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Abstract

In an ideal application of sequential simulation, parameters are simulated one at a time conditioned to all previously simulated

parameters. This requires that marginal distributions of all dimensions (used to derive the conditional distributions) from the

random field can be extracted and used for the simulation. However, in practice, only incomplete information from limited-size

marginals is used for sequential simulation due to, e.g., computational unwieldiness or to ensure adequate pattern statistics.

In this paper, we start out by addressing the problem of how to reconstruct an unknown random field that is consistent with

known limited-size marginals. This problem turns out to be highly underdetermined (i.e., infinitely many solutions exist).

Therefore, we describe possible additional constraints to supplement the marginals in order to reconstruct well-defined random

fields. Secondly, we investigate which random field (out of infinitely many) that is sampled by sequential simulation algorithms

using limited-size marginals. We show that sample distributions of such algorithms may depend on the sampling sequence and,

sometimes, are inconsistent with the known marginals. We reviewed a formulation of a Markov random field that provides a well-

defined solution to the underdetermined problem. Finally, we investigate the relation between marginal-size and information

content of reconstructed random fields.
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1 Introduction 

In a probabilistic formulation of inverse problems, geostatistical algorithms can express prior 

information about the Earth which, in combination with a likelihood function measuring the fit to 

geophysical or production data, allows us to sample the posterior probability distribution (e.g., 

Hansen et al., 2008; Irving and Singha, 2010; Cordua et al., 2012; Toftaker and Tjelmeland, 2013). 

Conceptually, prior information provided by geostatistical sampling algorithms can be expressed 

by a random field, i.e., a joint probability distribution defined over a set of random (model) 

parameters, which, in a pixel-based formulation, are associated with positions in space (normally 

arranged in a regular grid) (Toftaker and Tjelmeland, 2013; Cordua et al., 2015).  

Sequential simulation is a commonly applied technique in geostatistical sampling 

algorithms (Journel and Alabert, 1989). This algorithm simulates one model parameter at a time 

conditioned by all previously simulated model parameters. In a strictly theoretical sense, all 

marginal probability distributions (of all possible sizes/dimensions and geometries), from the 

random field to be simulated, have to be known in order to derive all the necessary conditional 

distributions needed for the simulation.  

In practice, however, the only information about the prior random field that is used by a 

sequential simulation algorithm is a limited set of conditional probability distributions (derived 

from limited-size marginals distributions), namely those expressing the conditional dependence 

between the individual pixel values given a set of pixel values (typically) within some local 

neighborhood (Gómez-Hernández and Journel, 1993; Strebelle, 2002). Such information, in form 

of conditional dependencies described by limited-size marginals, is obtained from e.g. training 

images or 'old data sets' that are believed to represent typical Earth structure, and, at the same 

time, are assumed to be realizations from the ‘underlying’ unknown prior random field that 

describes the subsurface. We will denote such realizations a sample model.  
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From a sample model, an (M-dimensional) pattern histogram can be obtained by scanning 

the sample model with an M-dimensional template. By assuming that the unknown random field is 

stationary, the (M-point) statistics in the pattern histogram will be an approximation of the 

marginal distributions over the M model parameters associated with the geometry of the chosen 

template. In the case of random fields based on covariances (i.e., two-point statistics), one is never 

confronted with the (two-dimensional) pattern histograms themselves, but only a semivariogram 

from where a covariance matrix can be constructed. I should be noted, however, that a 

semivariogram basically describes the relation between (co)variances from different two-

dimensional pattern histograms as a function of separation distance of the (two-point) template. 

The single normal equation simulation (SNESIM) algorithm is an example of a geostatistical 

sequential simulation algorithm that samples an unknown random field using a limited-size 

marginal distribution obtained from a sample model (i.e., a training image) (Strebelle, 2002). This 

algorithm uses limited-size marginal distributions in order to ensure sufficient pattern statistics 

from the training image (Guardiano and Srivastava, 1993; Strebelle, 2002). Another example is to 

assume the unknown random field to be Gaussian and then determine a set of two-dimensional 

marginal distributions through a semivariogram/covariance analysis from a sample model 

(typically in form of scattered observations) (e.g., Journel and Huijbregts, 1978). In this way, the 

unknown random field can typically be completely determined and sampled through a sequential 

Gaussian simulation (SGSIM) algorithm (e.g., Journel and Alabert, 1989). However, in practice the 

SGSIM algorithm uses a set of Gaussian conditional distributions, derived from limited-size 

marginals related to a local neighborhood, in order to reduce the computational workload (e.g., 

Gómez-Hernándes and Journel, 1993; Journel, 1994).  

