes in the region reflect a combination of natural degassing to the atmosphere and anthropogenic CO₂ uptake (Lenton et al., 2013), with the southernmost latitudes representing only a small sink. However, large-scale estimates of air-sea CO₂ fluxes do not adequately resolve the coastal regions of Antarctica, which can be highly productive biologically and act as strong sinks of anthropogenic carbon (Arrigo et al., 2008). Therefore, a better assessment of the role of the Southern Ocean in the global carbon cycle relies on improving the understanding of the air-sea fluxes and biological carbon cycling in the coastal areas of Antarctica and the fate of the excess carbon.

66 One of these productive coastal regions is the shelf-slope on the West Antarctic Peninsula (WAP), a sea-ice influenced marine ecosystem with relatively high primary 67 68 production and net community production (NCP) during the summer season (Vernet et al., 69 2008; Ducklow et al., 2013; Ducklow et al., 2018), and air-sea CO₂ fluxes indicate a strong sink 70 of atmospheric carbon (Legge et al., 2015; Jones et al., 2017). Although the dissolved inorganic 71 carbon in the surface ocean is highly variable and controlled by a variety of physical and 72 biological factors, such as respiration, freshwater inputs, brine rejection and mixing with 73 subsurface waters rich in dissolved inorganic carbon (DIC; Carrillo et al., 2004; Eveleth et al., 74 2017), primary production is estimated to have a large role in controlling DIC during the 75 summer months (Legge et al., 2015).

76 Along the WAP there are long-term trends in several physical variables, with the last 77 decades exhibiting a substantial shortening of the sea-ice season (Stammerjohn et al., 2008; 78 2012), an increase in the surface ocean temperature of the order of 1°C (Meredith et al., 2005), 79 and melting of glaciers at an accelerating rate (Cook et al., 2005). Despite the long-term trends, 80 the duration of the sea-ice season, as well as the intensity of the phytoplankton bloom and the 81 surface carbon concentrations, show high interannual variability due to the influence of the 82 Southern Annular Mode (SAM) and El Niño Southern Oscillation (ENSO) in the region (Vernet et 83 al., 2008; Stammerjohn et al., 2008; 2012; Ducklow et al., 2013, Hauri et al., 2015). Positive 84 phases of SAM and La Niña events lead to warmer conditions and less sea ice along the WAP, with colder years and a longer sea-ice season observed in negative SAM and El Niño years. 85 86 These modes of climate variability also reinforce each other in this region, with years of

87 associated +SAM/La Niña (-SAM/El Niño) showing even warmer (colder) conditions
88 (Stammerjohn et al., 2008).

89 Understanding the mechanisms behind the variations in primary productivity and DIC in 90 the WAP is important not only to quantify its present contribution to the global carbon cycle, 91 but also to predict the changes that will occur under increased glacial meltwater input and 92 warmer conditions. Field sampling of the region, however, is limited by the presence of sea ice 93 and harsh weather during much of the year. The Palmer LTER (Long Term Ecological Research) 94 project (Ducklow et al., 2012; Ducklow et al., 2013) provides a valuable dataset that includes 95 physical, biological and chemical variables from cruises performed during the months of 96 January and February each year since 1993, but data is still limited in time to mid-summer 97 conditions. While satellite chlorophyll data helps to fill in the gaps in assessing the strength of 98 the phytoplankton blooms, the data is biased towards ice-free and non-cloudy areas, making it 99 hard to assess the timing of bloom initiation.

100 Although primary production in the WAP is patchy and can vary by an order of 101 magnitude from year-to-year (Vernet et al., 2008), some characteristics are observed 102 consistently. Phytoplankton blooms follow the retreat of sea ice, peaking first in the northern 103 and offshore areas, and there is a consistent onshore-offshore gradient, with coastal and shelf 104 waters being up to eight times more productive than offshore regions (Li et al., 2015). The 105 blooms are dominated by diatoms with secondary contributions from cryptophytes (Schofield 106 et al., 2017; Brown et al., 2019), and the main mechanism controlling its progression is thought 107 to be light limitation. Macronutrients are abundant (Kim et al., 2016) and micronutrient iron 108 limitation is not observed in the coastal areas (Carvalho et al., 2016), although it is expected in 109 the offshore regions (Arrigo et al., 2008; Li et al., 2015, Annett et al., 2017). Summer DIC 110 measurements show lower concentrations than would be expected from dilution due to 111 meltwater and glacial input, indicating that they are influenced by biological net community 112 production (Hauri et al., 2015; Legge et al., 2015).

Given the high interannual variability of the blooms and the patchiness observed during individual years, however, the importance of different processes in controlling the timing and intensity of the bloom, as well as long-term trends, remain unknown. The long-term trends in 116 chlorophyll based on satellite ocean color observations (decade-decade) were estimated to be 117 negative in the northern part of the grid and positive in the southern part (Montes-Hugo et al., 118 2010), related to sea ice decrease, winds, and changes in mixed layer depth (MLD). With less 119 sea ice the northern part of the WAP, where more light is available throughout the year, the 120 region is more exposed to wind mixing, which deepens the MLD and lowers photosynthetically 121 available radiation (PAR). In the southern WAP, areas that were previously completely covered 122 by sea ice had an increase in PAR and higher productivity. Kim et al. (2018), however, found a 123 trend of increase in chlorophyll values for near-shore time-series sites at Palmer Station and 124 Potter Cove (in the northern part of the WAP), and a decrease in Rothera Station, in the 125 southern region, driven by a sea-ice rebound that started in 2009.

While macronutrients are known to be abundant in the WAP, the concentrations of dissolved iron (dFe) and their sources are also not well constrained. It is unknown, therefore, the role dFe plays in controlling the intensity and patchiness of the bloom. This is due to the fact that collecting *in situ* seawater dFe data is a challenging process, and this micronutrient is undersampled in the WAP compared to macronutrients and biological data. Studies available, performed with relatively small datasets, reach conflicting conclusions regarding the source of dFe and how it limits primary production in different places and seasons.

133 Arrigo et al. (2017), using data from a late spring cruise, observed a correlation between 134 dFe and reduced sea ice, indicating that ice melt could be a source of iron. One caveat, 135 however, is that freshwater lenses were not linked to the higher dFe concentrations. Annett et 136 al. (2017), using dFe and oxygen isotope data from the Palmer LTER project from 2010 to 2012, 137 found that higher dFe concentrations were correlated with glacial freshwater content, 138 indicating that in coastal and shelf waters glacial runoff was the major source of iron. In a study 139 aimed at understanding the role of the Palmer Deep Canyon in providing iron to fuel 140 phytoplankton bloom, Sherrell et al. (2018) found that high dFe was linked to sediment sources 141 in coastal areas, which were transported to the shelf. This latter study found no connection 142 between high dFe and glacial input, arguing that sources might differ in different locations or 143 that vertical mixing might have muddled the interpretation of the freshwater sources in the 144 Annett et al. (2017) study.

145 It has been established that lower DIC concentrations are associated with higher 146 primary production in the late summer (Hauri et al., 2015; Legge et al., 2017), it is not clear how 147 these two variables co-vary throughout the season. Although normalizing DIC to salinity helps 148 to estimate the biological effect of drawdown by roughly correcting for dilution, variations in 149 MLD change the expected end-member concentrations for DIC and salinity throughout the 150 season through mixing with DIC-rich and more saline sub-surface waters.

151 In this study, we use a coupled ocean circulation, sea-ice and biogeochemistry model to 152 fill some of the gaps in the understanding of the mechanisms controlling phytoplankton bloom 153 and its impact on the surface DIC concentration in the WAP. We compare the model results to 154 cruise data from the Palmer LTER project and to satellite data to validate the model results, and 155 discuss some of the limitations from each method due to the spatial and temporal coverage.

156

157 **2. Methods**

158

159

- 2.1 Model description
- 160

161 The ocean circulation and sea-ice model used for this study is a regional domain version 162 of the Massachusetts Institute of Technology General Circulation Model (MITgcm), with a 163 hydrostatic setup that includes embedded sea-ice and ice-shelf modules. The grid used, shown 164 in Figure 1, covers the region extending from 74.7°S, 95°W in the southwest to 55°S, 55.6°W in 165 the northeast, with a horizontal resolution of 0.2° of longitude and ranging from 0.0538° to 166 0.1147° latitude. On the vertical, it uses z-level (fixed depth) with 50 layers spaced every 10 m 167 for the first 120 m. The atmospheric forcings were obtained from the ERA-Interim reanalysis 168 (Dee et al., 2011) with a horizontal resolution of 1.5° in latitude and longitude and a 6-hour 169 interval. Freshwater runoff representing melt of land-based ice and iceberg calving and melting 170 is provided with monthly climatological estimates, using the values estimated by Van Wessem 171 et al. (2016) distributed uniformly along the coast and linearly decreasing from land out to 100 172 km. The grid used is shown in Figure 1, and more details on the implementation of the ocean

physical circulation and sea-ice models are described in Regan et al. (2018) and Schultz et al.(2020).

