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Abstract

We apply a Bayesian structure learning approach to study interactions between global teleconnection modes, illustrating its

use as a framework for developing process-based diagnostics with which to evaluate climate models. Homogeneous dynamic

Bayesian network models are constructed for time series of empirical indices diagnosing the activity of major tropical, Northern

and Southern Hemisphere modes in the NCEP/NCAR and JRA-55 reanalyses. The resulting probabilistic graphical models

are comparable to Granger causal analyses that have recently been advocated. Reversible jump Markov Chain Monte Carlo is

employed to provide a quantification of the uncertainty associated with the selection of a single network structure. In general,

the models fitted from the NCEP/NCAR reanalysis and the JRA-55 reanalysis are found to exhibit broad agreement in terms

of associations for which there is high posterior confidence. Differences between the two reanalyses are found that involve modes

for which known biases are present or that may be attributed to seasonal effects, as well as for features that, while present

in point estimates, have low overall posterior mass. We argue that the ability to incorporate such measures of confidence in

structural features is a significant advantage provided by the Bayesian approach, as point estimates alone may understate the

relevant uncertainties and yield less informative measures of differences between products when network-based approaches are

used for model evaluation.

1



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Dynamic Bayesian networks for evaluation of Granger1

causal relationships in climate reanalyses2

Dylan Harries1and Terence J. O’Kane13

1CSIRO Oceans and Atmosphere, Hobart, Australia4

Key Points:5

• Bayesian structure learning provides a principled approach to quantifying uncer-6

tainty in estimated network structures for relationships between teleconnections7

• Dynamic Bayesian networks estimated from NCEP/NCAR and JRA-55 reanal-8

ysis data show broad overall consistency9

• Structural differences in high posterior credibility associations may be indicative10

of biases relevant for subsequent model evaluation11

Corresponding author: Dylan Harries, Dylan.Harries@csiro.au

–1–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Abstract12

We apply a Bayesian structure learning approach to study interactions between global13

teleconnection modes, illustrating its use as a framework for developing process-based14

diagnostics with which to evaluate climate models. Homogeneous dynamic Bayesian net-15

work models are constructed for time series of empirical indices diagnosing the activity16

of major tropical, Northern and Southern Hemisphere modes in the NCEP/NCAR and17

JRA-55 reanalyses. The resulting probabilistic graphical models are comparable to Granger18

causal analyses that have recently been advocated. Reversible jump Markov Chain Monte19

Carlo is employed to provide a quantification of the uncertainty associated with the se-20

lection of a single network structure. In general, the models fitted from the NCEP/N-21

CAR reanalysis and the JRA-55 reanalysis are found to exhibit broad agreement in terms22

of associations for which there is high posterior confidence. Differences between the two23

reanalyses are found that involve modes for which known biases are present or that may24

be attributed to seasonal effects, as well as for features that, while present in point es-25

timates, have low overall posterior mass. We argue that the ability to incorporate such26

measures of confidence in structural features is a significant advantage provided by the27

Bayesian approach, as point estimates alone may understate the relevant uncertainties28

and yield less informative measures of differences between products when network-based29

approaches are used for model evaluation.30

Plain Language Summary31

To produce reliable forecasts and projections, climate models should accurately re-32

produce the observed behavior of different processes that play a role in Earth’s climate,33

including the relationships between them. Statistical methods can be used to describe34

these interactions in models and in observations, which can then be compared to eval-35

uate how well a given model captures the observed relationships. However, networks ob-36

tained from estimates of the true historical state of the climate, known as reanalyses, will37

also be affected by the properties of the systems used to create these estimates, as well38

as random variability, and hence may have significant uncertainties. Using what are known39

as Bayesian statistical methods, we estimate the uncertainties associated with particu-40

lar interactions in two widely used reanalyses. Interactions that are found to be very likely41

to be present in one reanalysis but not the other are suggested to be due to systematic42

differences in the two reanalysis systems and need to be kept in mind when these state43
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estimates are used to evaluate climate models. Therefore, it is important to account for44

the uncertainty associated with each relationship when analyzing state estimates and fur-45

ther employing them to evaluate climate models.46

1 Introduction47

The behavior of the Earth’s climate system, from day-to-day changes in weather48

to longer-term variations in climate, arises as a result of the interactions of diverse pro-49

cesses within the coupled land-ocean-atmosphere-cryosphere system over a vast range50

of spatiotemporal scales (see, e.g., Ghil and Lucarini (2020) for a recent review). Devel-51

oping an accurate understanding of the underlying processes, including their response52

to external forcing and the interactions between different components, is an important53

first step in the development of realistic numerical forecasting models. Inevitably, even54

with a good understanding of the main processes being simulated, any given model will55

still be limited in its ability to represent the climate system, e.g., due to deficiencies in56

the parameterization of unresolved processes. These limitations manifest as systematic57

biases in the output of the model compared to observations. By comparing the repre-58

sentation of a particular component in the model with its observed counterpart, short-59

comings in the model implementation can be identified for improvement, at least sub-60

ject to the severe limitation that the globally contiguous observational record of the cli-61

mate system, and in particular the subsurface ocean, extends only over a few decades.62

This process-oriented approach, in which attention is focused on a comparatively63

small set of physical processes, has been widely applied in the climate science commu-64

nity. On the one hand, the complexity of the full coupled climate system means that it65

is typically only feasible to focus on specific subsystems in any given analysis, or oth-66

erwise necessitates some form of dimension reduction. For instance, specific targeted process-67

oriented diagnostics (Maloney et al., 2019) permit the representation of these processes68

in models to be evaluated against observations in order to drive model development (Eyring69

et al., 2019). At the same time, the existence of distinct teleconnections, i.e., recurrent70

large-scale modes of variability, has long been recognized (Ångström, 1935), motivating71

simplified models of the climate in terms of a small number of interacting modes. For72

example, atmospheric teleconnection patterns such as the Arctic Oscillation (AO) (Thompson73

& Wallace, 1998), the North Atlantic Oscillation (NAO) (Walker, 1923; van Loon & Rogers,74

1978), the Pacific North American (PNA) (Wallace & Gutzler, 1981; Horel & Wallace,75
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1981; Barnston & Livezey, 1987) and Pacific South American patterns (PSA) (Mo & Ghil,76

1987; Lau et al., 1994; O’Kane et al., 2017), and the Southern Annular Mode (SAM) (Rogers77

& van Loon, 1982; Thompson & Wallace, 2000) constitute important sources of low-frequency78

variability (Hannachi et al., 2017) and are associated with wide-ranging impacts (see,79

e.g., Leathers et al., 1991; Thompson & Wallace, 1998; Mo & Paegle, 2001; Hurrell et80

al., 2003; Gillett et al., 2006). On interannual time-scales, modes that express in the trop-81

ical oceans such as the El Niño Southern Oscillation (ENSO) (Walker, 1924; Bjerknes,82

1969) and the Indian Ocean Dipole (IOD) (Saji et al., 1999) emerge as dominant sources83

of variability, with important implications for global weather and climate (see, e.g., Schott84

et al., 2009; McPhaden et al., 2021). As these large-scale modes tend to be relatively per-85

sistent, understanding their evolution and dynamics may enable more skillful forecast-86

ing over longer time-scales (Goddard et al., 2001; A. G. Marshall et al., 2014; Hannachi87

et al., 2017). Thus, beyond simply being convenient for reducing the dimension of the88

problem in model evaluation studies, simplified models based on these physically observed89

modes provide an approach for better understanding the properties and interactions of90

key sources of climate variability.91

Even when focusing on only a few individual processes, it is generally difficult to92

directly attribute model biases to problems in the representation of a single process (Eyring93

et al., 2019), or to understand the behavior of an individual teleconnection mode in iso-94

lation from other processes. To capture the intrinsically coupled nature of the system95

in simplified models, network based approaches have become increasingly popular (Tsonis96

& Roebber, 2004; Tsonis et al., 2006; Donges et al., 2009b; Steinhaeuser et al., 2011).97

In this framework, the climate system is represented in terms of a set of nodes, corre-98

sponding to appropriately defined subsystems or processes of interest, and edges describ-99

ing the interactions between these nodes. The subsystems, for example, may be iden-100

tified with one or more spatial gridpoints (Bello et al., 2015; Fountalis et al., 2018), or101

pre-defined modes characterized by empirical indices (Tsonis et al., 2007). In either case,102

the full climate system is then modeled in terms of a collection of individual, non-linear103

dynamical systems interacting with their neighbors in the constructed network. Such net-104

works have variously been applied to study synchronization and climate shifts (Tsonis105

et al., 2007; G. Wang et al., 2009), to investigating the collective spatial structure of the106

statistical relationships between fields and changes over time (Tsonis & Swanson, 2008;107

Tsonis et al., 2008; Gozolchiani et al., 2008; Yamasaki et al., 2008; Donges et al., 2011;108
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Gozolchiani et al., 2011; Berezin et al., 2012; Guez et al., 2012; Steinhaeuser et al., 2012;109

Radebach et al., 2013; Y. Wang et al., 2013) and as tools for automatic mode identifi-110

cation (Bello et al., 2015) or dimension reduction (Fountalis et al., 2018; Falasca et al.,111

2019) via community detection methods.112

When attempting to build a network representation of the climate, the structure113

of the network is generally not known beforehand and must be inferred by some means.114