In this paper, the fundamental problem of how to reconstruct a random field that is 

consistent with a set of limited-size marginal distributions will be addressed. As we shall see, this 

mathematical problem turns out to be underdetermined and, hence, infinitely many possible 

solutions exist. Possible additional assumptions (i.e., constraints) about the unknown random 

field, necessary to obtain a well-defined random field, will be described. Secondly, we take a closer 

look at which random field (out of infinitely many possible) that is actually sampled by practical 

implementations of sequential simulation algorithms using limited-size marginals. In relations to 

this, we investigate the implicit assumptions used by such algorithms. 
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Fig. 1 provides a schematic overview of the outline of this paper. This figure illustrates the 

steps involved from 1) having a known/observed sample model from an ‘underlying’ unknown 

random field, 2) extracting pattern statistics from the sample model based on a choice of template 

configuration (one-, two- or multiple-point statistics of arbitrary geometry) and 3) how this 

statistics is used to estimate a limited-size marginal distribution from the ‘underlying’ unknown 

random field, utilizing the assumption of stationarity. As already mentioned, we shall see 4) that 

the problem of determining an unknown random field, that is consistent with known marginal 

distributions, is underdetermined. Consequently, some constraints, in addition to the known 

marginals, have to be used to produce solution to this problem. 5) It will be investigated which 

constraints that are (implicitly) used by sequential simulation algorithms (using limited-size 

marginals) to defeat the under-determination. Moreover, possible inconsistency of random fields 

sampled by such algorithms (i.e., their sampling distribution) with respect to the known marginals 

will be investigated. The canonical formulation of a Markov random field provides a marginal-

consistent solution of the underdetermined problem. We describe how sequential simulation from 

this random field results in a sample distribution consistent with the known marginals.  

Finally, we discuss and quantify the information content (which is inversely proportional to 

the entropy (Shannon, 1948)) of random fields based on limited-size marginals and how marginal-

size influences the information content.  
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Figure 1. Outline of the fundamental steps of going from 1) one or a few realizations (i.e., sample 
model) from an ‘underlying’ unknown random field to 2) chose a template that can be used to 
obtain one-, two-, or multiple-point-based patterns statistics from the sample model. 3) Under 
assumption of stationarity, the pattern statistics provides an approximation of marginal 
distributions from the ‘underlying’ unknown random field. 4) We show (in appendix A) that the 
problem of determining a random field that is consistent with the known marginals is 
underdetermined, and we discuss the additional constraints typically used to uniquely determine a 
random field. 5) We investigate the actual sampling distributions of sequential simulation 
algorithms when only limited-size marginal distributions are used/available. 
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2 Random fields and conditional dependencies 

In this study, we consider a set of variables  that are associated with nodes in 

a regular grid. Unless mentioned, these variables are considered continuous. We will denote these 

variables as model parameters. A random field  (potentially un-normalized) defined over the 

model parameters is denoted 

      (1) 

An associated marginal probability distribution (of some dimension lower than ) over 

some subset  of the model parameters  is defined as 

,      (2) 

where the integral is taken over the variables  that are not in .  

The relation between the random field and the marginal probability distribution is given by the 

product rule 

,     (3) 

where  is the conditional probability distribution over  given the data event

. 

If a random field is completely known and all possible marginal distributions from the 

random field can be obtained, then the field can be rewritten into a product over marginal and 

conditional probability distributions: 

    (4) 

The product rule in eq. 4 is the backbone of sequential simulation because it allows sequential 

simulating of one model parameter at a time when this parameter can be conditioned to all 

previously simulated model parameters (see e.g., Gómez-Hernández and Cassiraga (2000) and 

Hansen et al. (2012)).  In this general formulation, a permutation of the model parameters in the 

conditional probability distributions does not influence the formulation of the random field. 
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However, in practical implementations of sequential simulation, where only limited-size marginal 

distributions are used, it is not possible to condition to all previously simulated parameters.  

2.1 Markov random fields 

A probabilistic graph can be used to express the dependency structure of probability distributions, 

such as a random field. The nodes in such a graph represent the individual model parameters and 

edges between two nodes (i.e., model parameters) denote a conditional dependence between 

these parameters. Two model parameters will be denoted neighbors if they are connected with an 

edge. The set of all model parameters  that are neighbors with a model parameter  is 

denoted the neighborhood of . 

Assuming a Markov property of the random field in Eq. 1 involves that the individual 

model parameters have a specified neighborhood (Besag, 1974). For a model parameter  

associated with the i’th node in a grid, a Markov property involves that the conditional probability 

distribution for this model parameter given all other model parameters satisfies 

,    (5) 

where  is a subset of the model parameters that are in the neighborhood of . When this 

(Eq. 5) applies to a random field (Eq. 1), the random field is a Markov random field (Cressie and 

Davidson, 1998).  

 An example of a random field that satisfies this is 

,     (6) 

where  is the neighborhood of the i'th node.     

A clique  in a probabilistic graph is a subset of nodes where every pair of nodes is 

connected, i.e., they are all conditionally dependent on each other (Kindermann and Snell, 1980). 

A maximum clique (also denoted a maximum clique neighborhood) is a clique that is not a strict 

subset of a larger clique. A Markov random field can now be defined over a chain of maximum 

clique neighborhoods  . In that case, the random field is defined as (Castillo et al., 1997) 

im im

im

im
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im im
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,   (7) 

where  is the number of clique neighborhoods and  is the model parameters 

associated the ’th  clique of the graph.  and  are model parameters associated with the  

’th residual and separator in the chain of cliques that spans the graph. The probability 

distribution  is a marginal probability distribution over the model parameters 

related to the ’th clique neighborhood in the random field (i.e., Markov random field). More 

details about Eq. 7 and definitions of cliques, residuals and separators are found in section 4.2. 