175 The biogeochemical model used is the Regulated Ecosystem Model version 2 (REcoM2), 176 described in Hauck et al. (2013,2016). REcoM2 has 21 components, including two 177 phytoplankton groups (diatoms and small phytoplankton), one zooplankton group and organic 178 and inorganic forms of the main nutrients (iron, nitrogen, silica and carbon). Although not 179 added as a group, bacteria functionality is represented via remineralization. Emphasis is given 180 to phytoplankton physiology, with variable cellular stoichiometry and physiological rates that 181 depend on the intracellular ratios of nitrogen to carbon (N:C), chlorophyll to carbon (Chl:C) and 182 silica to carbon (Si:C). Phytoplankton chlorophyll is calculated as a function of irradiance and 183 nitrogen assimilation, degraded at a constant rate, and lost by aggregation and grazing. A 184 parameterization to include non-linearities in PAR due to the influence of partial sea-ice 185 coverage was added following Long et al. (2015).

186 The sources of DIC are respiration, remineralization of detritus and dissolution of 187 calcium carbonate, while sinks are fixation by primary production and formation of calcium 188 carbonate. Alkalinity increases by nitrogen assimilation and dissolution of calcium carbonate, 189 and decreases by remineralization and calcification. Air-sea CO₂ fluxes are calculated with code 190 based on the Ocean Carbon-Cycle Model Intercomparison Project (OCMIP), which uses a 191 guadratic relationship with wind based on Wanninkhof (1992). The surface CO_2 concentration is 192 calculated at every time-step using simulated DIC, alkalinity, temperature and salinity, and the 193 gas exchange is treated as a boundary condition for DIC.

Total dissolved iron (dFe) is assumed to be the sum of inorganic bound and organic complexed (FeL, where L is a ligand) iron. These two forms are in equilibrium according to:

$$K_{FeL} = \frac{Fe' \times L}{FeL}$$
(1)

197 198

where K_{FeL} is the equilibrium constant and Fe' is the concentration of free iron. Iron is added to the model via atmospheric deposition and as glacial input, and internal model sources include

- 201 respiration, remineralization (including diagenetic sediment source) and heterotrophic
- 202 excretion, while sinks are represented by scavenging (proportional to detritus concentration)
- and photosynthesis.
- 204
- 205

207 Figure 1: a) Map of model bathymetry for the full Southern Ocean sector for the West Antarctic 208 Peninsula (WAP) with the region of Palmer-LTER cruises marked in the blue rectangle and Palmer Station 209 marked in the red circle, and b) a larger scale map of coastal-shelf-slope (WAP) overlain with locations of 210 the Palmer-LTER cruise sampling stations. Blue dots represent the coastal points sampled, yellow dots 211 represent the shelf points sampled, and red dots represent the slope points sampled. The transect lines 212 in the southern region are lines 200 (southernmost) and 300, and the transect lines in the northern 213 region are 400, 500 and 600 (northernmost). Sub-regions analyzed are named northern coastal (n cs), 214 northern shelf (n_sh), northern slope (n_sl), southern coastal (s_cs), southern shelf (s_sh) and southern 215 slope (s_sl).

216

217

2.2 Initial and boundary conditions for REcoM2

- 218
- 219 Initial and boundary conditions for dissolved inorganic nitrogen and silicate (DIN and
- DSi) were obtained from the World Ocean Atlas 2013, version 2 (WOA13v2, Garcia et al., 2013).
- 221 Monthly climatologies were used from the surface to 500 m, with annual climatology applied

below this depth. DIC and alkalinity were obtained from the 1° resolution gridded Global Ocean
Data Analysis Project version 2 (GLODAPv2, Key et al., 2015), with DIC representing
contemporary concentrations centered in 2002 (Lauvseth et al., 2016). Atmospheric CO2
remains constant, at 380 ppm. Since dFe data is scarce, the initial and boundary conditions for
this nutrient were obtained from a version of MITgcm-REcoM2 configured globally without the
Arctic region, described in Hauck et al. (2016).

Atmospheric deposition and glacial sources of dFe are also represented in the model. 228 229 Dust deposition is derived from the Model of Atmospheric Transport and Chemistry (MATCH), 230 detailed in (Luo et al., 2008). Glacial inputs could be a significant source of iron to the region, 231 but there is a lack of data on glacial concentrations of this micronutrient. Annett et al. (2017) 232 estimated meteoric concentrations of dFe of 102 nmol/kg based on the difference of meteoric 233 water (obtained from oxygen isotopes) and seawater dFe measurements performed between 234 2011 and 2012. The high concentrations are due to a source mechanism involving dFe-enriching 235 subglacial processes and glacial meltwater streams. To avoid modifying the code, and taking 236 advantage of the fact that input of freshwater is done at the surface, the glacial input of dFe 237 was calculated to scale to the surface runoff at a concentration of 100 nmol/kg, but added to 238 the same file as the atmospheric deposition. Although the glacial dFe sources include seasonal 239 variation, a caveat of this approach is that neither glacial inputs of freshwater or dFe include 240 interannual variability.

241

242

2.3 Experiment description

243

The historical physical-biogeochemical simulation builds upon an existing ocean-sea ice physical hindcast simulation with the WAP MITgcm (Schultz et al., 2020). The model physics is forced by atmospheric reanalysis at the surface, seasonally-varying glacial freshwater input from the Peninsula, and simulated ocean physics and sea-ice climatologies at the lateral boundaries from a large-scale, low-resolution circumpolar MITgcm simulation (Holland et al., 2014). Schultz et al. (2020) present a detailed assessment of the physical model behavior and skill in terms of the geographic patterns, seasonal cycle, and interannual variability ocean mixed

251 layer depth (MLD), sea-ice concentration (SIC) and freshwater dynamics for the WAP coastal-252 shelf-slope region. Overall the model performs well in capturing regional sea-ice variations from 253 satellite observations, reflecting local thermodynamics of sea-ice formation and melt and wind-254 driven sea-ice advection and convergence. The model also does a credible job in simulating 255 summertime MLD patterns found in the Palmer LTER CTD data set, though the simulated MLDs 256 tend to be biased somewhat shallow compared to the field data. MLD reflects the complex 257 interactions of wind-driven mixing, seasonal heating and cooling, brine rejection and sea-ice 258 melt, and lateral circulation, and the MLD biases were improved to some extent with better 259 model treatments of Langmuir circulation and air-sea ice drag.

The physical-biogeochemical model was integrated for 31 years, from 1984 until 2014 in a similar fashion to the physics-only simulation. The first seven years of integration (1984-1990) are considered spin-up and the results are analyzed from 1993 (first year of the summer Palmer-LTER cruises) onward. Diagnostic outputs for simulated physics, nutrients, chlorophyll, net primary production (NPP), DIC and air-sea CO₂ fluxes were saved every 5 days.

265 Two passive tracer experiments were conducted to assess whether sediment diagenetic 266 sources of dFe to the water column could impact the concentration in the mixed layer. For 267 these experiments, the climatological monthly mean fluxes of dFe from sediment to the water 268 column were calculated, and it was determined that in the coastal and shelf waters there is a 269 seasonal difference, with more iron being released late summer and less in the spring (Figure 270 S1). This cycle reflects the phytoplankton bloom with an added lag, given it takes time for 271 organic matter to reach the bottom and be remineralized. The first passive tracer experiment 272 used a tracer that accounted for the total climatological amount of iron being released from the 273 sea floor during the month of February. At every grid point, a diagenetic dFe concentration anomaly (µmol/m³) was computed for the bottom layer grid cell assuming that all of sediment 274 275 Fe flux (μ mol/m³/d) for the entire month of February accumulated in the bottom layer. The 276 tracer was released at the bottom layer in the first day of February 1991, after the spin-up, and 277 the concentration of the passive tracer was tracked during the next year. A second experiment 278 used the same approach but using the diagenetic concentration of dFe of July, and released the 279 tracer in the first day of July, 1991.

281 282

2.4 Calculation of DIC-derived Net Community Production (NCP)

283 The metabolic balance of the whole ecosystem is determined by NCP, which also 284 governs the potential for biomass accumulation in the and carbon storage in the system. NCP is 285 used, in this study, to assess the influence of primary production in the DIC drawdown 286 throughout the warm season in the WAP. Since NCP is not a diagnostic variable of the model, it 287 was calculated from the DIC drawdown between September and January. September was 288 chosen as the start of the season since it is the earliest the phytoplankton bloom can start. For 289 each station, the total DIC inventory for each month was calculated as the vertically integrated 290 DIC from the September MLD to the surface. Since the mixed layer shoals during the period 291 considered, using the September MLD guarantees that vertical mixing effects will not influence 292 the inventory calculations performed.