A typical approach is to add or remove edges from the network on the basis of the level115

of statistical interdependence of pairs of nodes, quantified by, e.g., the correlation (Tsonis116

& Roebber, 2004) or mutual information (Donges et al., 2009a) between time series as-117

sociated with each node. As these measures of association will almost always be non-118

zero in finite samples, some level of thresholding or pruning must also be applied in or-119

der to exclude edges corresponding to weak or spurious associations. In the simplest case,120

the result is an undirected network; that is, the presence of an edge between two nodes121

indicates some level of mutual association, but does not provide information on any pos-122

sible directionality in the relationship.123

Networks constructed in this way have proven to be very useful but do have some124

important limitations. In particular, while correlation graphs allow for comparisons be-125

tween modeled and observed associations (Falasca et al., 2019), often it is of interest whether126

a particular set of variables is causally related to another set. If there is a causal mech-127

anism, we may also wish to quantify the magnitude of the effects of those causal factors;128

commonly, climate networks based on the above approaches do not provide direct ac-129

cess to measures of effect. In practice, to answer these sorts of questions it is necessary130

to imbue the networks with additional structure. This can be naturally achieved by iden-131

tifying the original graph with an underlying statistical model, that is, by working in the132

context of a (probabilistic) graphical model (Koller & Friedman, 2009). In a graphical133

model, the graph encodes, in a well-defined way, the set of qualitative independence re-134

lationships between the random variables, corresponding to nodes, in the model (Jordan,135

2004). Given a particular functional form for the interactions between variables in terms136

of the joint probability density function (PDF), quantitative questions can also be for-137

mulated and addressed using standard algorithms (Pearl, 1982, 1988; Dechter, 1999; Koller138

& Friedman, 2009).139
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Graphical models may utilize undirected or directed edges, or even a mixture of140

both, corresponding to different ways of constructing the joint PDF of the model. Mod-141

els based on directed acyclic graphs (DAGs), in which all edges also have an associated142

direction and the graph does not contain any directed closed loops, provide an intuitive143

representation of complex systems in terms of conditional independence relationships be-144

tween quantities (Pearl, 1988; Spiegelhalter et al., 1993; Jordan, 2004). Compared to undi-145

rected networks, directed graphs have the advantage that edges in the graph can often146

be interpreted causally. As a result, they provide a powerful tool for studying causal re-147

lationships (Pearl, 1995), and form a useful basis for other forms of causal inference (Greenland148

& Brumback, 2002). Bayesian, or belief, networks (BNs), as such models are usually called,149

have therefore received increasing attention from the climate science community (Ebert-150

Uphoff & Deng, 2012a), having variously been used for forecasting and risk assessment151

based on expert systems (e.g., Abramson et al., 1996; Catenacci & Giupponi, 2009; Pe-152

ter et al., 2009; Catenacci & Giupponi, 2013; Leonard et al., 2014; Boneh et al., 2015),153

for learning independence relationships and possible causal interactions in observations154

(Ebert-Uphoff & Deng, 2012b; Runge et al., 2014; Runge, 2015; Runge et al., 2015; Kretschmer155

et al., 2016, 2017; Horenko et al., 2017; Li et al., 2018; Runge, 2018a, 2018b; Runge, Nowack,156

et al., 2019; Runge, Bathiany, et al., 2019; Samarasinghe et al., 2019, 2020; Saggioro et157

al., 2020; Pfleiderer et al., 2020; Di Capua et al., 2020) and models (Deng & Ebert-Uphoff,158

2014; Ebert-Uphoff & Deng, 2017), and, most recently, for model evaluation (Vázquez-159

Patiño et al., 2020; Nowack et al., 2020).160

One approach for using BNs as tools for model evaluation is to learn the network161

structure in a model and in observations and assess the agreement between the two. Learn-162

ing the structure of climate networks, in the absence of expert knowledge, has primar-163

ily been achieved by utilizing constraint-based algorithms (Spirtes & Glymour, 1991; Colombo164

& Maathuis, 2014) in which the set of edges is determined starting from a series of con-165

ditional independence tests (Ebert-Uphoff & Deng, 2012a; Runge, Bathiany, et al., 2019).166

Constraint-based methods can flexibly incorporate linear or non-linear conditional in-167

dependence tests (Hlinka et al., 2013) together with predefined constraints, allowing for168

non-linear dependence structures to be estimated from data. However, the inclusion of169

edges on the basis of an (initially arbitrary) significance level together with multiple test-170

ing adjustments makes assessing the level of confidence in the inferred networks difficult.171
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Usually, sensitivity analyses are necessary to get some handle on the robustness of the172

resulting networks.173

Ideally though, to apply BNs as tools for model evaluation we would not only iden-174

tify differences between modeled and observed networks, but also assess whether any mis-175

match is likely due to a model bias or simply sampling variability. In other words, an176

additional level of uncertainty quantification is required. While a great deal of insight177

can be derived from the structure of the estimated networks, quantifying both the sign178

and magnitude of the interaction between nodes has generally been achieved by perform-179

ing a second stage of fitting a parametric model, conditional on the inferred structure.180

This, again, leads to complications in determining the uncertainties in the estimated in-181

teraction strengths, which (depending on the approach used) may be insufficiently con-182

servative (Draper, 1995). For the purposes of model evaluation, it is usually of interest183

whether a model captures both the existence of a link and with the correct strength. Un-184

reliable estimates for the uncertainty in fitted interaction strengths may result in an in-185

ability to determine if an interaction is present but differs significantly in the model com-186

pared to observations. On top of this, the additional complexity involved in implement-187

ing such two-stage fitting procedures appears to have discouraged their use (McGraw &188

Barnes, 2018) compared to simpler model-based analyses framed in terms of Granger causal-189

ity (Granger, 1969).190

In this article, we investigate possible solutions to the above limitations through191

the use of Bayesian methods (Uusitalo, 2007). In the Bayesian framework for learning192

the structure and effect measures (Spiegelhalter & Lauritzen, 1990; Dawid & Lauritzen,193

1993; Madigan et al., 1995), it is natural to use the posterior probability of a given net-194

work and its associated parameters as a score to measure model fitness (Buntine, 1991;195

Cooper & Herskovits, 1992; Geiger & Heckerman, 1994; Heckerman et al., 1995). Ex-196

isting knowledge and constraints may be incorporated through the use of suitable prior197

distributions, although in practice this must be balanced against computational feasi-198

bility. Bootstrap (Friedman et al., 1999) or sampling-based (Madigan & Raftery, 1994;199

Madigan et al., 1995; Godsill, 2001) methods provide some measure of the uncertainties200

in model selection, as well as allowing the predictions of multiple models to be combined201

via model averaging (Madigan & Raftery, 1994). Consequently, the Bayesian approach202

provides a principled quantification of the uncertainties associated with estimation of the203

network structure and parameters. Models typically used for testing for Granger causal204
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relationships, that is, linear autoregressive models, can be straightforwardly expressed205

in graphical terms (Arnold et al., 2007; Lèbre, 2009), and, at least under a choice of con-206

jugate priors, analyzed efficiently using closed-form expressions for the desired posterior207

densities (Geiger & Heckerman, 1994). In this sense, the model specification is largely208

familiar, reducing the barriers to use in climate applications. While there is additional209

complexity associated with the inference scheme, we believe that this is justified by the210

need for some level of uncertainty quantification.211

To illustrate the utility of Bayesian methods for structure learning, we consider the212

application of fitting BNs to a set of teleconnection indices derived from two reanaly-213

sis datasets. Our purpose in doing so is two-fold. Firstly, as the score-based approach214

has not been widely used in analyses of this type, we wish to investigate the suitability215

of the method for networks of the size encountered in realistic data. Our second, and more216

important, aim is to perform a comparison of different reanalysis products on the ba-217

sis of the fitted networks. In addition to allowing for possible biases and differences in218

the reanalyses at the level of interactions between modes to be studied, differences in the219

networks from different reanalyses give some additional indication of uncertainties in the220

observed networks that model runs are evaluated against. This, in turn, must be taken221

into account when deciding what level of disagreement between models and observations222

can be taken to indicate clear model biases.223

The remainder of this paper is structured as follows. In the next section we pro-224

vide a brief review of Bayesian network models and the inference methods used to fit such225

models. In Section 3 we describe the datasets and diagnostics that we study, together226

with our choice of prior distributions. In Section 4 we present the results of fitting the227

network models. Finally, we summarize our findings and discuss their implications for228

follow-up comparisons in Section 5.229

2 Dynamic Bayesian networks230

2.1 Structure learning231

As noted above, a graphical model is simply a statistical model that has associated232

with it a graph encoding the relationships between the variables in the model. Each ran-233

dom variable in the model is represented by a node in the graph, with the allowed con-234

ditional dependence relationships between variables indicated by edges between nodes.235
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Under suitable assumptions (see, e.g., Koller and Friedman (2009) for a review), trans-236

lating between graphs and joint PDFs that constitute a model can be achieved using a237

prescribed set of rules.238

For BNs and other graphical models based on DAGs, the graph structure implies239

a factorization of the joint PDF into conditional density functions. Given a set of ran-240

dom variables Y 1, . . . , Y n and a DAG G, we denote by paG(Y i) the set of nodes in G241

that have a directed edge connecting to Y i,242

paG(Y i) = {Y j |G contains an edge from Y j to Y i}. (1)243

The graph G then provides a representation of the joint PDF P (Y 1, . . . , Y n) if the PDF244

admits a factorization of the form245

P (Y 1, . . . , Y n) =

n∏
i=1

P (Y i|paG(Y i), θi), (2)246

where θi denotes any parameters required to characterize the conditional density. For247

example, when all of the variables in {Y i}∪paG(Y i) are discrete, the conditional den-248

sity P (Y i|paG(Y i), θi) is the conditional probability table (CPT) summarizing the prob-249

ability of observing each level of Y i for each combination of values of the parents paG(Y i);250

the θi are simply the values of each probability in the table. For continuous variables,251

the θi are any parameters required to fully specify the corresponding continuous PDF.252