 According to the product rule in Eq. 3, it is seen that both of the Markov random 

fields defined in Eqs. 6 and 7 above are composed of local marginal probability distributions, 

namely  and , respectively. Hence, an algorithm based on sequential 

simulation that only uses limited-size marginal distributions will sample from some type of Markov 

random field. More details on this topic will be outlined in section 4. 

3 Reconstruction of random fields from limited-size marginals 

As previously described, information provided about an Earth model typically exists in form of 

marginal distributions (sometimes converted into conditional probability distributions) from some 

‘underlying’ unknown random field. According to theorem 1 demonstrated in appendix A1, there 

are infinitely many random fields over the model parameter space that are consistent with the 

same known marginal probability distributions. Consequently, additional constraints to the 

problem have to be applied to deliver a unique random field consistent with the marginals. The 

conditional dependencies found in a random field, that is a solution to this problem, can only be 

expected to describe spatial dependencies that are captured by the known limited-size marginals. 

Hence, unless the additional constrains happens to provide information about spatial 

dependencies outside of the known marginals, a solution to this underdetermined problem cannot 

be expected to be the ‘underlying’ unknown random field itself. Only consistency with respect to 

the known marginals can be expected to be a common property of the calculated and ‘underlying’ 

random fields.  
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There are several (not necessarily mutually exclusive) ways of reducing the under-

determination of this problem such that a unique random field, consistent with known marginals, 

can be determined. In what follows, we will list some of them. 

3.1 Assuming the random field to be parametric  

If the random field is assumed to be parametric of some form, the degrees of freedom are 

reduced to the number of parameters in the probability distribution. For instance, by assuming the 

random field to be Gaussian, the marginal distributions will also be Gaussian. In this case, the 

degrees of freedom reduce to  (  means plus  variances plus  covariances). 

These parameters are in practice determined through a semi-variogram analysis and a mean value 

of a sample model (e.g., Journel and Huijbregts, 1978). The mean and covariance parameters 

uniquely determine all two- (or larger) dimensional (Gaussian) marginal probability distributions 

from the Gaussian random field, which, in turn, uniquely determine the full Gaussian random field.   

3.2 Assuming the random field to have Markov properties 

In general, a (non-parametric) categorical random field has  degrees of freedom, where  is 

the number of categories and  is the dimension of the random field. Assuming that the random 

field is a Markov random field implies a reduction in the degrees of freedom. A Markov random 

field is completely defined by a set of marginal probability distributions as defined in Eqs. 6 and 7. 

Hence, in case of categorical variables, the degrees of freedom reduce to , where  is the 

dimension of the marginal distributions,  is the degrees of freedom of the individual 

marginals, and the number of marginals is assumed to be (approximately) equal to the dimension 

of the random field . Thus, if all the  marginals are completely known, the number of degrees 

of freedom is reduced to zero. 

3.3 Assuming the random field to be stationary 

That a random field is stationary means that the size of its neighborhoods and the marginals over 

these neighborhoods do not change when shifted in space. Moreover, the marginal distributions 

defined over these neighborhoods are all equal.  

2 3

2

N N+

N N

( 1)

2

N N −

LN-1
L

N

N LM -1

M

LM -1

N N
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Assuming both stationary and a Markov property means that only a single marginal 

probability distribution has to be known in order to uniquely determine the random field. I.e., the 

degrees of freedom reduce to the degrees of freedom associated with a single marginal (  

degrees of freedom for the case of a (non-parametric) marginal of categorical variables).  

If the random field is assumed to be both Gaussian and stationary, the assumption of 

stationarity further reduces the degrees of freedom in the Gaussian random field because, in this 

case, only one mean, one variance, and N-1 covariances are need to completely define the random 

field.  Hence, the total number of degrees of freedom reduces to N+1. 

3.4 Assuming the random field to have maximum entropy/minimum information 

Assuming maximum entropy of a random field is often considered the most "neutral" assumption 

possible. This assumption involves that the random field satisfying the marginal probability 

distributions, carries least possible additional information (in form of additional constraints on the 

random field), i.e., it is the most noncommittal with regard to missing information (Jaynes, 1957). 

The entropy  of a variable  with probability distribution  is denoted as  

,    (8) 

for the continuous case and  

,    (9) 

for the discrete case (Shannon, 1948). Here, is the logarithm with base two. When using the 

base-two logarithm, the entropy is measured in bits.  

The maximum entropy assumption involves that the additional constraint used for 

the random field, is a constraint that leads to a random field that maximizes Eq. 8 or 9. E.g., given 

a set of all two-dimensional marginals from the ‘underlying’ unknown random field, the Gaussian 

assumption is the constraint that leads to a random field with maximum entropy (i.e., the least 

informative random field given the known marginals). If no marginals are known, a uniform 

distribution is the one that carries least information and, therefore, has maximum entropy.  