The total DIC drawdown was then corrected for air-sea CO₂ fluxes and for dilution by sea-ice melt. The air-sea CO₂ flux is a diagnostic of the model, and the dilution by sea-ice melt was calculated using a salinity mixing curve. The hypothetical DIC inventory (integrated from the September MLD to the surface) at the end of the season (January) in the case where melt was the only process affecting it would be:

298

$$Int_DIC_{dil} = \frac{MLD_{Sep} \times \int_{MLD}^{0} [DIC]_{Sep}}{(MLD_{Sep} + melt_{Sep-Jan})}$$
(2)

299

where MLD_{Sep} is the September MLD, $\int_{MLD}^{0} [DIC]_{Sep}$ is the vertically integrated DIC in September (from bottom of MLD to the surface), and $melt_{Sep-Jan}$ is the total sea-ice melt during the season (September to January), given in meters. For this calculation, it is assumed that sea-ice had a DIC concentration of zero. The DIC drawdown due to sea-ice melt, then, would be:

$$\Delta Int_DIC = \int_{MLD}^{0} [DIC]_{Sep} - Int_DIC_{dil}$$
(3)

307

Once corrected for atmospheric fluxes and melt, the remaining DIC drawdown is due to
 biological activity and therefore can be equated to NCP. The seasonally integrated (September
 to January) NCP, therefore is calculated as:

311

$$NCP_{SONDJ} = \Delta DIC_{SONDJ} - \Delta Int_DIC - F_{CO_2}$$

(4)

312

313

where ΔDIC_{SONDJ} is the total DIC drawdown and F_{CO_2} is the air-sea CO₂ flux. The DICcalculated NCP is then compared to NPP, which is a diagnostic variable from the model. These calculations were done for each station and averaged for each sub-region.

317

318

319

2.5 Data used for skill assessment

320

321 The Palmer LTER started in 1991 and has collected physical, biological and chemical data 322 along the WAP since then (http://pal.lternet.edu/). The data include semiweekly water-column 323 sampling near Palmer Station on the southern end of Anvers Island from October through 324 March and an oceanographic cruise in January-February each year since 1993 (Ducklow et al., 325 2013). The data collected during the cruises include CTD (conductivity, temperature and depth) 326 casts, chlorophyll-a concentration, zooplankton abundance, DIC, alkalinity and nutrients. While 327 Palmer Station has higher temporal resolution on the data, the station data is more affected by 328 islands, near-shore bathymetry and synoptic scale phenomena that are not captured by the 329 model. The cruise sampling grid is too coarse to resolve mesoscale features given the short 330 Rossby radius on the shelf, a conclusion that is supported by studies using underway data from 331 Palmer LTER cruises (Eveleth et al., 2017). Individual sampling stations can also be affected by

phenomena such as the passage of icebergs, which will not be captured by the model.
Clustering the cruise stations in sub-regions and calculating the climatological values and their
anomalies makes it more likely that the data will represent the seasonal variations at a larger
spatial scale; and could therefore be more accurately compared to the model data.

336 This study uses data from lines 200 to 600 of the Palmer LTER grid, spanning 500 km 337 along the coast and 250 km across the shelf. As shown in Figure 1b, the across-shelf transects 338 are separated by 100 km, with stations 20 km apart in each transect. All the data is available on 339 the project web page (http://pal.lter.edu/data/). Not all stations are sampled for all variables 340 measured by the project each year, and each measurement does not necessarily reflect the 341 mean state of the water column during the summer. To decrease the influence of short-term 342 and small-scale processes, the cruise data was divided in north (lines 400 to 600) and south 343 (lines 200 and 300) regions, and into coastal, shelf and slope regions, based on bathymetry. Six 344 different regions are therefore analyzed: northern coastal (n cs), northern shelf (n sh), 345 northern slope (n sl), southern coastal (s cs), southern shelf (s sh) and southern slope (s sl). 346 Level 2 remote sensing reflectances (Rrs) from Aqua-MODIS (v. 2018) and SeaWiFs

347 (v.2018) spanning 1997-2018 were downloaded from NASA Goddard and binned to a common 348 10 km grid (Kavanaugh et al., 2015). Chlorophyll-a concentration was calculated per image 349 using an algorithm tuned specifically for the WAP (Dierssen and Smith, 2000). While this 350 algorithm was tested during SeaWiFs era, the superior skill has been confirmed with vicarious 351 comparisons using 1 km Aqua-MODIS data and modern in situ chlorophyll-a from recent Palmer 352 LTER station and cruise data (Kavanaugh et al., 2015). As the WAP can experience multiple 353 overflights per day, a daily composite was calculated over the grid, from which an 8 -day and 354 monthly averages was calculated using geometric means. SeaWiFs and MODIS time series were 355 merged using the method of Kavanaugh (et al., 2018), which applies a per-pixel seasonal 356 correction to SeaWiFs data.

357 Sea-ice satellite images are obtained from GSFC (Goddard Space Flight Center)
358 Bootstrap algorithm (Comiso, 2017). Climatological and monthly mean sea-ice concentration
359 (SIC) are calculated from binned 8-day means with horizontal resolution of 0.2 degrees in
360 latitude and longitude. Onset time of sea-ice advance is chosen to be the day in which the

361 average SIC of all the stations in each Palmer LTER sub-region reaches at least 0.15 (15% of the 362 area covered by sea ice) for 5 days in a row. Sea-ice retreat is assumed to be the last day in 363 which SIC is greater than 0.15 for the ice season. Further details are provided in Stammerjohn 364 (2008; 2012). 365 366 3 Results 367 368 3.5 Iron sources in the model 369 370 Given the low temporal and spatial coverage of available in situ dFe data, questions 371 regarding the mechanisms that supply this micronutrient to different regions in the WAP, as 372 well as how limiting iron is to primary production, still persist. While Arrigo et al. (2017) argues 373 that sea ice could be a major source during early spring, Annett et al (2017) found that glacial 374 meltwater was associated with higher dFe and Sherrell et al. (2018) found that dFe in coastal 375 areas was supplied by sediment sources near Palmer Deep canyon. 376 In the model, atmospheric deposition of iron is negligible, and the sources of dFe to the 377 mixed layer are glacial input, entrainment from below the mixed layer or transport from other 378 locations, including from the bottom layer which is enriched via sediment diagenetic processes. 379 The glacial source of dFe is prescribed; climatological estimates of freshwater runoff were 380 uniformly distributed along the coast and decreasing linearly in volume from the shore out to 381 100 km from the coast, and a concentration of 100 nM of dFe was added to this runoff. The 382 entrainment from below the mixed layer was calculated from the monthly climatology using

the equation:

384

$$F_{ent} = \frac{dMLD}{dt}\Delta[dFe]$$

385

386 where dMLD/dt is the deepening of the MLD from month to month and $\Delta[dFe]$ is the dFe 387 concentration difference between the mixed layer and the layer below. Equation 2 is only valid 388 for periods of deepening mixed layer, since the subsurface dFe concentrations are consistently

(5)

389 higher than the concentrations in the mixed layer. The fluxes during shoaling periods were set 390 to zero, since no dFe was added to the mixed layer. Estimating the influence of sediment dFe at 391 a certain location is more difficult given the role of circulation and transformation processes 392 while iron makes its way from the sediment to the mixed layer. Using the concentration of the 393 passive tracer experiments described in the Methods (Section 2.3) can give us an idea of where 394 this source could be significant, but quantifying how much dFe comes from the sediment is not 395 the goal of this experiment given that, unlike a passive tracer, iron could be consumed and 396 transformed along the way from the sediment to the sub-regions of interest.

397 Figure 2 shows the flux of glacial and entrainment sources to the mixed layer (in orange, 398 red), and the concentration of passive tracers in the ML during the year following their release 399 (in black). Diagenetic dFe is a major source only in the northern coastal region, having a smaller 400 impact in the southern coast and northern shelf, and no impact in the southern shelf and slope 401 regions. Glacial sources, as expected from the design of the forcing files, has diminishing 402 importance from the coast to the slope areas. Entrainment from below the mixed layer is a 403 source of iron from late summer to early spring in the shelf and slope, but this mechanism of 404 iron enrichment is halted from September through January while the mixed layer shoals.

405 This analysis shows that there is an (expected) difference in terms of iron supply 406 between coastal, shelf and slope areas, but also that there is a difference between the northern 407 and southern regions, stronger in the coastal region. The model results indicate that in the 408 northern coastal area, which is shallower and more influenced by circulation around the 409 islands, sedimentary processes are major source of dFe, while in the south glacial input is the 410 dominant source of dFe. This difference validates the hypothesis suggested in Sherrell et al. 411 (2018) that the discrepancies found between their study and the study of Annett et al. (2017) 412 could be due to different sources having different impacts throughout the WAP. While Annett 413 et al. (2017) found the highest correlations between meteoric water and dFe in the southern 414 part of the grid, the study of Sherrell et al. (2018) was aimed at understanding Palmer Deep, 415 located near-shore and closest to line 600 (north).

Figure 2: MITgcm-REcoM simulated glacial fluxes of dFe (orange), dFe entrainment from below the ML (red) in nmol/m³d (y-axis scale on the left of plot). Dotted lines in black and gray represent the concentration of passive tracers (January and July, respectively) released at the bottom in the mixed layer of each sub-region in the year following their release (y-axis scale on the right of plot). Notice the different y-axis scales for coastal region compared to shelf and slope regions.

418

426 While we suspect that the subsurface concentration of dFe in the model is higher 427 offshore than would be observed due to the values used for the initial and boundary conditions, 428 there is no data to validate this assumption. There are also significant uncertainties about the 429 transformation and scavenging rates for dFe along the WAP. If the mechanisms represented in 430 the model are correct, however, the higher iron concentrations found in regions of low sea ice 431 in the slope regions, as found in Arrigo et al. (2008), would be explained by the fact that low sea 432 ice concentration promotes mixing of surface waters with iron-rich subsurface waters by 433 enhancing wind action, not due to iron released from sea ice.