Generally in geophysical applications, the random variables of interest exhibit non-253

trivial spatial and temporal correlations. In our case, these variables are a collection of254

(continuous) teleconnection indices, some of which (e.g., ENSO) show substantial au-255

tocorrelation. Feedback loops or temporal dependence of this form cannot be represented256

in a BN with a single node for each index Y i, due to the requirement for the graph G257

to be acyclic (Uusitalo, 2007). To handle this, the set of nodes is expanded to consist258

of the values of the random variables Y i at the current time t, Y it , as well as the values259

of the variables Y it−τ at previous times t−τ (Kjærulff, 1995; Friedman et al., 1998; K. Mur-260

phy & Mian, 1999; K. P. Murphy & Russell, 2002), up to some maximum lag τmax. Tem-261

poral dependencies are described by edges between the nodes corresponding to, say, Y it262

and Y it−τ , and a full time series of observations is described by a graph at each point in263

time relating the values of the variables at that time point to those in the previous time-264

slices. Similar graphical models for multivariate time series have also been introduced265

as time series graphs (Eichler, 2012). The resulting model is referred to as a dynamic266

Bayesian network (DBN).267
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In the simplest case, the structure of the graph and the associated parameters re-268

mains the same across all time-slices, so that the full time series is modeled by repeat-269

ing the graph at each time t. The corresponding DBN is said to be (time-)homogeneous270

(K. P. Murphy & Russell, 2002). The assumption of homogeneity is often violated in geo-271

physical applications, however. Interactions between spatially separated processes, for272

example, may be seasonally dependent, while on longer time-scales the possibility of cli-273

mate regime changes, e.g., in association with tipping points (Lenton et al., 2008), in re-274

sponse to anthropogenic forcing has recently become a key concern. Non-homogeneous275

DBNs, in which either the graph structure, parameters or both simultaneously, are al-276

lowed to change over time, admit the possibility of modeling features such as secular trends277

and regime changes (Wu et al., 2018), at the cost of a significant increase in complex-278

ity in terms of model specification and inference. Here we focus on the simpler case of279

homogeneous models for the purposes of investigating the usefulness of Bayesian meth-280

ods for assessing model uncertainty; the more complicated case of non-homogeneous mod-281

els will be described in a separate study.282

Fitting a homogeneous DBN to an observed time series D = {y1, . . . ,yT }, where283

yt denotes the values of the random variables Yt = (Y 1
t , . . . , Y

n
t )T at time t, requires284

learning (in general) both the structure of the graph G and the values of the correspond-285

ing parameters. Since286

P (θ,G|D) = P (θ|G,D)P (G|D), (3)287

where θ denotes the collection of all parameters for the conditional PDFs, the learning288

process can be conveniently divided into two steps. In the first, structure learning stage,289

the structure of the graph G is sought, independent of specific values of the parameters.290

Structure learning methods for BNs can be roughly categorized as constraint-based or291

score-based. The former set of methods attempt to reconstruct the graph structure on292

the basis of conditional independence tests and available prior knowledge and constraints,293

using, e.g., the PC-algorithm (Spirtes & Glymour, 1991) and its extensions (e.g., Colombo294

& Maathuis, 2014; Runge, 2018a; Runge, Nowack, et al., 2019). As discussed in Section 1,295

most recent examples in climate science have made use of constraint-based algorithms296

to learn an initial structure, followed in some cases by a separate parameter learning step.297

In contrast, in score-based approaches the graph G is estimated based on maximizing298

a suitable score function (Cooper & Herskovits, 1992; Geiger & Heckerman, 1994; Heck-299

erman et al., 1995), such as the marginal likelihood P (D|G) or an information criterion.300
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However, when there may be significant uncertainty associated with the selection of a301

single model, rather than finding a single optimal model, it may be preferable to attempt302

to account for this model uncertainty by sampling from the full posterior distribution303

of possible graphs P (G|D) (Madigan et al., 1995). Estimates for derived quantities of304

interest ∆ may then be computed by averaging over the posterior distribution (Madigan305

& Raftery, 1994; Draper, 1995),306

Pr(∆|D) =
∑
G∈G

Pr(∆|G,D)P (G|D) ≈ 1

S

S∑
s=1

Pr(∆|G(s), D), (4)307

where G is the space of allowed structures and {G(s)}Ss=1 is a sample of size S from the308

posterior distribution P (G|D). In particular, structural uncertainties may be quantified309

by taking ∆ to be an indicator function for the presence of a given edge, with Eq. (4)310

quantifying the posterior probability of the existence of that edge, given the chosen model311

class and observed data.312

Directly sampling the posterior P (G|D) can be achieved in the case that the marginal313

likelihood314

P (D|G) =

∫
dθP (D|G, θ)P (θ|G) (5)315

can be evaluated, where P (θ|G) denotes a set of priors for the full set of node PDF pa-316

rameters θ conditional on the structure of the graph, and we have used the shorthand317 ∫
dθ to denote marginalization. The factor P (D|G, θ) is simply the likelihood under the318

model,319

P (D|G, θ) =

T∏
t=1

n∏
i=1

P (Y it |paG(Y it ), θi); (6)320

note that the inner multiplication follows from the assumption that the joint PDF can321

be factored according to G, and the outer multiplication from the assumption of homo-322

geneity. For simplicity, we work with the conditional likelihood assuming a sufficiently323

large set of pre-sample values are available to condition on. We restrict our attention to324

structures in which the parent set of a variable Y it is not allowed to contain variables at325

the same time t, that is, we do not allow contemporaneous dependencies among variables.326

Excluding models with instantaneous links ensures that the structures we allow natu-327

rally satisfy structural modularity, such that the parent set of a variable Y it may be cho-328

sen independently of the parent set for any other variable (Friedman & Koller, 2003).329

However, it should be kept in mind that doing so prevents any interactions that occur330

on time-scales that are shorter than the data sampling frequency from being directly han-331

dled, as these would manifest as instantaneous dependencies or feedback loops at τ =332
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0. Assuming that the priors P (θ|G) satisfy the properties of parameter independence (Heckerman333

et al., 1995),334

P (θ|G) =

n∏
i=1

P (θi|G), (7)335

and modularity (that is, for any two graphs G and G′, if Y it has the same parent set in336

G and G′, then P (θi|G) = P (θi|G′)), the marginal likelihood may be written as the prod-337

uct of local marginal likelihoods Ψi(D,G) (Grzegorczyk & Husmeier, 2011):338

P (D|G) =

n∏
i=1

∫
dθi

T∏
t=1

P (Y it |paG(Y it ), θi)P (θi|G) ≡
n∏
i=1

Ψi(D;G). (8)339

For structurally modular priors of the form340

P (G) =

n∏
i=1

P (paG(Y it ) (9)341

the posterior over graphs also factorizes,342

P (G|D) =
P (D|G)P (G)

P (D)
=

1

P (D)

n∏
i=1

Ψi(D;G)P (paG(Y it )), (10)343

so that each factor can be computed independently, up to an overall normalization.344

2.2 Choice of conditional densities345

The conditional densities P (Y i|paG(Y i), θi) can, in principle, be chosen to model346

arbitrary relationships between the random variables in the graph, consistent with the347

independence assumptions embodied by the graph structure. In practice, this prevents348

marginalizing out the graph parameters (i.e., evaluating Ψi(D;G) analytically) to sam-349

ple from the marginal posterior distribution P (G|D) directly. It is then necessary to con-350

struct a Markov Chain Monte Carlo (MCMC) sampler that samples from the joint pos-351

terior P (θ,G|D) using, e.g., reversible jump MCMC (RJMCMC) (Green, 1995) or re-352

lated methods (Carlin & Chib, 1995; Godsill, 2001). A summary of samplers that we use353

is given in Appendix A.354

In special cases, the necessary integrals can be evaluated in closed form, allowing355

for the posterior P (G|D) to be efficiently sampled after marginalizing out the conditional356

PDF parameters. For continuous data, a widely used example for which this is possi-357

ble is the linear Gaussian regression model (Punskaya et al., 2002; Lèbre et al., 2010).358

In this model, which can be regarded as a specialization of the BGe model for contin-359

uous data (Geiger & Heckerman, 1994), each Y it is assumed to be conditionally Gaus-360
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sian distributed,361

Y it |paG(Y it ), τ2i ∼ N(µit, τ
−2
i ),

µit = βi0 +

pi∑
j=1

βi(kj ,τj)Y
kj
t−τj

(11)362

with mean µit = E[Y it |paG(Y it )] given by a linear function of the parent variables paG(Y it ) =363