LM -1

H m ( )p m

( )2( ) ( ) log ( )H p p d= −mm m m m

( )2( ) ( ) log ( )i i

i

H p p= −m m m
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4. Sequential simulation of random fields using limited-size marginals 

The SGSIM algorithm, the Direct Sequential SIMulation (DSSIM) algorithm, the SNESIM algorithm, 

and the Direct Sampling method (DS) are all examples of a geostatistical sampling algorithms 

based on implementations of sequential simulation that use limited-size marginal probability 

distribution to simulate realizations of Earth models (Deutsch and Journel, 1998; Strebelle, 2002; 

Mariethoz, 2010). Limited-size marginals are typically used due to computational unwieldiness 

(e.g., in SGSIM) (Journel and Alabert, 1989; Gómez-Hernández and Journel, 1993)) or due to a 

limited-size template, which is needed to obtain sufficient pattern statistics (e.g., in SNESIM) 

(Strebelle, 2002)). In the following, we will take a closer look at which random field, out of 

infinitely many possible, that is sampled by such algorithms. 

4.1 Influence of the simulation sequence 

As a sequential simulation algorithm proceeds, the model parameters are simulated one at a time 

from a local conditional probability distribution (based on the known limited-size marginal 

distribution, see Eq. 6). As the simulation evolves, the algorithm forms a directed graph, where 

each simulated model parameter is associated with a node in the graph and the directed edges 

between the nodes represent conditional dependencies between the model parameters. Since 

each node is only visited once during the sequential simulation, no cycle will ever occur in such a 

graph. Hence, the graph is said to be a directed acyclic graph (DAG) (see e.g. Bishop (2006) for an 

introduction to graphical models).  

As an example, figure 2(I) shows a set of nodes marked by letters A – I to be 

sequentially simulated. Figure 2(II) shows a DAG that occurs as a result of sequential simulation 

with the simulation sequence marked by numbers on the nodes. The conditional dependencies 

defined by the directed edges result from a square-shaped marginal (related to a choice of 

neighborhood/template) of 3 by 3 inter-connected nodes. Note that any size and geometry of 

marginal can be used; the small marginal of 3 by 3 inter-connected nodes used here is only chosen 

for illustrative purpose.  

The random field over a DAG can be factorized as follows (e.g. Whittaker, 1990) 

.   (10) 
1

1 1

( , ( ))
( ,..., ) ( | ( ))

( ( ))

N N
i i

N i i

i i i

p m pa m
f m m p m pa m

p pa m= =

= = 
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 is the set of so-called parents of the model parameter .  This expression is a description 

of a partially ordered Markov model (Cressie and Davidson, 1998; Toftaker and Tjelmeland, 2013). 

If the simulation sequence used to simulate from this distribution is performed using a unilateral 

path (i.e., raster scan), this probability distribution is known as a Markov mesh model (Kjønsberg 

et al., 2012; Daly, 2004).  

As an example, the model parameters associated with the nodes D, E, G, and I in Fig 

2(II) are parents of the model parameter associated with the node H. From Eq. 10 we now have a 

general formulation of the random field that results from a sequential simulation algorithm based 

on limited-size marginals (such as e.g. SGSIM and SNESIM) for a specific simulation sequence and 

with certain size and geometry of the known marginal related to the individual model parameters. 

Notice, that in practice, some sequential simulation algorithms (e.g., SNESIM) may reduce the size 

of the set of parent parameters (i.e., reduce the marginal-size) during the simulation in order to 

avoid data event with zero probability. 

 

Figure 2. (I) Graph with 9 nodes labeled with letters A – I. (II) First example of sequential simulation 
sequence leading to a directed acyclic graph. The numbers are associated with the order by which 
the nodes are sequentially simulated. The arrows show the conditional dependencies between the 
nodes as a result of a marginal of 3 by 3 inter-connected nodes with the “central node”   located in 
the center of the marginal. Hence, using this marginal, the individual nodes can only be dependent 
on other nodes that are located next to them. (III) Second example of a sequential simulation path 
(as a result of the same marginal). 

The random field in Eq. 10 that is sampled using the simulation sequences (seq. 1) as 

seen in Fig 2(II) is given as: 

  (11) 

( )ipa m im

  

f
seq1

( A, B,..., I ) = p(C) p(D) p(B |C, D) p(I ) p(G | D) p( A | B, D) ×

p(E | A, B,C, D,G, I ) p(H | D, E,G, I ) p(F | B,C, E, H , I )
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Using the product rule, this expression can be rewritten as: 

  (12) 

Another choice of simulation sequence (seq. 2) is shown in Fig 2(III). The associated random field 

over this graph is given as: 

  (13) 

From these examples (expressed in Eqs. 12 and 13) it is seen that two different simulation 

sequences will, in general, lead to two different formulations of the random field because these 

fields are composed of a product of marginals, , with different dimensions at 

different locations i. Hence, these two random fields have different dependency structure. This is 

not the case if conditional dependency between all model parameters, and not only a dependency 

structure provided by limited-size marginals, was used. In that case, the random field is 

formulated by Eq. 4 and has the same dependency structure independent of the simulation 

sequence used. In sections 5.1 (using categorical variables) and 6.1 (using continuous variables) we 

find, through numerical examples, that partially ordered Markov models (i.e., the random field in 

Eq. 10) for different simulation sequences (i.e., random paths used) has different probability 

density values when evaluated in the same point in the model parameters space.  