434

435

3.6 Model skill in reproducing phytoplankton bloom climatology

To assess the model skill in reproducing the observed bloom climatology, we compared the monthly mean surface chlorophyll concentrations and SIC from the model with the monthly mean satellite data, shown for the period between November and February in Figure 2. Similar to observations, the simulated progression of the bloom follows the retreat of sea ice from offshore to onshore and from north to south. In parts of the grid, particularly the southern shelf and slope, however, the start of the bloom happens later in the model due to a delay in the modeled sea-ice retreat in this region, which leads to lower PAR at the beginning of the season.

444 The model also simulates the onshore-offshore gradient in surface chlorophyll seen in 445 the observations, with higher concentration in the coastal and shelf areas. The simulated 446 chlorophyll, however, has higher values in the coast and shelf regions in December and in the 447 offshore areas throughout the season. It is thought that primary production offshore is limited 448 by iron (Garibotti et al., 2005), which is not the case in the model as can be seen in the seasonal 449 progression of the limitation terms, shown in Figure S2. Given the lack of iron data in the 450 region, particularly farther from the coast, the understanding of the iron dynamics is limited 451 and it is not possible to derive initial and boundary conditions from observations. Therefore, it 452 is possible that the model derived subsurface dFe, which reaches concentrations of 0.75 453 µmol/m3 in all sub-regions, is too high; leading to the higher chlorophyll values. The model also 454 shows a sharper decrease in chlorophyll from January to February compared to the satellite 455 data.

459 Figure 3: MITgcm-REcoM2 (top) and MODIS/SeaWifs (bottom) climatological surface chlorophyll
460 concentration for November, December, January and February (left to right). Black dashed line shows
461 SIC equal 0.5, and black full lines show SIC of 0.9

463 For each Palmer LTER survey cruise station, the data from the nearest model and 464 satellite grid points were extracted, and the evolution of the surface chlorophyll concentrations 465 and SIC are shown in Figure 4 along with the Palmer LTER surface chlorophyll data, assumed to 466 be the January mean. Although the Palmer LTER data only has one data point per station each 467 year, making it hard to assess whether each data point it is representative of the regional values 468 for that year, the climatological mean (calculated as the geometric mean of all the stations for 469 each sub-region between 1993-2014) is comparable to the satellite climatology. The Palmer 470 LTER and satellite data are similar in the northern region, while in the south the satellite shows 471 slightly higher surface chlorophyll concentrations.

472 From Figure 4 it is also seen that simulated January chlorophyll concentrations are 473 closer to the observed values in the coastal regions, particularly in the southern coast where

474 sea-ice advance and retreat is better represented. Although the simulated bloom starts later 475 than observed in the satellite data, the timing of the peak of the bloom coincides with the 476 observations in much of the grid, with the exception of the southern coast and slope. The 477 model chlorophyll values also show the lowest summer values in February, with increased 478 concentrations in March. Given that PAR availability in March is lower than in February, this can 479 be attributed to iron limitation. The iron limitation terms are lowest in January, indicating high 480 consumption during this month and leading to lower chlorophyll concentrations in early 481 February before iron is replenished by deepening of the mixed layer.

- 482
- 483

Figure 4: MITgcm-REcoM2 (light blue dashed line) and GSFC (gray dashed line) climatological monthly
sea ice concentration; MITgcm-REcoM2 (green) and MODIS/SeaWifs (black) log-transformed
climatological monthly surface chlorophyll concentration; Palmer-LTER log₁₀-transformed climatological
surface chlorophyll concentration (red dot, plotted as January mean), during July-June, for regions n_cs
(a), s_cs (b), n_sh (c), s_sh (d), n_sl (e), s_sl (f). Vertical lines represent standard deviation.

- 490
- 491

3.7 Interannual variability of the phytoplankton bloom

492

493 To analyze the interannual variability of the phytoplankton bloom, the anomalies 494 (relative to the climatology) of surface chlorophyll concentration were calculated for each subregion and for each dataset (Figure 5). For this comparison, the January monthly means were
used for the satellite and model data, and the reference period from which the anomaly was
calculated was from 1998, when satellite measurements started, until 2014. The figure shows
discrepancies among the datasets, which could be attributed to the limited data collection and
the patchiness of the bloom.

500 Retreat of sea-ice can be early during some sub-regions and late in others (Figure S3), 501 depending on temperature and wind patterns throughout the season. Sea-ice ridging in the 502 coastal areas can happen as sea-ice gets pushed from the slope and shelf areas. In the years in 503 which sea-ice retreat happened consistently early in all sub-regions, such as 1999 and 2009, 504 surface chlorophyll anomalies were mostly negative or close to neutral in all datasets, while 505 years of consistent late sea-ice retreat like 2005 and 2014 showed mostly positive or low 506 negative anomalies. The exception for this pattern is coastal chlorophyll anomalies from the 507 MODIS/SeaWifs dataset in 2005, which showed negative anomalies. In 2005, however, satellite 508 images were scarce in the coastal region (1 in the northern coast and 4 in the southern coast), 509 and it is possible that the satellite data missed the peak of the bloom during this season.

510 It is also worth noting that one of the limitations of the model is that it does not have 511 interannual variability in the glacial discharge. This could be the cause of the lower chlorophyll 512 concentrations simulated in some of the years in which satellite and cruise data show large 513 blooms, such as 2006 and 2011. The year 2011 is one of the only years for which dFe data is 514 available, and Annett et al. (2017) found that this year had much larger dFe and glacial 515 meltwater concentrations compared to 2010 and 2012, particularly in the southern region, 516 leading to an anomalously productive season. This was also a year of anomalously early sea-ice 517 retreat, which would otherwise lead to an early bloom and deeper MLD in January, usually 518 indicative of lower chlorophyll concentrations during this month.

Although there are marked differences between the MODIS/SeaWifs and Palmer LTER data, the correlations in time (using the January means for satellite and model data, and cruise data) calculated for the surface chlorophyll for each sub-region range from 0.52 in the northern slope to 0.73 in the southern shelf and are larger than the correlations between these datasets and the model data (Table S1). The only significant correlation for the simulated data was with 524 the Palmer-LTER data in the northern coast (0.57). In years in which all sub-regions showed 525 anomalous early or late sea-ice retreat (Figure S3), however, there was agreement between the 526 datasets on whether this was a high or low chlorophyll year in January. The seasons of 1998-527 1999 and 2008-2009 were chosen to represent years of early sea-ice retreat, with negative chlorophyll anomalies in all datasets; and 2004-2005 and 2013-2014 were chosen to represent 528 529 years of late sea-ice retreat, with positive chlorophyll anomalies. Although 2011 also showed early sea-ice retreat, it was not considered in analyses in the next sections due to the 530 531 anomalously high dFe observed, which would mean it does not necessarily represent the 532 mechanisms that took place during the other low-ice years.

535

Figure 5: Surface chlorophyll concentration anomalies, relative to the cruise climatology for Palmer-LTER data (a,b), and relative to January climatology for MODIS/SeaWifs (c, d) and MITgcm-REcoM2 (e, f); for northern region (a, c, e) and southern region (b, d, f).

3.8 Phytoplankton blooms in seasons of early and late sea-ice retreat

541

542 To compare the differences between years of early sea-ice retreat and the climatology, the monthly geometric mean surface chlorophyll concentration for the early sea-ice retreat 543 544 seasons (1998-1999, 2008-2009) were calculated for the satellite and model data and plotted 545 against the monthly climatology (Figure 6). The Palmer LTER data is considered as a January mean, and is also plotted in the same figure. The model output suggests an earlier bloom 546 547 compared to the climatology in the years of early sea-ice retreat. In the satellite data, this trend 548 is observed in the slope region, and hard to determine in the coastal region given the lack of 549 data during the spring and early summer.

- 550
- 551

559 By January, however, all datasets agree that surface chlorophyll concentrations are 560 generally lower than the climatological values, with exception being that Palmer LTER shows 561 slightly higher concentrations in the northern slope and the satellite data has similar values to 562 the climatology in the northern shelf. In the model, lower chlorophyll values in January can be 563 attributed to iron limitation, given that an earlier bloom leads to earlier depletion (Figure S2). 564 Although the model tends to underestimate MLD (Schultz et al., 2020), the time at which light 565 limitation is lifted, associated with the sea-ice retreat, is well represented. It is possible that the 566 higher chlorophyll values (compared to observations) seen in the model are partially fueled by 567 less light limitation at the bottom of the mixed layer. In 2011, however, deeper than usual MLD 568 due to very early sea-ice retreat was observed in the coastal and shelf areas during the Palmer 569 LTER cruise (Schultz et al., 2020), associated with high chlorophyll and dFe concentrations 570 (Annett et al., 2017). This indicates that although light limitation has a large role in controlling 571 the timing of the bloom, there is enough PAR in mid-summer to fuel large primary production 572 even in years of anomalously deep mixed layer, and iron limitation could be the reason for the 573 lower concentrations observed.

574 During the years of late sea-ice retreat (2004-2005,2013-2014, Figure 7) it is hard to 575 determine the time of the start of the bloom in the satellite data, given that chlorophyll cannot 576 be observed earlier in the season due to sea-ice cover. During December and January, however, 577 the satellite data shows that chlorophyll concentrations are higher than their climatologies in 578 the coastal region and southern shelf, with values similar to the climatology in the northern 579 shelf and lower concentrations in the slope region. The Palmer-LTER and model data indicate 580 higher chlorophyll in all sub-regions by January. In the model, this is due to a late start of the 581 bloom, leading to a later peak.