{Y kjt−τj |j = 1, . . . , pi}. The local marginal likelihoods Ψi(D;G) and posterior distribu-364

tions for the parameters of a given graph can be analytically evaluated provided that con-365

jugate normal-gamma priors are assumed for the conditional precision τ2i and coefficients366

βi(kj ,τj),367

τ2i ∼ Gamma(aτ , bτ ),

βi(kj ,τj)|τ
2
i ,paG(Y it ) ∼ N

(
0,
ν2i
τ2i

)
, j = 1, . . . , pi,

(12)368

where aτ , bτ , and ν2i are prior hyperparameters. Similar linear models have previously369

been applied (Kretschmer et al., 2016, 2017; Saggioro et al., 2020; Di Capua et al., 2020)370

to perform estimation of the interaction strengths after an initial stage of constraint-based371

structure learning. Using the underlying generative model, Eq. (11), posterior estimates372

for both the structural features and model parameters can be obtained within a single373

sampling scheme. Appropriate choices for the hyperparameters aτ , bτ , and ν2 allow vary-374

ing levels of regularization to be imposed so as to yield more reliable, if more conserva-375

tive, estimates given relatively short and noisy time series. Alternatively, they may be376

allowed to vary and another level of priors specified for the unknown hyperparameters.377

In the presence of significant non-linearity, linear models of this form may no longer378

be appropriate. In this case, one strategy to capturing the underlying non-linear rela-379

tionship is to first discretize the original data and employ models for discrete data, e.g.,380

the analytically tractable BDe model (Buntine, 1991; Cooper & Herskovits, 1992; Heck-381

erman et al., 1995). However, this comes at the cost of necessarily losing some informa-382

tion, generally yielding only a coarse approximation of the original continuous distribu-383

tion (Friedman & Goldszmidt, 1996). Additionally, choosing an appropriate discretiza-384

tion scheme is in general difficult, as there is an inevitable trade-off between having suf-385

ficient resolution to describe the data versus the exponential growth in the number of386

parameters that are required to specify the CPT of each variable. Hence, in the follow-387

ing we focus on the case of continuous data.388

For a given choice of model, after performing any initial pre-processing, fitting the389

homogeneous DBN model to the observed indices data then consists of sampling from390
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the posterior distribution P (G|D) using the known marginal likelihood P (D|G) in or-391

der to derive a set of candidate networks. For a given graph drawn from P (G|D), the392

posterior distribution for the parameters, and hence summary statistics and credible in-393

tervals, can be computed analytically or obtained via standard within-model MCMC meth-394

ods.395

2.3 Toy model example396

To make the above discussion more concrete, it is helpful to consider a simple toy397

example. A standard problem in climate studies is to determine the direction of the re-398

lationships, if any, between some set of variables. For example, during the positive (El399

Niño) phase of ENSO, anomalously warm Pacific sea surface temperatures (SSTs) drive400

elevated mean surface temperatures over North and South America (McGraw & Barnes,401

2018). As a simplified example of this sort of driver-response relationship, McGraw and402

Barnes (2018) considered a two-dimensional system consisting of two observables Dt and403

Rt that evolve according to404

Dt = αDt−1 +
√

1− α2εDt ,

Rt = Dt−τ + γεRt .

(13)405

The innovations εDt and εRt are taken to be independent Gaussian noise drawn from a406

standard normal distribution. Typically in climate analyses, the relationships between407

the system variables would be studied by regressing the postulated response (e.g., sur-408

face temperature anomalies or Rt) on lagged values of the driver (SST anomalies or Dt),409

Rt = c0 +

k∑
j=1

cjDt−j , (14)410

and vice versa to test for the possibility of the reversed relationship. However, this ap-411

proach is susceptible to detecting spurious relationships when one or both processes ex-412

hibit substantial autocorrelation. As noted above, this often occurs in climate applica-413

tions, where, e.g., the driver may correspond to relatively slowly varying boundary con-414

ditions such as SST driving an atmospheric response, as in the ENSO-surface temper-415

ature example. To account for this, autoregressive models of the form416

Rt = a0 +

k∑
j=1

ajRt−j +

k∑
j=1

bjDt−j , (15)417

(and similarly for the dependence of Dt on Rt), may be used instead to test for the pres-418

ence of Granger causal links between processes.419
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Depending on the system, however, there can be considerable uncertainty associ-420

ated with selecting one of these models over the other. We can apply the sampling based421

approach described in the previous sections to better quantify this. The two models, Eq. (14)422

and Eq. (15), correspond to particular choices of parent set under the linear Gaussian423

regression model. Thus, to illustrate the method we consider the results of learning the424

structure of a DBN describing the system Eq. (13) under a linear Gaussian model. For425

given values of the system parameters, we generate a random realization of the system426

and fit a DBN after standardizing the input data to zero mean and unit variance. For427

the prior hyperparameters, we take, for example, aτ = 1.5, bτ = 10, and ν2 ≈ 43.3,428

yielding a weakly informative t prior with 3 degrees of freedom for each coefficient, with429

90% prior credible intervals of −4 ≤ β ≤ 4. The prior 1% and 99% percentiles for the430

conditional precision (variance) are 0.57 (0.02) and 56.7 (1.74), respectively. Alternative431

choices with a heavier tailed distribution for the coefficients and much broader priors for432

the conditional precision, e.g., aτ = 0.5, bτ = 10, and ν2 ≈ 2, tend to yield similar433

parameter estimates but less sparse models. The set of models considered includes all434

lags of up to 6 time steps and at most 4 parent nodes for each variable. Posterior sam-435

ples are obtained using the MC3 algorithm described in Appendix A, with the choices436

for the structure priors and proposal densities as described in Section 3.3.437

Graphical summaries of the results of fitting this Gaussian DBN to realizations of438

the system Eq. (13) for (α, γ, τ) = (0.2, 1, 2), (0.5, 10, 2), and (0.9, 4, 2) are shown in Fig-439

ure 1. The true system, Eq. (13), corresponds to the graph given in Figure 1(a), with440

the edges labeled by the values of the standardized regression coefficients. The remain-441

ing panels show the estimated posterior probabilities π̂ for each edge, computed as in442

Eq. (4), for each realization of the system; for clarity, only edges for which π̂ > 0.5 are443

shown. Where an edge also appears in the maximum a posteriori (MAP) estimate for444

the structure, the posterior 95% highest density interval (HDI) is also shown for the cor-445

responding coefficient.446

For low levels of autocorrelation and noise, the model recovers the correct edges447

with virtual certainty; in this case, the MAP structure consists of the (true) parent sets448

pa(Dt) = {Dt−1} and pa(Rt) = {Dt−2}. Recovery of the true dependence structure449

is more difficult in the presence of large amounts of noise (e.g., γ = 10) or high auto-450

correlation (e.g., α = 0.9). McGraw and Barnes (2018) note that, in the latter case,451

a bivariate Granger causality analysis exhibits reduced power for detecting the Dt−τ →452
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(a) True model

Dt−τ Dt−1 Dt

Rt

1
√
1+
γ 2

α

(b) (α, γ, τ) = (0.2, 1, 2)

Dt−2 Dt−1 Dt

Rt

π̂ ≈ 1

(0.67, 0.78)

π̂ ≈ 1

(0.15, 0.31)

(c) (α, γ, τ) = (0.5, 10, 2)

Dt−1 Dt

Rt

π̂ ≈ 0.58

(0.07, 0.24)

π̂ ≈ 1

(0.46, 0.60)

(d) (α, γ, τ) = (0.9, 4, 2)

Dt−1 Dt

Rt

π̂ ≈ 0.88

(0.22, 0.38)

π̂ ≈ 1

(0.87, 0.94)

Figure 1. DBNs corresponding to (a) the true model given by Eq. (13), and network struc-

tures inferred using a linear Gaussian model for a single realization of the process with (b)

α = 0.2, γ = 1, τ = 2; (c) α = 0.5, γ = 10, τ = 2; and (d) α = 0.9, γ = 4, τ = 2. For

each of the fitted networks, all edges with an estimated posterior probability π̂ greater than

0.5 are shown, with thickness indicating the value of π̂. Where an edge also occurs in the MAP

model, the approximate posterior 95% HDI for the corresponding coefficient is also shown.