The examples show that, when only limited-size marginal distributions are used in 

sequential simulation, the actual random field sampled by the algorithm depends on (1): the size 

(i.e., dimension) of the used marginal distributions (i.e., the size of template/neighborhood used 

to form the individual conditional distributions) and (2): the simulation sequence. Moreover, since 

the dimension of the used marginals is changing for different locations across the field and is 

generally smaller than the known marginal, the random field is not consistent with the known 

marginal distribution. Moreover, the random field is no longer stationary because the conditional 

dependency structure does change when shifted in space. The effect of non-stationarity in 

partially ordered Markov models is also described by Tjelmeland and Toftaker (2012).  

  

f
seq1

( A, B,..., I ) =
p(C) p(B,C, D) p(I ) p(G, D) p( A, B, D) p(E, A, B,C, D,G, I )

p(C, D) p(B, D) p( A, B,C, D,G, I ) p(D, E,G, I ) p(B,C, E, H , I )
×

p(H , D, E,G, I ) p(F , B,C, E, H , I )

fseq2 (A, B,..., I ) = p(A)p(F)p(B | A,F)p(D | A, B)p(H | D,F)p(E | A, B, D,F, H ) ×

p(C | B,E,F)p(I | E,F, H )p(G | D,E, H )

=
p(A)p(F)p(B, A,F)p(D, A, B)p(H , D,F)p(E, A, B, D,F, H )

p(A,F)p(A, B)p(D,F)p(A, B, D,F, H )p(B,E,F)p(D,E, H )

p(C, B,E,F)p(I,E,F, H )p(G, D,E, H )

p(mi , pa(mi ))

T
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The above findings apply to algorithms such as SGSIM, Direct Sequential SIMulation 

(DSSIM), Sequential Indicator SIMulations (SISIM), SNESIM, direct simulation method, and 

Extended Normal Equations SIMulation (ENESIM), which are all based on implementations of 

sequential simulations using limited-size marginals. It should, however, be noted that the above-

mentioned effects on the sampling distribution might in some cases be small, and therefore 

negligible. This is important for practical applications, but it is often unclear how to quantify these 

effects and how to decide if they are important or not. 

4.2 Random fields consistent with marginals defined over chains of cliques  

In this section we review an alternative way of formulating a Markov random field that can be 

sampled through sequential simulation while being consistent with the known marginal 

distributions at all locations across the random field.  

Marginal probability distributions obtained from a sample model have a dependency 

structure defined by the maximum cliques in an undirected graph (i.e. forms a maximum clique 

neighborhood). In other words, the marginals based on pattern statistics obtained from a sample 

model contains information about conditional dependencies between all model parameters within 

the marginal. Based on marginal distributions with a maximum cliques dependency structure, a 

Markov random field defined over a chain of maximum cliques based on these marginals can be 

defined.  

For a chain of cliques we have that: (1) every clique  occurs exactly once and (2) 

 is a subset of at least one of the previous cliques . The set 

 is said to be the i’th separator. Hence,  is the overlap between clique 

 and the previous cliques in the chain. The set  is said to be the i’th residual. 

The random field defined over a chain of cliques is a Markov random field that can be 

expressed as (see e.g. Castillo et al., 1997): 

, (15) 

where  and  are the model parameters associated with the nodes of the i’th set of 

residuals  and separators , respectively. L is the total number of cliques in the chain of 

iC

Ci Ç C1 È ...ÈCi-1( ) C1 È ...ÈCi-1( )

Si = Ci Ç C1 È ...ÈCi-1( ) Si

Ci Ri = Ci \ Si

f (m1,..., mN ) = p(mR1) p(mRi | mSi )
i=2
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Õ
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cliques. are model parameters associated with nodes contained in the i’th clique , which 

equals the set of model parameters given by the set . The distribution in Eq. 15 will be 

referred to as the canonical Markov model. 

The graph depicted in Fig 3(I) is an example of a chain of cliques given by the subsets 

. The associated separators and residuals are given by the subsets 

 and , respectively. The resulting random field obtained by 

simulating along this chain of cliques is given as: 

,  (16) 

where the simulation sequence is seen in Fig 3(II).  Note that the exemplified chain of cliques is not 

the only one possible.  

The canonical Markov model in Eq. 15 is a random field that is consistent with the known 

marginal distributions. Therefore, it is a possible solution (to the underdetermined problem) of a 

random field that is consistent with the known marginals. The Markovian dependency structure, 

defined by a chain of maximum clique neighborhoods, constitutes the additional constraint that 

leads to this well-defined solution.  

It should be noted that, Eq. 15 will only be consistent with the known marginal distribution 

if the detailed balance condition 

    (17) 

is satisfied for all sets of cliques , which is guaranteed due to the assumption of 

stationarity.  
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Figure 3. (I) An example of an undirected graph and the conditional dependencies among the 
nodes, which are labeled A, B,…, I. (II) A possible sequential simulation sequence along a chain of 
cliques, when sampling from the canonical Markov model, is indicated by numbers. 