582 Overall, despite disagreements in the mean chlorophyll values, all the datasets agree 583 that the years with early sea-ice retreat had lower chlorophyll concentrations in January while 584 late sea-ice retreat leads to higher chlorophyll concentrations. While difficult to assess the 585 progression of the bloom in each set of years from the satellite and cruise data, the model 586 indicates that less sea ice leads to an earlier bloom and less dFe available by January, with the 587 opposite happening in years of increased sea ice. While the timing of the bloom is dictated by 588 PAR limitation, the summer concentrations depend on how much dFe has been consumed589 earlier in the season.

- 590
- 591

592

Figure 7: MITgcm-REcoM2 (green) and MODIS/SeaWifs (black) log₁₀-transformed climatological monthly
surface chlorophyll concentration (full line) and mean concentration for years of late sea-ice retreat
(dashed line); Palmer-LTER log₁₀-transformed climatological surface chlorophyll concentration (red star,
plotted as January mean) and mean for years of early sea-ice retreat (pink star), during July-June, for
regions n_cs (a), s_cs (b), n_sh (c), s_sh (d), n_sl (e), s_sl (f). Vertical lines represent standard deviation.

599 600

3.9 Spatial distribution and interannual variability of DIC

601

January monthly mean surface DIC concentrations from the model output were compared to the Palmer LTER cruise data (Figure 8), with the anomalies relative to the climatology for each sub-region also shown. The model is able to capture the onshore-offshore DIC gradient seen in the observations, with lower concentrations towards the coast (Hauri et al., 2015). However, the simulated values have a bias towards lower concentrations compared to the cruise data. There are a few limitations in the model that could explain the low bias, one

608 of them being that freshwater inputs are added at the surface, which could lead to less mixing 609 and lower DIC from dilution. Also, the initial and boundary conditions are based on gridded 610 datasets that are derived from observations mostly collected in open-ocean locations, and 611 Jones et al. (2017) found that DIC concentrations in Antarctic Circumpolar Water (ACC) derived 612 water masses were higher in the shelf due to respiration and remineralization as the water 613 mass makes its way from the slope to the coast. A third reason that could explain the bias 614 towards lower DIC is that a bias towards higher NPP observed in the model results, which could 615 also reflect higher net community production and carbon uptake.

616 Despite a bias towards lower concentrations, the interannual variability of simulated DIC 617 is similar to the variability observed in the Palmer LTER cruise data in most regions, with the 618 exception of the southern slope (Table S2). DIC variations throughout the season are influenced 619 by a series of physical and biological mechanisms (Ducklow et al., 2018). The variability of the 620 physical mechanisms that affect DIC concentrations, which are deepening of the MLD (which 621 leads to entrainment of high-DIC sub-surface waters) and sea ice melt (which leads to dilution), 622 are well represented in the model (Schultz et al., 2020). Although the phytoplankton bloom is 623 patchy and chlorophyll concentration may vary throughout the season at a certain location, the 624 biological signature of net community production carbon uptake lasts throughout the growth 625 season (September to the Palmer LTER survey cruise in January). Therefore, the better 626 agreement between simulated and cruise DIC values compared to the chlorophyll 627 concentration adds to the evidence that part of the disagreement between the chlorophyll 628 datasets is due to the patchiness of the data, and that integrated over the season, the biological 629 processes are better represented in the model.

Some of the discrepancies between simulated and cruise DIC are likely to be due to the same mechanisms as the discrepancies in the chlorophyll values. In 2011, the model is not capable of capturing the large bloom observed, leading to positive DIC anomalies in the southern region while the cruise data shows negative anomalies. For the years of early sea-ice retreat analyzed, both REcoM2 and Palmer-LTER data show positive DIC anomalies, while for the years of late sea-ice retreat the anomalies are mostly negative with the exception of the slope region.

Figure 8: Palmer-LTER (left) and MITgcm-REcoM2 (right) January surface DIC concentrations (a, b, e, f)
for north (a, b) and south (e, f) regions; and anomalies relative to the mean (January mean for

642 simulated, and cruise mean for Palmer-LTER, c, d, g, h).

- 643
- 644
- 645

3.10 DIC-derived Net Community Production

646

647 Although the DIC anomalies provide an indication of the physical and biological

648 processes that took place throughout the growth season, further quantification is needed to

649 assess how much of the DIC drawdown is due to net biological uptake, air-sea fluxes and sea ice 650 melt. The calculations described in section 2.4 provide an estimate of the influence of each of 651 these processes in the DIC, and the total DIC drawdown, air-sea CO2 fluxes, DIC dilution due to 652 sea ice melt, NCP and seasonally integrated NPP (a diagnostic variable) are shown, for each sub-653 region, on Figure 9. January NPP is shown in Figure S5. All these figures include the calculations 654 for the climatology and for the years of early and late sea-ice retreat described in previous 655 sections.

656 In a study using Palmer LTER cruise data, Ducklow et al. (2018) find that NCP is 657 significantly higher than measured export flux, a conclusion that is also reached by other 658 studies (Buessler et al., 2010; Weston et al., 2013; Stukel et al., 2015). Within each year 659 sampled, the variability of each rate process measured, including NCP, was moderately high in 660 both space and time and production likely being higher in sunny days (versus cloudy 661 conditions). The authors also point out that one of the big uncertainties in trying to assess the 662 relative magnitude of each estimates is the difficulty in specifying the start of the growing 663 season after sea-ice retreats.

664 Total DIC drawdown is highest in the northern shelf and coastal areas during years of 665 late sea-ice retreat, compared to the climatology and to years of early sea-ice retreat (Figure 9 a,b). This happens despite NCP being higher in years of early sea-ice retreat throughout the 666 667 whole grid (Figure 9 g,h). The largest drawdown was observed in the northern coast, with a climatological decrease of 4.16 molC/m² during the season that reached 4.74 molC/m² during 668 669 years of late sea-ice retreat. Higher NCP in years of low SIC is consistent with the satellite 670 estimates of Li et al. (2015), who found that variations in NCP were linked to sea ice, and that 671 annually integrated NCP was higher with higher sea surface temperature and longer bloom 672 season. The larger DIC drawdown despite lower NCP indicates a strong influence of physics in 673 the inorganic carbon cycle. With increased sea ice throughout the season, there is less air-sea 674 transfers (which are a source of DIC) and more dilution by late summer.

In previous studies using Palmer LTER cruise data, Hauri et al. (2015) found that DIC was
driven by increased biological activity in the south of the WAP and by increased meltwater
towards the north, and Eveleth et al. (2017) found that physical processes had a more

678 pronounced influence in the southern onshore region where active sea-ice melt was still 679 happening. The model results show that although climatological summer meltwater values 680 (December to February) are higher in the southern part of the grid (Schultz, et al., 2020), 681 integrated over spring and summer sea-ice melt has a larger influence in the northern WAP in 682 years of late sea-ice retreat, and larger influence in the southern part in years of early sea ice 683 retreat (Figure 9 e, f). The calculation performed to account for the influence of meltwater takes into account the depth of the MLD, which is shallower in the northern part of the grid 684 (Schultz et al., 2020), increasing the effect of melt. Both sea-ice melt and primary production 685 686 tend to be higher in the southern part of the grid by January and February when the Palmer 687 LTER cruise takes place, but the relative importance of each process varies from year to year. 688

- ----
- 689

Figure 9: Seasonally integrated (between September and January) total vertically integrated DIC
 drawdown (a, b), air-sea CO₂ flux (c, d), effect of sea-ice melt on DIC concentration (e, f), DIC-derived
 NCP corrected for air-sea flux and sea ice melt (g, h) and NPP (I, j) for the northern (left) and southern
 (right) regions. The sign reflects the effect on the DIC inventory, so that positive F_{cO2} reflects a flux into
 the ocean and negative meltwater influence reflects dilution. Shown for climatology (black), years of
 early sea-ice retreat (red, 1998-1999, 2008-2009) and years of late sea-ice retreat (blue, 2004-2005,
 2013-2014).

699

700 Evidence that both biological and physical processes can lead to anomalously high DIC 701 drawdown is seen in the shelf sub-regions, where both years of early and late sea-ice retreat 702 show more DIC drawdown than the climatological values. In years of early retreat, the low 703 dilution by meltwater and increased DIC input by air-sea CO₂ fluxes is compensated by the higher NCP, which reaches values as high as 6.04 molC/m^2 in the northern shelf. In years of high 704 705 SIC, however, low air-sea fluxes and higher meltwater content keep the DIC drawdown below 706 climatological values despite the low NCP. The WAP is a sink of atmospheric carbon throughout 707 the season in all years, but the amount of carbon the ocean uptakes depends on the duration of 708 the ice-free season.