Rt edge while lagged regressions tend to too frequently identify spurious wrong-way re-453

lationships in which R drives D. For high levels of noise, both methods show reduced454

power for detecting the driver-response relationship, although accounting for autocor-455

relation successfully controls the false-positive rate for the reversed relationship. This456

difficulty in identifying the true underlying model is clearly evident in the lower panels457

of Figure 1 from the reduced estimated posterior probability of a dependence of Rt on458

Dt. In both cases, although the MAP structure suggests that Rt depends on lagged val-459

ues of Dt, the lag at which this occurs is misidentified, with pa(Rt) = {Dt−1}. Across460

all sampled models, the estimated posterior probability for lagged values of Dt to Rt re-461

flects greater uncertainty in the model structure, and hence in the selection of a single462

optimal model. For instance, while the MAP parent set for Rt when α = 0.5, γ = 10463

is found to contain only Dt−1, the next most likely parent sets (for this particular sam-464
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ple, pa(Rt) = ∅ and pa(Rt) = {Dt−2}) also have non-negligible posterior probabili-465

ties, so that in practice it may be important to take this model uncertainty into account.466

A similar uncertainty measure is considerably more difficult to construct and interpret467

in the testing based approach of McGraw and Barnes (2018). As time series with long468

memory or large noise levels are frequently encountered in the climate analyses that we469

are interested in, the ability to provide some formal estimate of model uncertainty is an470

important advantage of the approach adopted here.471

3 Data and methods472

We now describe an application of the above methods to sets of reanalysis-derived473

teleconnection indices. In addition to uncertainties due to model and parameter selec-474

tion, in practice the reanalysis datasets that we use have associated uncertainties as well.475

Comparison of the networks derived from different products over a common timespan476

allows the role of these differences to be investigated and provides a baseline against which477

free-running model simulations can be compared.478

3.1 Data479

The data that we analyze are obtained from the Japanese 55-year Reanalysis (JRA-480

55) and the National Centers for Environmental Prediction/National Center for Atmo-481

spheric Research (NCEP/NCAR) Reanalysis 1 (NNR1).482

The NCEP/NCAR Reanalysis 1 (Kalnay et al., 1996) is an atmospheric reanaly-483

sis covering the years 1948 to present. The data assimilation system employs a global484

spectral model with a T62 resolution on 28 vertical levels, and assimilates surface and485

atmospheric observational data. While a fixed analysis and forecast system is used for486

the duration of the reanalysis, changes in observing systems still have an impact and,487

consequently, the reanalysis is less reliable in the first decade than at later times (Kistler488

et al., 2001). NNR1 represents a first generation reanalysis providing a multidecadal record489

of the atmospheric state, albeit with several known errors (Kistler et al., 2001) and bi-490

ases, particularly in data-sparse regions in the high latitudes and the Southern Hemi-491

sphere (SH) (see, e.g., Hines et al., 2000; G. J. Marshall & Harangozo, 2000; G. J. Mar-492

shall, 2002; Bromwich & Fogt, 2004; Greatbatch & Rong, 2006; Hertzog et al., 2006; Bromwich493

et al., 2007; Lindsay et al., 2014). For the purposes of our analysis, global fields of daily494
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mean 500 hPa geopotential height (Zg500 hPa), zonal winds at 850 hPa and 200 hPa (u850 hPa495

and u200 hPa), mean sea level pressure (MSLP), and surface zonal and meridional winds496

(usfc and vsfc) are obtained on the provided 2.5◦ × 2.5◦ latitude-longitude grid. Daily497

mean top-of-atmosphere outgoing longwave radiation (OLR) fields are provided on a T62498

Gaussian grid and are subsequently regridded to a 2.5◦ × 2.5◦ latitude-longitude grid499

using a bilinear interpolation scheme. To compute indices of tropical variability based500

on SST data for NNR1, we use version 1.1 of the HadISST SST dataset (Rayner et al.,501

2003), which provides monthly global SST on a 1◦×1◦ latitude-longitude grid from 1870502

to present.503

The JRA-55 reanalysis (Kobayashi et al., 2015), covering the period from 1958 to504

present, is a more recent atmospheric reanalysis product that aims to correct issues found505

in previous reanalyses. As for the NNR1 reanalysis, a frozen analysis system is employed506

and atmospheric and surface observations are assimilated. The assimilation system used507

for JRA-55 employs a TL319 resolution operational system with 60 vertical levels. The508

representation of the atmospheric circulation has been found to be greatly improved com-509

pared to previous generation reanalyses, although there remain known biases (Harada510

et al., 2016). Daily mean Zg500 hPa, u850 hPa, u250 hPa, usfc, vsfc, MSLP, and OLR fields511

are obtained on a 1.25◦×1.25◦ latitude-longitude grid. For SST fields, the model sur-512

face brightness temperature provided on a 1.25◦×1.25◦ latitude-longitude grid is used.513

Where required by the definition of the index as noted below, we regrid the initial fields514

to a 2.5◦ × 2.5◦ latitude-longitude grid using a bilinear interpolation method.515

3.2 Indices516

From the full gridded fields we compute a set of indices diagnosing the activity of517

a selection of major global teleconnections, which will form the nodes in the fitted graph-518

ical models. In a fully data-driven approach, the definitions of such indices might be au-519

tomatically determined by using community detection methods (Steinhaeuser et al., 2011;520

Bello et al., 2015). This has the advantage of accounting for differences between datasets521

or models in the representation of particular modes, e.g., due to shifts in the geographic522

centers of action. While these approaches have been employed in studies of causal effect523

networks (Kretschmer et al., 2017), here we use a set of fixed, empirical definitions for524

the teleconnection indices. We do so for two reasons. Firstly, this allows for a simpler525

evaluation of the performance of the models defined in Section 2, as the features in the526
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fitted networks can be directly compared to well-studied relationships between traditional527

indices. Such a comparison would be more difficult to perform when using automatically528

extracted indices, as some differences might arise solely from the definition of the index.529

Additionally, positional shifts and other differences in the expression of particular modes530

with respect to a predefined diagnostic are themselves of interest from the point of view531

of comparing and evaluating models, and so we prefer to use a single set of reference def-532

initions.533

We choose a set of indices that provides reasonably comprehensive coverage of the534

dominant teleconnection processes active on intraseasonal through to interannual time-535

scales. Where anomalies are required in the definition of an index, for consistency across536

the different datasets we compute all anomalies as differences from the daily or monthly537

climatology calculated with respect to the reference period 1 January 1979 to 30 Decem-538

ber 2001.539

As measures of tropical variability, we include an updated version (Zhang et al.,540

2019) of the multivariate ENSO index (MEI) (Wolter & Timlin, 1993, 1998, 2011), the541

dipole mode index (DMI) to characterize IOD activity (Saji et al., 1999), and the Wheeler-542

Hendon Madden-Julian oscillation (MJO) index (Wheeler & Hendon, 2004), denoted be-543

low as RMM1 and RMM2. For both the MEI and the RMM1 and RMM2 indices, all544

of the input fields are evaluated on a common 2.5◦×2.5◦ latitude-longitude grid. Where545

required, monthly MJO indices are defined as the monthly mean of the corresponding546

daily index.547

In the extratropical atmosphere, we include indices of the AO, the SAM, the PNA,548

the PSA1 and PSA2 modes, and a set of modes associated with blocking in the North549

Atlantic and western Europe. We define the AO and SAM as the leading empirical or-550

thogonal functions (EOFs) (Lorenz, 1956) of anomalies of monthly mean Zg500 hPa pole-551

ward of 20◦N and 20◦S, respectively. All anomalies are weighted by the square root of552

the cosine of the gridpoint latitude when computing the EOFs. Corresponding AO and553

SAM indices are calculated by projecting the (area-weighted) daily or monthly anoma-554

lies onto the leading EOF and normalizing by the standard deviation of the monthly lead-555

ing principal component (PC).556

The PNA pattern is taken to be the leading mode obtained after performing a VARI-557

MAX rotation (Kaiser, 1958) of the first 10 EOF modes of monthly-standardized anoma-558
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lies of monthly mean Zg500 hPa polewards of 20◦N during boreal winter, taken to be De-559

cember, January and February (DJF). The PNA index is then the projection of the stan-560

dardized height anomalies onto the resulting pattern, standardized by the monthly mean561

and standard deviation within the climatology reference period. The analogous modes562

in the SH, PSA1 and PSA2, are defined as the second and third modes in an EOF anal-563

ysis of year-round anomalies of daily mean Zg500 hPa polewards of 20◦S, projecting onto564

each mode and normalizing by the standard deviation of the correponding PC over the565

reference period to obtain associated indices.566

Following the method presented in Straus et al. (2017), we define a set of Euro-Atlantic567

circulation regimes via a k-means clustering analysis of the leading 24 PCs of boreal win-568

ter anomalies in daily mean Zg500 hPa in the sector 20◦N - 80◦N, 90◦W - 30◦E, after ap-569

plying a 10 day running mean smoothing. This method has the advantage of better cap-570

turing spatial asymmetries present in opposing phases of the NAO. Using k = 4 clus-571

ters, we obtain a set of patterns that correspond to the positive and negative NAO phases,572

NAO+ and NAO−, as well as two clusters associated with blocking events in the Atlantic573

and western Europe, denoted AR and SCAND, respectively. Indices for each of the 4 clus-574

ters are obtained by projecting daily or monthly height anomalies onto the composites575

associated with each cluster and standardizing by the monthly mean and standard de-576

viations of the monthly index over the reference period.577

For both reanalyses, monthly time series of the chosen indices are computed for the578

period 1 January 1960 to 30 November 2005, and this full time period is used for fitting579

DBNs. As some indices (e.g., SAM) exhibit significant trends over this period, we es-580

timate and remove a linear trend for every index beforehand. Each index time series is581

then standardized to have zero mean and unit variance over the fitting period.582

3.3 Priors and sampler settings583

As noted in Section 2, when excluding the possibility of contemporaneous edges,584

it is natural to choose structurally modular priors for the parent sets paG(Y it ), such that585

the prior for a graph G decomposes into independent priors for the parent sets paG(Y it )586

of each of the n indices included in the model. We fix a maximum allowed lag τmax, such587

that the n(τmax + 1) nodes in the network at a given time are ∪ni=1{Y it , . . . , Y it−τmax
}.588

For networks based on monthly indices, we take τmax = 6 months, corresponding to the589
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approximate e-folding time of the MEI. To enforce some degree of sparsity in the net-590

works, we also impose a constraint on the maximum parent set size for each index, |paG(Y it )| ≤591

pmax = 10. Subject to these constraints, in the absence of additional information we592

adopt uniform priors over the set of possible parent sets for each index, i.e.,593

P (paG(Y it )) =


[∑pmax

j=0

(
nτmax

j

)]−1
, |paG(Y it )| ≤ pmax,

0, otherwise.