4.3 Sampling of the canonical Markov model 

The formulation of the canonical Markov model in Eq. 15 provides a means of sequentially 

simulating one residual at a time conditional to the associated separator. The resulting sample 

distribution from sequential simulation of this random field is given by Eq. 15 and is: 1) consistent 

with the known marginals (i.e. satisfies Eq. 2A) and 2) is invariant with respect to the simulation 

sequence, as long as the simulation sequence follows a chain of cliques. Neither was the case for 

the partially ordered Markov model defined in Eq. 10.  

During sequential simulation, lack of detailed balance not only means a lack of consistency 

with the known marginal distribution, it also means that simulation along a chain of cliques will 

not satisfy the same marginal distribution as if the simulation is performed in the reverse direction 

along the chain.  

As seen in Fig 3(II), sequential simulation of the canonical Markov model may even allow 

sequential simulation of more than one model parameter at a time (i.e., each residual may 

constitute more than a single model parameter), which may reduce the computational cost when 

sampling this random field (Faucher et al., 2013; Razaee et al., 2013). The canonical Markov model 

in Eq. 15 can easily be reformulated such that (a correct, sequence independent) sequential 

simulation of one model parameter at a time (based on Eq. 4) can be obtained using the product 
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rule within the individual residuals: For the i'th residual, the conditional probability can be 

rewritten as:

 (18)   

where  is the j'th model parameter in the i’th residual and  is the number of nodes within 

the i'th set of residuals. 

  

4.4 Relation between sample model and sample distribution  

Consider a 16-dimensional marginal probability distribution  based on statistics obtained 

from the sample model seen in Fig. 4 using an inter-connected template of 4 by 4 pixels. 

Realizations obtained by sequentially simulating the canonical Markov model based on this 

marginal probability distribution are seen in Fig. 5. These realizations are consistent with (the 

information contained in) the known marginals .  

Information about conditional dependencies between model parameters that are 

not inside the known limited-size marginals is not provided. Therefore, the realizations seen in Fig. 

5 cannot are be expected to exhibit the same long-range spatial structures (longer that 4 by 4 

pixels) as seen in the sample model in Fig. 4. Both the ‘underlying’ unknown random field, from 

where the sample model is drawn, and the canonical Markov model, are just two possible random 

fields (out of infinitely many) that are consistent with the known marginals. Hence, it can only be 

expected that consistency between the sample model and the sample distribution from the 

canonical Markov model (Figs. 4 and 5) exist in form of pattern statistics obtained with the same 

template as used to obtain the known marginals.  

It is, in this context, important to note the difference between conditional 

dependency and spatial correlation. Spatial correlation found in realizations from Markov 

processes, as e.g. described by the canonical Markov model, may have spatial correlations that 

extend mush further than the spatial dependencies found in realizations from a Markov random 

field. This can also be acknowledged in Fig. 5, where the extension of the channel structures are 

much longer than the marginal distribution of 4 by 4 pixels used to construct the random field.  
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Figure 4. Sample model from where the marginal distribution is estimated based on a 4 by 4 pixel 
template. 

 

Figure 5. Five outcome realizations obtained from the canonical Markov model in Eq. 15 based on a 
marginal distribution obtained from the sample model seen in Fig 4 using a 4 by 4 pixel template. 
Each cell is 0.2 by 0.2 m. 

5 Influence of marginal-sizes on information content of random fields  

In this section, we discuss the relation between conditional dependence defined by limited-size 

marginals and Shannon entropy (i.e., information content). Moreover, we calculate and compare 
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the entropy of two different formulations of a random field, namely partially ordered Markov 

models based on different simulation sequences and the canonical Markov model. 

The entropy of a random field that is decomposed into conditional probability 

distributions assuming conditional dependence between all model parameters (as expressed by 

Eq. 4) is given as (Cover and Thomas, 2006) 

.  (19) 

It can be shown (Cover and Thomas, 2006) that conditioning leads to a decrease in entropy (i.e., 

increase of information): 

,     (20) 

with equality if  and  are conditionally independent. Now, consider the case where 

conditional dependency does not exist between all model parameters (because only limited-size 

marginals are used to derive the conditional distributions), but only between a subset of the 

model parameters (for instance when  is required in the sequential 

simulation using Eq. 4, but only  is used). In such a case, the entropy of Eq. 4 (as 

defined by Eq. 19) will increase according to the inequality in Eq. 20 (e.g.

 under the assumption that  is conditionally dependent 

on  and ). Hence, every time a conditional dependency between model parameters is not 

used (e.g., as part of a sequential simulation), the entropy of the resulting random field that is 

actually sampled will increase, and information is lost. This is the case for the partially ordered 

Markov model, which is the random field sampled by typical sequential simulation algorithms 

using limited-size marginals, because this random field is not using all conditional dependencies 

otherwise provided by the known marginals. Additional information is lost, when e.g. SNESIM is 

pruning the size of the conditioning data event (i.e., the size of the marginal) in order to find a 

data event with non-zero probability.  