709 Years of high SIC show higher productivity in January, and overall higher DIC drawdown. 710 If NPP and NCP are integrated over the spring and summer seasons, however, it is seen that this 711 is because of the timing of the bloom associated with the effect of physics in the DIC 712 drawdown, not because of higher productivity. While January high chlorophyll values are 713 accompanied by larger DIC drawdowns, these effects are not directly linked, although they are 714 both driven by the timing and magnitude of sea-ice melt. Years of low SIC also show more DIC 715 drawdown than the climatology, driven by the higher NCP throughout the season. Despite the 716 high NCP, years of early sea-ice retreat still show positive DIC anomalies in January. The 717 anomalies, however, reflect the positive anomalies that are observed at the beginning of the 718 season (Figure S5), which are also positive possibly due to increased mixing with DIC-rich 719 subsurface waters under lower SIC.

720

721 4 Discussion and Conclusions

723 The MITgcm-REcoM2 model implemented for the west Antarctic Peninsula (WAP) is able 724 to represent the main patterns observed in the phytoplankton bloom, such as higher 725 concentrations onshore and progression of the bloom from north to south and offshore to 726 onshore. The onshore-offshore chlorophyll gradient seen in the observations, however, is not 727 as pronounced in the model simulation. Li et al. (2015) find that the annually integrated net 728 community production (NCP) in the coastal areas is up to 8 times higher than what is observed 729 offshore, and Vernet et al. (2008) finds that primary production ranges from 500-750 mgC/m²d shoreward of the continental slope and from 250-400 mgC/m²d over the slope region. In the 730 731 model, January net primary production (NPP) is 2.25 times higher in the coastal region 732 (compared to the slope) in the northern region, and 1.91 times higher in the southern region. 733 Integrated over September-January, however, the whole grid shows comparable NPP.

734 Comparing chlorophyll values among the different datasets (cruise, satellite and model) 735 is challenging given that the phytoplankton bloom in the WAP is highly variable and patchy, and 736 there are gaps in the temporal and spatial coverage of the observations. Some of the 737 discrepancies observed between datasets in the chlorophyll anomalies, therefore, are likely 738 attributable to timing of the sampling. Dissolved inorganic carbon (DIC) anomalies in mid-739 summer, on the other hand, are the result of the cumulative effect of processes that took place 740 throughout the season. The model captures well the climatological spatial pattern in the 741 summer surface DIC field with larger seasonal drawdown and dilution onshore, and the model 742 is able to reproduce much of the interannual variability seen in the DIC measurements from the 743 Palmer LTER cruises. We can estimate the importance of biological and physical processes in 744 driving DIC drawdown each year knowing that the model predicts higher seasonally integrated 745 productivity in years of low SIC in accordance to the literature and that sea ice and MLD 746 variability are well represented in the model (Schultz et al., 2020).

In years of early sea-ice retreat, both observations (satellite and cruise) and model data
show lower chlorophyll concentrations in January compared to the climatology. While January
NPP is also lower than climatology, seasonally integrated NPP (September to January) is higher,
with a longer productive season due to light limitation being lifted earlier. Surface DIC

drawdown during the same period, however, is lower despite the increased NPP. This can be
attributed to the increased air-sea CO₂ fluxes and to decreased dilution by sea ice melt. Years of
late sea-ice retreat, on the other hand, show higher than climatological chlorophyll
concentrations in January in all the datasets analyzed. The model results indicate that these
years exhibit NPP higher than the climatology for January, but overall less seasonally integrated
NPP. The longer sea-ice season also leads to a smaller sink of atmospheric CO₂ and increased
influence of sea-ice melt, resulting in larger DIC drawdown between September and January.

758 Although it is hard to estimate when the bloom starts in the satellite data due to cloud 759 and sea-ice cover, in the model results the January chlorophyll concentration anomalies are a 760 result of the timing of the bloom; with late sea-ice retreat, the light limitation is lifted later in 761 the year and the bloom is closer to its peak in January, while early sea-ice retreat leads to an 762 earlier bloom and a weaker phytoplankton bloom in January, with the productivity decreasing 763 due to lower iron concentrations. The model results are consistent with DIC concentrations 764 deviating from the dilution curve, with lower concentrations than expected, in January during 765 years of high chlorophyll concentrations as found in Hauri et al. (2015), but our results suggest 766 that sea-ice melt also plays an important role in driving the seasonal DIC drawdown. Air-sea CO_2 767 fluxes have a much larger influence in counteracting the drawdown by biological activity in 768 years of early sea-ice retreat, due to longer ice-free season.

769 Since ocean dissolved iron (dFe) data is scarce, building initial and boundary conditions 770 for this micronutrient is a challenge. Given that iron is thought to be the limiting factor 771 offshore, and that complete iron limitation is not encountered in the model, we suspect that 772 the initial and boundary conditions overestimate dFe, which is supplied in excess in the offshore 773 region due to mixing with iron-rich subsurface waters. The lack of iron data is not only a 774 limitation to build reliable forcings for the model, but also to understand the mechanisms 775 governing the phytoplankton spatial and temporal variability in the WAP. The role of different 776 sources of dFe in the WAP biogeochemistry, therefore, is a question that requires future 777 research and increased field sampling.

778 Interannual variability of glacial sources of freshwater and dFe are also missing.779 Although there is substantial melting of glacial waters on the continent, most of it freezes

780 before reaching the ocean (Van Wessem et al., 2016). The re-freezing of glacial melt impedes 781 the estimation of yearly runoff to the ocean, although a climatology can be obtained using the 782 mass balance over a larger time scale. Some of the discrepancies in chlorophyll concentration 783 between model and data are attributed to the lack of interannual variability in the glacial dFe 784 input. In 2011, Annett et al. (2017) found anomalously high dFe concentrations linked to 785 increased glacial meltwater, which in turn led to large and positive chlorophyll anomalies. This 786 was a warm year with very early sea-ice retreat, and the high chlorophyll concentration differs 787 from what is observed in other years of early SIC retreat (decreasing bloom by January). It 788 seems likely, therefore, that 2011 was indeed an anomalous year with high glacial input leading 789 to a sustained large bloom, and that the lack of interannual variability in the glacial inputs in the 790 model prevented it from representing the high bloom.

791 Sherrell et al. (2018) found that dFe near Palmer Deep (on the northern, coastal part of 792 the grid) is provided by sediment sources in coastal, shallower areas, which is then advected to 793 the shelf region. The authors also argue that the difference from the hypothesis proposed by 794 Annett et al. (2017), that dFe is mostly from glacial origin, could be due to regional differences 795 or due to errors in the data interpretation of Annett et al. (2017), which would be caused by vertical mixing weakening the ¹⁸O isotope signature used to estimate the origin of the 796 797 freshwater in that study. The model results suggest that sediment sources of dFe are important 798 in the coastal regions, and that part of the dFe in the northern shelf is also of sedimentary 799 origin. In the southern coast, however, glacial inputs and mixing with subsurface waters are 800 much larger sources of dFe than sediments. Our results, therefore, indicate that there are 801 regional differences in how iron is provided.

Since the model was able to reproduce much of the variability related to sea ice without meltwater accounting for a source of dFe, we hypothesize that sea ice controls the blooms through its influence in the physics of the ocean, but that it is not a significant source of dFe. This conclusion stands even assuming that the magnitude of dFe sources are inaccurate, since the physics of the model is sufficiently well represented to assume that the distribution of the iron inputs is accurate. 808 The MITgcm-REcoM2 model results help to fill in the gaps in understanding the link 809 between the ocean biology, chemistry and physics in the WAP earlier in the warm season, when 810 the presence of clouds and sea ice hinders the acquisition of satellite and cruise data. Further 811 quantification of each process in driving carbon sinks in the area rely on acquiring more spring 812 and early summer data, and will greatly benefit from sampling efforts currently being deployed 813 using moorings, buoys and gliders. Our results suggest that early sea ice retreat leads to an 814 earlier bloom, with overall higher productivity during the summer season but lower chlorophyll 815 concentrations in January. In years of late sea ice retreat, the bloom is closer to the peak in 816 January, but the associated larger drawdown in DIC also reflects smaller air-sea CO₂ fluxes and 817 increased sea ice melt. If the trends towards longer ice-free seasons and increased glacial melt 818 persists, it is likely that the WAP will be a larger sink of atmospheric carbon with increased NCP. 819

820

821 Acknowledgements

822 The authors thank the scientists, students, technicians and ship crew, officers and captains 823 involved in collecting Palmer LTER time series data. C. Schultz, S. Doney, M. Kavanaugh and O. 824 Schofield acknowledge support by the US National Science Foundation (grant PLR-1440435), 825 and C. Schultz and S. Doney acknowledge support from the University of Virginia. The MITgcm 826 model is an open source model (mitgcm.org). The version used in this study, with added 827 parameterizations and specific configurations, are on C. Schultz's github 828 (https://github.com/crisoceano/WAP_MITgcm). Copies of the forcing files needed for the 829 simulations are in four separate records on zenodo.org, under DOIs 10.5281/zenodo.3627365, 830 10.5281/zenodo.3627564, 10.5281/zenodo.3627742, and 10.5281/zenodo.4342315. 831 832