(16)594

The MCMC sampling schemes described in Appendix A also require an appropri-595

ate proposal density for proposing updates to the structure of the model. We choose to596

adopt a uniform proposal density on graphs G′ in the neighborhood of the current graph597

G,598

qG(G′;G) =


1

|nhd(G)| , G′ ∈ nhd(G),

0, otherwise.

599

The neighborhood nhd(G) of a graph G is defined as the set of graphs that can be reached600

from that structure by a single move in a predefined move set. Note that, when an ex-601

plicit distinction is made between structure and parameter updates, as in the basic RJM-602

CMC scheme in Appendix A, we do not include the current graph itself in the neighbor-603

hood. We take the set of possible moves to consist of addition of a single edge, deletion604

of a single edge, or an exchange of two edges (Grzegorczyk & Husmeier, 2011). The neigh-605

borhood of a graph contains those graphs that can be reached from it by performing one606

of these three moves, subject to the imposed condition on the maximum parent set size.607

A structure update move thus consists of determining the neighborhood of the current608

graph based on the available moves before selecting with equal probability one graph from609

this set. As the models considered here allow for the node parameters to be marginal-610

ized out, we use the MC3 sampling algorithm (Algorithm 2 in Appendix A) with the above611

proposal for fitting the model. For each index, posterior samples were obtained by run-612

ning 8 chains of length 10×106 samples. The number of samples to be retained for anal-613

ysis was chosen based on the estimated convergence rate from short initial runs follow-614

ing Brooks et al. (2003), where we required the thinning to be such that the resulting615

dependence between samples was reduced by a factor of 100 compared to the dependence616

between successive samples. To provide some assessment of chain convergence, homo-617

geneity of the distribution of parent sets within chains was monitored using χ2 and Kolmogorov-618

Smirnov tests (Brooks et al., 2003) for each index, although we note that, as always, these619

tests are not sufficient alone to determine approximate convergence (Sisson, 2005). In620
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the following, both the posterior distribution over possible models and for individual fea-621

tures is of interest. Thus, in addition to applying these tests to the distribution of over-622

all model indicators, we also monitored the results for the case when each model was la-623

belled by a binary indicator for the presence of each possible edge, so as to check if in-624

ferences for the individual posterior edge probabilities were homogeneous across chains.625

Where required, samples for the node parameters were drawn from the conditional pos-626

terior distributions by Gibbs sampling.627

The associations between the continuous valued indices are modeled using the lin-628

ear Gaussian conditional density, Eq. (11). For each index, we take the hyperparame-629

ter values aτ = 1.5, bτ = 20, and ν2i = 3, for i = 1, . . . , n. This corresponds to inde-630

pendent t3 marginal priors for the regression coefficients, with 95% prior HDI −1 ≤ β ≤631

1. The 1% and 99% percentiles for the conditional precision are respectively 1.1 and 113.4.632

Prior simulations suggest that this choice of priors yields a reasonable scale for the prior633

predictive distribution for the 1-step ahead forecast values, while not being so heavily634

regularized that relatively large values of the coefficients and indices are excluded. Sim-635

ilarly, the conditional precision hyperparameters are chosen to yield typical monthly in-636

novation variances of order 1 or less. As these choices lead to somewhat informative pri-637

ors, to assess the sensitivity of the results to the hyperparameter values we also perform638

fits with the much more weakly informative choices of aτ = 0.5, bτ = 10, ν2i ≈ 2 (cor-639

responding to a 90% prior HDI of −4 ≤ β ≤ 4 and prior 1% and 99% percentiles for640

τ2 of 7.6×10−4 and 33.2, respectively), which we find lead to qualitatively similar re-641

sults (see supporting information).642

4 Results643

4.1 Full year networks for monthly indices644

We first consider the results of applying the above methods to year-round monthly645

indices for the two reanalyses. To better display the spatial structure of interactions, we646

separate the full network into subgraphs consisting of those indices corresponding to North-647

ern Hemisphere (NH) extratropical, tropical, and SH extratropical modes, together with648

their inferred parent sets. From the posterior samples over possible parent sets for each649

index, approximate posterior probabilities π̂ for the presence of each edge in the network650

are computed as the sample average, Eq. (4), of the corresponding indicator function.651
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The results are summarized in Figure 2 and Figure 3 for the possible parent sets of trop-652

ical indices, in Figure 4 for the NH extratropical indices, and in Figure 5 for the SH ex-653

tratropical indices. For each subset, edges are shown with weights corresponding to their654

estimated posterior probability; for clarity, only those edges for which this value is at least655

0.5 are shown. Overall, the learned structures for the two reanalyses are similar. In par-656

ticular, there is broad agreement in terms of those edges for which the estimated pos-657

terior probability is high. These edges largely correspond, as is expected, to relationships658

in which there is a strong association between the parent and child node, either through659

strong autocorrelation or Granger causal links.660

Strong evidence of long-range dependence on lagged values, reflecting the expected661

high levels of autocorrelation, is apparent for indices representing ENSO and the MJO,662

with the fitted models for both products featuring posterior probabilities near one for663

dependence of the MEI and both RMM indices on lags of up to four months (Figure 2664

and Figure 3). In both cases, the preferred lags are consistent with the expected time-665

scales for these modes, noting that a maximum lag of 6 months is imposed when fitting666

the model. Purely atmospheric modes, on the other hand, exhibit little memory beyond667

time horizons of several weeks to a month. This is apparent in the fitted networks for668

both models in the absence of strong evidence for dependence of the NH extratropical669

(Figure 4) and SH extratropical indices (Figure 5) on lagged values of themselves beyond670

lags of one month. For instance, in both NNR1 and JRA-55 there is found to be little,671

or at most relatively weak, evidence for serial dependence on monthly time-scales for the672

AR and SCAND indices, which respectively represent blocking in the Atlantic and Scan-673

dinavia with a characteristic time-scale of 7 - 10 days. Although the DMI diagnoses In-674

dian Ocean SST variability, the partial autocorrelation structure of the monthly mean675

DMI is consistent with an AR(1) process, and hence only the edge DMIt−1 → DMIt676

is found to have appreciable posterior mass.677

Where a high posterior probability edge is inferred between distinct indices, the678

edge generally matches with well-known associations or teleconnections among the modes679

included in the fit. This is highlighted, for example, in Figure 6, where the posterior prob-680

abilities for edges entering the AO, NAO+, and NAO− nodes in both reanalyses are shown.681

The close association between the AO and NAO is clearly evident in both reanalyses,682

and the estimated dependence relationships involving just these two indices are in es-683

sentially exact agreement. For both NNR1 and JRA-55, the presence of an edge in the684
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Figure 2. Subgraphs corresponding to the fitted parent sets of the tropical indices in NNR1

based on full-year data for aτ = 1.5, bτ = 20, and ν2 = 3. All edges with an estimated posterior

probability π̂ greater than 0.5 are shown.

network from the AO at lag 1 to each of the child nodes AOt, NAO+
t , and NAO−t is in-685

ferred with very high confidence. The same is true for the edges NAO−t−1 → AOt and686

NAO−t−1 → NAO+
t . This clear interdependence of the AO and NAO is, of course, very687

well established, to the extent that the existence of the former as a distinct physical mode688

has been debated (Deser, 2000; Ambaum et al., 2001). The appearance of this relation-689

ship in the learned structures does, however, provide a useful check that the method re-690

covers the expected relationships among particular modes. That these features agree be-691

tween the two reanalyses also suggests that the relationships between these modes are692

consistent in the separate datasets.693
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Similarly, the fitted parent sets for the monthly PNA index in NNR1 and JRA-55,694

shown in Figure 7, both include with posterior probability greater than 0.5 dependence695

on the value of the PNA index at a lag of one month (π̂ ≈ 0.95 and π̂ ≈ 0.91 in NNR1696

and JRA-55, respectively) and on the MEI at lag one (π̂ ≈ 0.71 and π̂ ≈ 0.59 for NNR1697

and JRA-55, respectively). In this case, the results of the fit indicate that in both re-698

analyses there is reasonable evidence that the PNA is associated with tropical forcing,699

here captured by the lagged value of the MEI, consistent with previous observational and700

modeling studies (e.g., Hoskins & Ambrizzi, 1993; Trenberth et al., 1998; Franzke et al.,701

2011). The posterior mass for this edge is similar in NNR1 and JRA-55, suggesting that,702

as for the AO and NAO, this relationship is also consistent in the two products, in the703

sense that there is comparable evidence for the association across the two datasets.704