A general problem related to marginals obtained from sample models is a trade-off 

between marginal-size (i.e., the information content described by conditional dependencies in the 

marginals) and, on the other hand, statistical uncertainty related thinning of the pattern histogram 
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for increasing marginal-size. A quantification of this type of information loss related to pattern-

statistics uncertainty is beyond the scope of this study.  

5.1 Quantification of information content for different marginal-sizes 

Figure 6A shows a sample model, and Figure 6F shows the non-zero multiple-point probabilities 

(i.e., marginal distributions) extracted from the sample model using the template seen in Fig 6B. 

Figures 6D and 6E are two examples of simulation sequences that can be used to obtain the 

realization of the model parameters  seen in Fig 6C using Eq. 10.  

The probability value of partially ordered Markov models (Eq. 10) based on the two 

different simulation sequences (6E and 6D) when evaluated in the point, as seen in Fig 6C, are 

  (21) 

and 

,  (22) 

respectively. This numerical example confirms that two different simulation sequences lead to 

sampling of two different random fields. 

The probability value of the same point when evaluated in the canonical Markov 

model (Eq. 15) along the chain of maximum cliques (a,b,d,e), (b,c,e,f), (d,e,g,h) and (e,f,h,i) is   

  (23) 

The entropy of the two formulations of the partially ordered Markov models are given as 

  (24) 
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,  (25) 

respectively. 

The entropy for the canonical Markov model is in this case given by 

   (26) 

The entropy for the conditional probabilities is calculated using the expression 

  (27) 

Sequential simulation sequence no. 2 leads to a partially ordered Markov model that 

is composed of conditional probability distributions based on marginals, which describes more 

conditional dependencies than is the case for simulation sequence no. 1. Consequently, the 

entropy of the partially ordered Markov model related to sequence no. 1 is higher than for 

sequence no. 2. This means that more information will be propagated from the sample model 

statistics to the random field being sampled when using simulation sequence no. 2 than sequence 

no. 1.  

The canonical Markov model uses all the information provided by the known 

marginal distributions, which leads to a random field with lower entropy (i.e., more information) 

than for both of the partially ordered Markov models.  
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Figure 6. A) Sample model in form of a training image. The white pixels refer to model parameters 
with value 0 and the blue pixels to the value 1. B) Template used to extract multiple-point statistics. 
C) One example of a realization. D) Sequential simulation sequence no. 1. E) Sequential simulation 
sequence no. 2. F) The non-zero multiple-point probabilities (i.e., the estimated marginal) based on 
sample model statistics using the displayed template. 

6 The effect of limited-size marginals in SGSIM 

As already discussed, partially ordered Markov models resulting from different simulation 

sequences may have different probability density values for the same point in the model 

parameter space. In this section, we will take a look at the probability density values for partially 

ordered Markov models based on Gaussian marginals. This is the random field sampled by (i.e., 

sample distribution of) a SGSIM algorithm when the algorithm is using a local neighborhood. The 

probability density values from such Gaussian partially ordered Markov models evaluated for a 

certain point in the model parameters space, using different choices of simulation sequence and 

size of neighborhood, will be compared. Moreover, these results are also compared with the 

density values of a canonical Markov model based on Gaussian marginals of different sizes.  

The ratio between the probability density values of the ‘correct’ Gaussian random 

field using a full neighborhood and the above mentioned Markov random fields is seen in Fig. 7. 



23 

 

The evaluated points are realizations from the ‘correct’ Gaussian random field (41 x 41 pixels), 

which is described by a spherical covariance function with a horizontal range of 20 pixels and 

vertical range 4 pixels, variance 1, and a mean value of 10.  

Different continuous square-shaped marginals (resulting from a choice of 

neighborhood) with a side length of 9 pixels, 17 pixels, 25 pixels, 33 pixels, and 41 pixels, 

respectively, have been used to define the different Gaussian partially ordered Markov models 

(green curves) and the Gaussian canonical Markov model (black curves). For each 

marginal/neighborhood size, partially ordered Markov models for 10 different simulation 

sequences have been evaluated (seen as 10 green curves for the individual realizations). The 

Gaussian marginal distribution used to establish these different Markov models has the same 

mean, variance, and covariances as the ‘correct’ Gaussian random field.  

A ratio of one in Fig. 7 indicates equality with the ‘correct’ Gaussian random field. 

This happens for the canonical Markov model when it uses a neighborhood with a side-length of 

41 pixels (i.e., equivalent to known the full Gaussian random field and not only a limited-size 

marginal). It is seen, that in general the canonical Markov model will converge faster towards a 

ratio of one than the partially ordered Markov models. Moreover, for a neighborhood size of 41 

pixels (double as much as the maximum correlations length of the Spherical covariance function 

used) the partially ordered Markov model provides probability values that are much different from 

the ‘correct’ density value (up to 27 times larger for realization #6 in Fig. 7). This means that the 

probability of drawing this point in the model parameter space from the ‘correct’ formulation of 

the Gaussian random field using a full neighborhood is up to 27 times more probable than if this 

point had been drawn from this particular formulation of the partially ordered Markov model.  