- 833 References
- 834

835	Annett, A.L., Skiba, M., Henley, S.F., Venables, H.J., Meredith, M.P., Statham, P.J., Ganeshram,
836	R.S. (2015) Comparative roles of upwelling and glacial iron sources in Ryder Bay, coastal west
837	Antarctic Peninsula, Marine Chemistry, 176, 21-33. Doi: <u>10.1016/j.marchem.2015.06.017</u>
838	
839	Annett, A.L., Fitzsimmons, J.N., Séguret, M.J.M., Lagerström, M., Meredith, M.P., Schofield, O.
840	& Sherrell, R.M. (2017) Controls on dissolved and particulate iron distributions in surface waters
841	of the Western Antarctic Peninsula shelf. Marine Chemistry, 196, 81-97.
842	doi:10.1016/j.marchem.2017.06.004.
843	
844	Arrigo, K.R., van Dijken, G., Long, M. (2008) Coastal Southern Ocean: A strong anthropogenic
845	CO2 sink, Geophysical Research Letters, 35, L21602. Doi:10.1029/2008GL035624
846	
847	Arrigo, K.R., van Dijken, G.L., Alderkamp, A.C., Erickson, Z.K., Lewis, K.M., Lowry, K.E., Joy-
848	Warren, H.L., Middag, R., Nash-Arrigo, J.E., Selz, V., van de Poll, W. (2017) Early spring
849	phytoplankton dynamics in the western Antarctic Peninsula. Journal of Geophysical Research –
850	Oceans, 122, 9350-9369. Doi: 10.1002/2017JC013281
851	
852	Brown, M. S., Munro, D. R., Feehan, C. J., Sweeney, C., Ducklow, H. W., Schofield, O. 2019.
853	Enhanced oceanic CO_2 uptake along the rapidly changing West Antarctic Peninsula. Nature
854	Climate Change. DOI: 10.1038/s41558-019-0552-3
855	
856	Buessler, K.O., McDonnell, A.M.P., Schofield, O.M.E., Steinberg, D.K., Ducklow, H.W. (2010) High
857	particle export over the continental shelf of the west Antarctic Peninsula, Geophysical Research
858	Letters, 37, L22606. Doi:10.1029/2010GL045448
859	
860	Carrillo, C.J., Smith, R.C., Karl, D.M. (2004) Processes regulating oxygen and carbon dioxide in
861	surface waters west of the Antarctic Peninsula, Marine Chemistry, 84, 161-179.
862	Doi:10.1016/j.marchem.2003.07.004
0.00	

- 864 Carvalho, F., Kohut, J., Oliver, M. J., Sherrell, R. M., Schofield, O. (2016) Mixing and
- 865 phytoplankton dynamics in a submarine canyon in the West Antarctic Peninsula. Journal of
- 866 Geophysical Research DOI: 10.1002/2016JC011650
- 867
- 868 Comiso, J. C., (2017), Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-
- 869 SSMIS, Version 3. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed
- 870 Active Archive Center. doi: <u>10.5067/7Q8HCCWS4I0R</u>
- 871
- 872 Cook, A.J., Fox, A.J., Vaughan, D.G. & Ferrigno, J.G. (2005), Retreating glacier fronts on the
- Antarctic Peninsula over the past half-century. *Science*, 308, 541-544.
- 874 doi:10.1126/science.1104235
- 875
- Dierssen, H.M. and Smith, R.C. (2000), Bio- optical properties and remote sensing ocean color
- algorithms for Antarctic Peninsula waters. Journal of Geophysical Research: Oceans, 105(C11),
- 878 26301-26312. Doi: 10.1029/1999JC000296
- 879
- Bucklow, H.W., W.R. Fraser, M.P. Meredith, S.E. Stammerjohn, S.C. Doney, D.G. Martinson, S.F.
 Sailley, O.M. Schofield, D.K. Steinberg, H.J. Venables, and C.D. Amsler (2013) West Antarctic
- Peninsula: An ice-dependent coastal marine ecosystem in transition, Oceanography, 26(3), 190-
- 883 203. Doi:10.5670/oceanog.2013.62
- 884
- 885 Ducklow, H.W., A. Clarke, R. Dickhut, S.C. Doney, H. Geisz, K. Huang, D.G. Martinson, M.P.
- 886 Meredith, H.V. Moeller, M. Montes-Hugo, O. Schofield, S.E. Stammerjohn, D. Steinberg, and W.
- 887 Fraser (2012) The marine ecosystem of the West Antarctic Peninsula, in Antarctica Ecosystems:
- An Extreme Environment in a Changing World, 121-159pp, ed. A.D. Rogers, N.M. Johnston, E.J.
- 889 Murphy, and A. Clarke, Wiley-Blackwell, ISBN: 978-1-4051-9840-0.
- 890
- B91 Ducklow, H.W., Stukel, M.R., Eveleth, R., Doney, S.C., Jickells, T., Schofield, O., Baker, A.R.,
- 892 Brindle, J., Chance, R., Cassar, N., (2018). Spring-summer net community production, new

production, particle export and related water column biogeochemical processes in the marginal
sea ice zone of the West Antarctic Peninsula 2012-2014, Philosophical Transactions of the Royal
Society A, 20170177. Doi:10.1098/rsta.2017.0177

896

897 Eveleth, R., Cassar, N., Sherrell, R.M., Ducklow, H., Meredith, M.P., Venables, H.J., Lin, Y., and Li,

898 Z., (2017) Ice melt influence on summertime net community production along the Western

Antarctic Peninsula, Deep Sea Research Part II: Topical Studies in Oceanography, 139, 89-102.

- 900 Doi:10.1016/j.dsr2.1016.07.016
- 901

902 Eveleth, R., Cassar, N., Doney, S. C., Munro, D. R., Sweeney, C., (2017) Biological and physical

903 controls on O2/Ar, Ar and pCO2 variability at the Western Antarctic Peninsula and in the Drake

Passage, Deep Sea Research Part II: Topical Studies in Oceanography, 139, 77-88.

905 Doi:10.1016/j.dsr2.2016.05.002

906

907 Garcia, H. E., R. A. Locarnini, T. P. Boyer, J. I. Antonov, O.K. Baranova, M.M. Zweng, J.R. Reagan,

908 D.R. Johnson (2014) World Ocean Atlas 2013, Volume 4: Dissolved Inorganic Nutrients

909 (phosphate, nitrate, silicate). S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 76,

910 25 pp.

911

- 912 Garibotti, I.A., Vernet, M., Ferrario, M.E., (2005) Annually recurrent planktonic assemblages
- 913 during summer in the seasonal ice zone west of the Antarctic Peninsula (Southern Ocean),
- 914 Deep-Sea Research I, 52, 1823-1841. Doi:10.1016/j.dsr.2005.05.003
- 915
- 916 Gruber, N. and S.C. Doney, (2019) Modeling of ocean biogeochemistry and ecology, in
- 917 Encyclopedia of Ocean Sciences (third edition), ed. J.K. Cochran, Elseiver, 5, 291–302,

918 doi:10.1016/B978-0-12-409548-9.11409-5

- 920 Hauck, J., Völker, C., Wolf-Gladrow, D.A., Laufkötter, C., Vogt, M., Aumont, O., Bopp, L.,
- 921 Buitenhuis, E.T., Doney, S.C., Dunne, J., Gruber, N., Hashioka, T., John, J., Le Quéré, C., Lima,

922	I.D., Nakano, H., Séréfian & R., Totterdell, I. (2015), On the Southern Ocean CO_2 uptake and the
923	role of the biological carbon pump in the 21st century. Global Biogeochemical Cycles, 29, 1451-
924	1470. doi:10.1002/2015GB005140
925	
926	Hauck, J., Kohler, P., WolfGladrow, D., Volker, C., (2016) Iron fertilization and century-scale
927	effects of open ocean dissolution of olivine in a simulated CO2 removal experiment,
928	Environmental Research Letters, 11, 024007. Doi:10.1088/1748-9326/11/2/024007
929	
930	Hauri, C., S.C. Doney, T. Takahashi, M. Erickson, G. Jiang, and H.W. Ducklow: 2015: Two decades
931	of inorganic carbon dynamics along the West Antarctic Peninsula, Biogeosciences, 12, 6761-
932	6779, doi:10.5194/bg-12-6761-2015
933	
934	Holland, P.R., Bruneau, N., Enright, C., Losch, M., Kurtz, N.T. & Kwok, R. (2014), Modeled Trends
935	in Antarctic Sea Ice thickness. Journal of Climate, 27, 3784-3801. doi:10.1175/JCLI-D-13-00301.1
936	
937	Jones, E.M., Fenton, M., Meredith, M.P., Clargo, N.M., Ossebaar, S., Ducklow, H.W., Venables,
938	H.J., and de Baar, H.J.W., (2017) Ocean acidification and calcium carbonate saturation states in
939	the coastal zone of the West Antarctic Peninsula, Deep-Sea Research II, 139, 181-194. Doi:
940	10.1016/j.dsr2.2017.01.007
941	
942	Kavanaugh, M.T., Abdala, F.N. Ducklow, H., Glover, D., Schofield, O., Stammerjohn, S., and
943	Doney, S. C. (2015), Canyon effects on phytoplankton biomass and community structure along
944	the Western Antarctic Peninsula. Marine Ecology Progress Series, 524:11-26. Doi:
945	10.3354/meps11189
946	
947	Kavanaugh, M.T., Church, M.E, Davis, C.O., Karl, D.M., Letelier, R.M. and S.C. Doney (2018),
948	ALOHA from the Edge: Reconciling three decades of in situ Eulerian observations and
949	geographic variability in the North Pacific Subtropical Gyre, Frontiers of Marine Science. Doi:
950	10.3389/fmars.2018.00130