Although the structures estimated from the NNR1 and JRA-55 datasets agree well705

in the above examples, there are notable differences in the estimated edge probabilities706

as well. Moreover, several of these differences involve features that are assigned appre-707

ciable posterior probability (i.e., π̂ ≥ 0.5) based on the data from one reanalysis and708

not the other. That is, the differences are not limited only to associations that are weakly709

supported in both datasets. For example, in Figure 7, the estimated structure for NNR1710

contains an edge from the lag one monthly mean RMM1 index to the monthly PNA in-711

dex at lag 0 with high posterior probability. The same feature in JRA-55 is found to have712

a posterior probability π̂ ≈ 0.38 that is less than 40% of that found for NNR1. Given713

the observed evidence for interactions between tropical convection and extratropical modes714

such as the PNA on intraseasonal time-scales (Lau & Phillips, 1986), in this case the weaker715

evidence for an MJO-PNA relationship in the JRA-55 data may arise due to the sup-716

pressed MJO observed in the JRA-55 reanalysis (Harada et al., 2016). It should be noted,717

however, that directly attributing the difference to this bias is not straightforward; for718

example, other known associations between the MJO and other modes of variability are719

identified in the JRA-55 fits, discussed below. Confirming whether there is a difference720

in this particular feature, and the underlying source of the difference, would require a721

closer examination of the representation of the two processes in the reanalysis, which is722

left for further studies. Nevertheless, this does highlight that comparison of the learned723

parent sets between the two reanalyses allows differences in the captured interactions be-724

tween modes to be identified, particularly when we may have confidence that such a dif-725

ference is in fact present. By adopting a Bayesian approach to structure learning, the726
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level of confidence in this difference can be estimated: while the edge RMM1t−1 → PNAt727

may be found in individual models for the time-evolution of the PNA index in both re-728

analyses, the existence of this feature is approximately 2.5 times more likely in NNR1729

than in JRA-55 given the class of models and possible parent nodes that we consider.730

The presence of this edge with reasonable confidence in one product and not the other731

is suggestive of an underlying bias in one reanalysis, rather than simply being due to sam-732

pling variability.733

Other differences in edges with large posterior mass, however, do not have quite734

as clear possible sources in specific underlying biases. In both reanalyses, the parent set735

of the NAO+
t node is estimated to contain the monthly PSA2 index at lag one, but with736

a posterior probability that is approximately 1.8 times larger in NNR1 (π̂ ≈ 0.89 com-737

pared to π̂ ≈ 0.50, see Figure 6). Similarly, the posterior probability for the edge PSA2t−1 →738

NAO−t is ≈ 4.7 times larger in NNR1, but in this case for both NNR1 and JRA-55 the739

estimated probability is less than 0.5, while an edge PSA1t−1 → ARt is also present in740

both reanalyses. O’Kane et al. (2016) and O’Kane et al. (2017) concluded that the PSA741

modes predominantly reflect dynamics localized to within the SH waveguide, such that742

a direct physical interaction between the PSA2 mode and the NAO is unlikely. Thus,743

in contrast to the RMM1t−1 → PNAt feature, one might expect that the differing level744

of confidence in this edge between the two reanalyses may be due to differences in rel-745

evant factors that are omitted from this simple analysis. In particular, as the fit shown746

in Figure 6 is based on data from all seasons, the presence of such a feature may reflect747

seasonal covariations in the extratropical circulation in both hemispheres that is other-748

wise unaccounted for here. While we consider the effects of seasonality in Section 4.2 be-749

low, ultimately direct determination of the root of these differences must be based on750

detailed evaluation of the two products. Here we seek only to highlight the use of the751

fitted networks for learning possible dependence relationships and hence their utility for752

guiding comparative analyses on the basis of identifying relationships that can be inferred753

to be present or absent with reasonable confidence.754

Features for which there is lower confidence tend to differ more between the two755

reanalyses, although in these cases it becomes less clear as to whether they indicate sub-756

stantive differences. This is most evident in the subgraphs corresponding to the parent757

sets for the SH extratropical indices in Figure 5. While there is agreement between the758

models fitted to NNR1 and JRA-55 in features such as the one month memory in the759
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SAM and the presence of an association (even if not a direct interaction) between the760

PSA1 and tropical forcing captured by the MEI, a larger number of features with pos-761

terior mass π̂ > 0.5 are found using the NNR1 data, involving a larger set of indices762

as parents. This greater disagreement between reanalyses, and overall lower confidence763

in the inferred non-independence relationships, may in part be due to the disparate res-764

olutions and configurations of the respective atmospheric models in combination with765

relatively sparse observations in the SH prior to the satellite period. Spurious associa-766

tions may also arise as a result of omitted factors, such as seasonal changes in the cir-767

culation, and low signal-to-noise ratios outside of the SH winter. For instance, the pos-768

terior distributions over parent nodes for the SAM index in the two reanalyses are sum-769

marized in Figure 8. In both NNR1 and JRA-55, non-zero associations are found with770

the MEI at lags of 4 and 6 months, albeit with somewhat higher posterior probabilities771

in JRA-55, and in NNR1 an edge from ARt−5 → SAMt is identified with π̂ ≈ 0.52.772

The same edge in JRA-55 is found to have π̂ ≈ 0.42. Noting that a similar, compar-773

atively low confidence relationship is found between NAO+ and the PSA1 at a lag of four774

months in NNR1, and absent a mechanism for such interactions, it appears likely that775

in this case the association is an artifact arising from the use of year-round data; we con-776

firm that this is the case in the following section. It is worth noting, however, that the777

fact that there is overall low posterior weight for these edges in both reanalyses allows778

identifying them as lacking robustness. This in turn is of use for the purposes of guid-779

ing model evaluation, where differences to observations in low probability relationships780

are of potentially less relevance.781

It is important to bear in mind that the structures discussed above summarize the782

marginal posterior probability for the presence or absence of each individual edge over783

all possible models, rather than the presence or strength of an association between two784

indices within a single model. In addition to inspecting the estimated marginal distri-785

butions for each feature, given a sample from the approximate posterior distribution it786

may also be of interest to consider aspects of the sample that involve either the joint oc-787

currence of one or more edges, as well as the posterior distribution over complete mod-788

els. In particular, point-estimates for the parent set, analogous to those obtained using789

constraint-based approaches, can be obtained as the MAP estimate with the largest pos-790

terior probability. As all parent sets are assigned equal prior probability, this structure791

is simply the one that maximizes the marginal log-likelihood. Conditional on a partic-792

–27–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

ular MAP structure, estimates for the parameters under the model may be simply ob-793

tained by sampling from the conditional distributions P (θ|G,D), which in the case of794

the linear Gaussian model can be evaluated in closed form. Thus, in the sampling-based795

approach we may also obtain estimates of the strength of an association, conditioned on796

a particular model, in addition to the above estimates for the probability of the presence797

of the corresponding edge in the structure.798

For example, the MAP parent sets for the NH extratropical modes in each reanal-799

ysis are summarized in Table 1, where we show both the estimated posterior probabil-800

ity for each edge in the parent set, as well as the posterior mean and 95% HDI for the801

corresponding coefficient in Eq. (11). In general, edges present in the MAP parent sets

Table 1. MAP parent sets for monthly NH extratropical teleconnection indices across all sea-

sons for NNR1 and JRA-55 for fits with aτ = 1.5, bτ = 20, and ν2 = 3, showing the estimated

posterior probability π̂ of the edge, the mean parameter value β̂ conditional on the MAP struc-

ture, and the 95% posterior HDI. Dashes indicate a node that is not in the MAP parent set for a

given reanalysis.

JRA-55 NNR1

Parent node π̂ β̂ 95% HDI π̂ β̂ 95% HDI

AOt
AOt−1 1.00 0.45 (0.35, 0.56) 1.00 0.46 (0.35, 0.57)

NAO−t−1 0.99 0.24 (0.13, 0.35) 0.99 0.25 (0.13, 0.36)

ARt
NAO+

t−6 0.44 0.12 (0.03, 0.19) 0.32 0.12 (0.04, 0.20)
PNAt−1 0.58 0.14 (0.06, 0.22) 0.36 0.14 (0.06, 0.22)
PSA1t−1 0.97 −0.17 (−0.25,−0.09) 0.67 −0.14 (−0.22,−0.06)
RMM2t−5 0.11 − − 0.43 −0.12 (−0.20,−0.04)

NAO+
t

AOt−1 1.00 0.35 (0.23, 0.46) 1.00 0.37 (0.24, 0.48)

NAO+
t−1 0.66 0.17 (0.05, 0.29) 0.69 0.17 (0.06, 0.29)

NAO−t−1 0.98 0.31 (0.19, 0.43) 1.00 0.34 (0.22, 0.46)
PSA2t−1 0.50 −0.11 (−0.19,−0.03) 0.89 −0.14 (−0.22,−0.06)

NAO−t
AOt−1 1.00 −0.52 (−0.65,−0.39) 1.00 −0.52 (−0.65,−0.39)
NAO−t−1 0.78 −0.22 (−0.34,−0.10) 0.70 −0.23 (−0.35,−0.11)
PNAt−1 0.73 −0.17 (−0.26,−0.07) 0.55 −0.15 (−0.24,−0.06)
PSA2t−1 0.10 − − 0.47 0.12 (0.04, 0.20)

PNAt
MEIt−1 0.58 0.21 (0.12, 0.29) 0.71 0.21 (0.12, 0.29)
PNAt−1 0.91 0.15 (0.07, 0.24) 0.95 0.16 (0.08, 0.24)
RMM1t−1 0.38 − − 0.99 0.17 (0.09, 0.25)

SCANDt
MEIt−6 0.34 −0.13 (−0.21,−0.05) 0.28 − −
SCANDt−1 0.53 0.13 (0.04, 0.21) 0.31 − −
MEIt−5 0.23 − − 0.45 −0.13 (−0.22,−0.05)
ARt−1 0.28 − − 0.53 −0.13 (−0.21,−0.05)