The tendency of higher probability ratios for the partially ordered Markov model 

(green curves in Fig. 7) as compared to the probability ratios for the canonical Markov model 

confirms that more information from the ‘correct’ probability distribution propagates (through the 

marginals) to the canonical Markov model than to the partially ordered Markov model because 

the partially ordered Markov model has a sample distribution that is not consistent with the 

known marginal distributions.  
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Figure 7. Ratios of probability density values between the ‘correct’ Gaussian random field using a 
full neighborhood and different formulations of Markov random fields. Green curves: partially 
ordered Markov model formulated for different simulation sequences. Black curve: canonical 
Markov model. The ratios are compared for density values calculated for 10 different points (i.e., 
realizations) in the model parameters space. 

7 Random paths in sequential simulation algorithms 

Practical implementations of sequential simulation use a new randomly chosen path for each new 

simulation sequences. This random path is chosen from a uniform distribution. This gives a 

probability of  for a specific path to be chosen by the sequential simulation algorithm. Here, 

 is the number of model parameters to be sampled. Hence, the random field actually sampled 

by a sequential simulation algorithm will not be a single partially ordered Markov model, but a 

mixture of partially ordered Markov models, which is given as (Daly, 2004; Toftaker and 

Tjelmeland, 2013; Cordua et al., 2015): 

     (28) 
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However, since the individual partially ordered Markov models are consistent with a set of 

marginals of different sizes for different simulation paths, Eq. 28 is cumbersome to evaluate. For a 

more thorough discussion on this topic see Cordua et al. (2015).  

8 Conclusion 

We outlined the fundamental steps of going from one or a few realizations (i.e., a sample model) 

from an ‘underlying’ unknown random field describing the subsurface, to reconstructing a random 

field that is, at least, consistent with the known (limited-size) marginals distributions (based on 

pattern statistics from the sample model) from this unknown random field. Firstly, under the 

assumption of stationarity, marginal probability distributions from the unknown random field can 

be obtained through (one-, two- or multiple-point-based) pattern statistics from a sample model. 

Then, a random field consistent with these known marginal distributions can be determined. We 

showed that this problem of determining an unknown random field consistent with known 

marginal distributions is, in general, an underdetermined problem. Different assumptions (i.e., 

additional constrains) about the random field must be chosen in order to produce a unique 

solution.  

Practical implementations of sequential simulation use limited-size marginal 

distributions (i.e., conditional distributions derived from the marginals), to draw realizations from 

some random field. The typical implicit assumption (i.e., constraint) used by such algorithms is that 

the random field is stationary, has Markov properties and/or is a parametric distribution (e.g., 

Gaussian). In this case, the random field being sampled is a partially ordered Markov model. 

The random field actually sampled by sequential simulation algorithms (e.g., SGSIM 

and SNESIM) can be formulated as a partially ordered Markov model. We find that these random 

fields depend, not only on the size of the marginal distributions used to derive the necessary 

conditional distributions (i.e., the size of the chosen template/neighborhood), but also on the 

sequential simulation sequence (i.e., the random path used). Furthermore, these distributions are 

generally not consistent with the known marginals and do not, in general, represent a stationary 

distribution. 

We reviewed the canonical Markov model, which is an example of a possible solution 

that is consistent with known marginals. When this random field is sampled by sequential 
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simulation, it is exactly consistent with the known marginals, and also invariant with respect to the 

simulation sequence as long as the simulation follows a chain of cliques.  

It is found that the information content (using Shannon entropy) of the canonical 

Markov model is higher than for the partially order Markov model. This is a result of the fact that, 

in contrast to the canonical Markov model, the partially order Markov model does not use all the 

information in form of conditional dependencies from the known marginal distributions.  
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Appendix A  

Theorem 

Consider an N-dimensional space  with points , and a (joint) probability 

density (e.g., random field)  with marginal distributions , each 

defined over a strict subset   of the  variables . Assume further 

that for each   there is a finite-length closed interval  such that  in the product 

interval . Then, besides , there exists infinitely many (joint) probability 

densities over  having  as their marginal distributions. 

Proof 

Since  in a closed interval , there must be a positive real number  such that 

 everywhere in . Let us now define nonzero, integrable functions  over each  

with the following properties: 

1.  outside the interval . 

2. within the interval . 
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It is clear that infinitely many such functions  exist. For each choice of functions , the product 

function  satisfies the following properties: 

1.  outside . 

2.  inside . 

3.  

Hence, the sum function  is non-negative and integrable, and satisfies

. We can therefore conclude that   is a (joint) probability density function 

over . 

Consider now the subset  of variables. The corresponding marginal distribution of  is 

     (A1) 

where the integral is over variables that are not in . We now get  

     (A2) 

However, per definition of the functions , the latter integral is zero, meaning that the k’th 

marginals (  and ), of the two different (joint) probability densities  and , are 

identical. Noting that each of the infinitely many choices of  define a new , we have 

completed the demonstration.  
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