952	Key, R.M., Olsen, A., van Heuven, S., Lauvset, S.K., Velo, S., Lin, X., Schirnick, C., Kozyr, A.,
953	Tanhua, T., Hoppema, M., Jutterstrom, S., Steinfeldt, R., Jeansson, E., Ishi, M., Perez, F.F.,
954	Suzuki, T., Global Ocean Data Analysis Project, Version 2 (GLODAPv2), ORNL/CDIAC-162, NDP-
955	P093. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US
956	Department of Energy, Oak Ridge, Tennessee, 2015.
957	
958	Kim, H., Doney, S.C., Iannuzzi, R.A., Meredith, M.P., Martinson, D.G. & Ducklow, H.W. (2016),
959	Climate forcing for dynamics of dissolved inorganic nutrients at Palmer Station, Antarctica: An
960	interdecadal (1993–2013) analysis. Journal of Geophysical Research: Biogeosciences, 121 (9),
961	23692389. doi:10.1002/2015JG003311
962	
963	Kim, H., Ducklow, H.W., Abele, D., Ruiz Barlett, E.M., Buma, A.G.J., Meredith, M.P., Rozema,
964	P.D., Schofield, O.M., Venables, H.J., and Schloss, I.R., (2018) Inter-decadal variability of
965	phytoplankton biomass along the coastal West Antarctic Peninsula. Philosophical Transactions
966	of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376 (20170179). Doi:
967	10.1098/rsta.2017.0179.
968	
969	Lauvset, S.K., Key, R.M., Olsen, A., van Heuven, S., Velo, A., Lin, X., Schirnick, C., Kozyr, A.,
970	Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F.F., Suzuki,
971	T., Watelet, S. (2016) A new global interior ocean mapped climatology: the 1° x 1° GLODAP
972	version 2. Earth System Science Data, 8, 325-340. Doi:10.5194/essd-8-325-2016
973	
974	Legge, O.J., Bakker, D.C.E., Meredith, M.P., Venables, H.J., Brown, P.J., Jones, E.M. & Johnson,
975	M.T. (2017), The seasonal cycle of carbonate system processes in Ryder Bay, West Antarctic
976	Peninsula. Deep Sea Research Part II: Topical Studies in Oceanography, v. 139, 167-180. doi:
977	10.1016/j.dsr2.2016.11.006
978	

979	Lenton, A., Tilbrook, B., Law, R.M., Bakker, D., Doney, S.C., Gruber, N., Ishii, M., Hoppema, M.,
980	Lovenduski, N.S., Matear, R.J., McNeil, B.I., Metzl, N., Mikaloff Fletcher, S.E., Monteiro, P.M.S.,
981	Rödenbeck, C., Sweeney, C., Takahashi, T., (2013) Sea-air CO2 fluxes in the Southern Ocean for
982	the period 1990-2009, Biogeosciences, 10, 4037-4054, doi:10.5194/bg-10-4037-2013
983	
984	Li, Z., Cassar, N., Huang, K., Ducklow, H.W., Schofield, O., (2016) Interannual variability in net
985	community production at the Western Antarctic Peninsula region (1997-2014), Journal of
986	Geophysical Research: Oceans, 121, 4748-4762. Doi:10.1002/2015JC011378
987	
988	Long, M.C., Lindsay, K., Holland, M.M., (2015) Modeling photosynthesis in sea ice covered
989	waters, Journal of Advances in Modeling Earth Systems, 07. Doi:10.1002/2015MS000436
990	
991	Luo, C., Mahowald, N., Bond, T., Chuang, P.Y., Artaxo, P., Siefert, R., Chen, Y., Schauer, J., (2008)
992	Combustion iron distribution and deposition, Global Biogeochemical Cycles, 22, GB1012. Doi:
993	10.1029/2007BG002964
994	
995	Meredith, M.P. & King, J.C. (2005), Rapid climate change in the ocean west of the Antarctic
996	Peninsula during the second half of the 20 th century. <i>Geophysical Research Letters</i> , 32, 1-5. doi:
997	10.1029/2005GL024042
998	
999	Montes-Hugo, M., Doney, S.C., Ducklow, H.W., Fraser, W., Martinson, D., Stammerjohn, S.E.,
1000	Schofield, O., (2009). Science, 323, 5920, 1470-1473. Doi:10.1126/science.1164533
1001	
1002	Regan, H.C., Holland, P.R., Meredith, M.P. & Pike, J. (2018), Sources, variability and fate of
1003	freshwater in the Bellingshausen Sea, Antarctica. Deep-Sea Research Part I: Oceanographic
1004	Research Papers, 133, 59-71. doi: 10.1016/j.dsr.2018.01.005
1005	
1006	Schofield, O., Saba, G., Coleman, K., Carvalho A-F., Couto, N., Finkel, Z., Irwin, A., Kahl, A.,

1007 Montes-Hugo, M.. Waite, N. (2017) Decadal variability phytoplankton community composition

- 1008 in the coastal waters of a warming West Antarctic Peninsula. Deep Sea Research.
- 1009 doi/10.1016/j.dsr.2017.04.014
- 1010
- 1011 Schultz, C., Doney, S., Zhang, W.G., Regan, H., Holland, P., Meredith, M., and Stammerjohn, S.,
- 1012 (2020) Modeling of the influence of sea ice cycle and Langmuir circulation on ocean surface
- 1013 mixed layer depth and freshwater distribution off the West Antarctic Peninsula. *Journal of*
- 1014 *Geophysical Research: Oceans*. Doi:10.1029/2020JC016109
- 1015
- 1016 Sherrell, R.M., Annett, A.L., Fitzsimmons, J.N., Roccanova, V.J., Meredith, M.P., (2018) A
- 1017 'shallow bathtub ring' of local sedimentary iron input maintains the Palmer Deep biological
- 1018 hotspot on the West Antarctic Peninsula shelf. Philosophical Transactions of the Royal Society,
- 1019 A376: 20170171. Doi:10.1098/rsta.2017.0171
- 1020
- 1021 Stammerjohn, S.E., Martinson, D.G., Smith, R.C. & Ianuzzi, R.A. (2008), Sea ice in the western
- 1022 Antarctic Peninsula region: Spatio-temporal variability from ecological and climate change
- 1023 perspectives. *Deep-Sea Research Part II*, 55, 2041-2058. doi: 10.1016/j.dsr2.2008.04.026
- 1024
- 1025 Stammerjohn, S., Massom, R. A., Rind, D., & Martinson, D. (2012), Regions of rapid sea ice
- 1026 change: An inter-hemispheric seasonal comparison. *Geophysical Research Letters*, 39 (L06501).
- 1027 doi: 10.1029/2012GL050874
- 1028
- 1029 Stukel, M.R., Asher, E., Couto, N., Schofield, O., Strebel, S., Tortell, P., Ducklow, H.D., The
- 1030 imbalance of new and export production in the western Antarctic Peninsula, a potentially
- 1031 "leaky" ecosystem, Global Biogeochemical Cycles, 29, 1400-1420, 2015.
- 1032
- 1033 Takahashi, T., Sutherland, S.C., Chipman, D.W., Goddard, J.G., Ho, C., Newberger, T., Sweeney,
- 1034 C., Munro, D.R., (2014) Climatological distributions of pH, p*CO*2, total CO2, alkalinity, and
- 1035 CaCO3 saturation in the global surface ocean, and temporal changes at selected locations,
- 1036 Marine Chemistry, 164, 95-125. Doi:10.1016/j.marchem.2014.06.004

1037	
±00,	

- 1038 Van Wessem, J.M., Meredith, M.P., Reijmer, C.H., van den Broeke, M.R. & Cook, A.J. (2016),
- 1039 Characteristics of the modelled meteoric freshwater budget of the western Antarctic Peninsula,
- 1040 Deep Sea Research Part II: Topical Studies in Oceanography, 139, 31-39.
- 1041 doi:10.1016/j.dsr2.2016.11.001

- 1043 Vernet, M., Martinson, D., Ianuzzi, R., Stammerjohn, S., Kozlowski, W., Sines, K., Smith, R. &
- 1044 Garibotti, I. (2008), Primary production within the sea ice zone west of the Antarctic Peninsula: I
- 1045 Sea ice, summer mixed layer, and irradiance. *Deep-Sea Research Part II*, 55, 2068-2085. doi:
- 1046 10.1016/j.dsr2.2008.05.021
- 1047
- 1048 Wanninkhok, R., (1992) Relationship between wind-speed and gas exchange over the ocean,
- 1049 Journal of Geophysical Research Ocean, 97, 7373-7382. Doi:10.1029/92JC00188
- 1050
- 1051 Weston K, Jickells TD, Carson DS, Clarke A, Meredith MP, Brandon MA, Wallace MI, Ussher SJ,
- 1052 Hendry KR. (2013) Primary production export flux in Marguerite Bay (Antarctic Peninsula):
- 1053 Linking upper water-column production to sediment trap flux. Deep Sea Res. I 75, 52–66.
- 1054 doi:10.1016/j.dsr.2013.02.001
- 1055
- 1056
- 1057
- 1058
- 1059
- 1060
- 1061