802

tend to have at least moderately high posterior probabilities, that is, they correspond803
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to non-independence relationships that are also present in a large fraction of the sam-804

pled models. Edges found in the MAP parent set are not necessarily found in the ma-805

jority of possible models, however, with several edges having posterior probabilities of806

order ∼ 0.3 in Table 1. For these edges, while their inclusion leads to a good fit for this807

particular sample, the data do not provide especially strong evidence for their presence808

compared to other edges in the MAP structure, given the set of all other possible pre-809

dictors. To some extent this also reflects the fact that multiple models with parent sets810

that do not include these edges may still provide a reasonable fit to the observed data,811

despite not maximizing the marginal likelihood, and hence can account for non-negligible812

posterior mass. Considering only the single most probable structure may therefore fail813

to take into account relevant model uncertainty. Notably, differences between the MAP814

structures for the two reanalyses are again not only restricted to edges with low poste-815

rior mass, suggesting that at least some differences may be due to systematic effects rather816

than as a result of minor differences in the two samples. For example, the absence of the817

edge RMMt−1 → PNAt in the MAP parent set from JRA-55 indicates that not only is818

there weak evidence for this relationship in the dataset, but that it is also not required819

in order to produce a good fit to the observed time series. Where an edge is present in820

the MAP parent set for both reanalyses, there is good agreement between the two prod-821

ucts in terms of the estimated coefficient. For the NH modes, the two reanalyses yield822

very similar estimates for the strength of each association, while there are somewhat larger823

differences for the tropical and SH extratropical modes (see supporting information).824

4.2 Seasonal networks for monthly indices825

Overall, the fitted networks based on full year data show good agreement between826

the two reanalyses. Some of the differences noted in the previous section may arise due827

to confounding or spurious associations generated by, among other things, the omission828

of relevant variables in the fit (i.e., failure of causal sufficiency, in the case that the mod-829

els are interpreted as being causal). An obvious possible factor is the seasonal variation830

in relationships between nodes that arises as a result of seasonal changes in the back-831

ground flow and hence in the available pathways for propagation of disturbances (e.g.,832

Hoskins & Ambrizzi, 1993; Ambrizzi et al., 1995). To account for this seasonal depen-833

dence, one possibility would be to include a seasonal indicator as a node within the graph834

itself. For simplicity, however, to investigate the impact of seasonal variation we consider835
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the results of repeating the above analysis restricted to data in the three month winter836

season for each hemisphere. Note that, as lags of up to six months are still allowed, ob-837

servations entering into these fits also include lagged values of the indices during the pre-838

vious season. For brevity, we restrict our attention to only a subset of the major tele-839

connections within each hemisphere.840

In Figure 9, the estimated posterior probabilities for the parent sets of the NAO+
841

and NAO− indices during DJF are shown. As for the full year fits, in both reanalyses842

there is strong evidence for an association between the AO and the two phases of the NAO,843

with approximately equal posterior mass assigned to each edge in NNR1 and JRA-55.844

Compared to the full year networks, the edge from PSA2t−1 → NAO+
t is no longer found845

to have appreciable posterior mass (π̂ < 0.1 in both reanalyses), consistent with this846

edge arising as a result of the use of full-year data. In both NNR1 and JRA-55, a rela-847

tionship between the MJO, via the value of the RMM1 index at a lag of two months, with848

the positive phase of the NAO is found in a large fraction of sampled models (π̂ ≈ 0.67849

in NNR1 and π̂ ≈ 0.83 in JRA-55). Interactions between the MJO and the NAO have850

previously been reported in winter season observations (e.g., Lin et al., 2009) arising from851

known dynamical mechanisms (e.g., Frederiksen & Frederiksen, 1993). The inferred pres-852

ence of this relation, with moderately high confidence, indicates that both products are853

consistent in capturing this association, although it should be noted that monthly mean854

data is being used here in contrast to the more usual daily or pentad data. In both NNR1855

and JRA-55, additional edges are also found with somewhat lower posterior probabil-856

ities, including the edges NAO+
t−5 → NAO−t , PSA1t−5 → NAO−t , and PNAt−3 → NAO+

t857

with estimated probabilities π̂ ≈ 0.55, 0.51, and 0.54 in JRA-55, respectively, and π̂ ≈858

0.49, 0.43, and 0.45 in NNR1. As these features are present in both reanalyses with rel-859

atively similar posterior weights, this suggests that there is some, if comparatively weak,860

evidence for these associations from both products, and the two reanalyses appear to thus861

be consistent. More notably, the feature DMIt−6 → NAO−t is estimated to have a pos-862

terior probability of π̂ ≈ 0.52 based on the indices computed using NNR1 and HadISST863

data, while when fitted to JRA-55 the same feature is assigned a posterior mass of only864

π̂ ≈ 0.09, implying substantially weaker evidence is found for the presence of this edge865

in the JRA-55 data.866

For fits based on austral winter (June-July-August, JJA) data, similar results are867

found in that several apparently spurious associations cease to be present in a large frac-868
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tion of the sampled structures. In Figure 10, the estimated posterior probabilities for par-869

ent nodes of the PSA1 index during JJA are shown for the two reanalyses. Compared870

to the previous, full-year fits in Figure 5, the set of edges with high posterior mass from871

NNR1 data no longer includes long-range dependence on the positive phase of the NAO,872

or on the PSA2 index. Instead, an edge RMM1t−5 → PSA1t is found with posterior prob-873

ability π̂ ≈ 0.60, with the same feature being obtained from the JRA-55 data with π̂ ≈874

0.77. The JRA-55 fit also contains an edge RMM2t−6 → PSA1t with estimated poste-875

rior probability π̂ ≈ 0.94; in NNR1, the corresponding feature is found to have π̂ ≈876

0.42. Associations between the MJO and the PSA modes on intraseasonal time-scales877

during winter have previously been noted (Mo & Paegle, 2001), although the fitted mod-878

els here assign greater posterior weight to dependence at longer lags. While the poste-879

rior probability for the presence of RMM1 as a predictor of the monthly mean PSA1 is880

roughly consistent between NNR1 and JRA-55, the approximate factor of two difference881

in the value of the sampled posterior probability for the RMM2 edge is more sizable and882

may provide weak evidence of a difference between the two reanalyses in terms of this883

relationship. A similar statement may be made for the MEIt−1 → PSA1t edge, for which884

the fitted posterior probabilities are π̂ ≈ 0.59 in JRA-55 and π̂ ≈ 0.22 in NNR1. In-885

terestingly, approximately half (π̂ ≈ 0.49) of the sampled structures in NNR1 instead886

contain an edge PNAt−1 → PSA1t, which may reflect the effects of a common depen-887

dence on tropical forcing. Overall, there are a larger number of features with high pos-888

terior mass in the JRA-55 fits. As usual, the precise underlying reasons for these differ-889

ences are not determined by the fits alone. Possible biases, such as a poorer represen-890

tation of the wintertime SH circulation in one product compared to the other, would re-891

quire further detailed follow-up. Our purpose here has been to highlight the use of Bayesian892

structure learning as a tool to identify possible differences, and to estimate the level of893

uncertainty associated with each.894

5 Summary895

Probabilistic graphical models provide a natural and intuitive framework with which896

to describe the complicated interactions between climate processes. As a result, they are897

increasingly being applied for the purposes of studying potential causal relationships and898

for model evaluation (Vázquez-Patiño et al., 2020; Nowack et al., 2020). In this latter899

application, models are generally evaluated on the basis of structural comparisons be-900
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tween graph structures inferred from observations and from model runs. Additionally,901

the strength of associations may be compared by performing a second stage of model fit-902

ting, conditional on the inferred structure. As is, this constitutes a powerful lens for ex-903

amining differences between models and observations.904

That being said, existing approaches still have some important limitations when905

used as tools for model evaluation. In particular, the most widely used strategy of first906

learning a suitable structure using a constraint-based learning algorithm, followed op-907

tionally by fitting a regression model conditioned on this structure, does not lend itself908

to easily estimating the level of confidence in the obtained model. While sensitivity anal-909

yses enable some determination of the robustness of particular features, in general the910

sampling properties associated with this procedure are difficult to assess (Madigan & Raftery,911

1994; Draper, 1995). This can present a challenge for using learned structures as tools912

for model evaluation, where some measure of significance of observed differences is usu-913

ally desirable so as to assess whether they are due to model biases or sampling variabil-914

ity.915

This limitation can in principle be overcome by employing a Bayesian approach to916

structure learning. By learning a posterior distribution over possible structures, rather917

than selecting a single graph, overall model uncertainty can be quantified and accounted918

for. This can be particularly important where multiple different structures may all be919

nearly equally well supported by the data, in which case selection of a single model may920

overestimate the confidence warranted in particular features. Given a sample from the921

model posterior distribution, by averaging over the set of possible models the posterior922

credibility of given features may instead be estimated in the Bayesian approach to iden-923

tify edges that are well supported by the data. Subsequent estimation of the model pa-924

rameters conditional on a given structure is straightforward, and provides a basis for com-925

paring the magnitude of relationships between different processes.926

The result of the sampling-based structure learning algorithms is a sample from927

the set of possible models, from which posterior probabilities for particular features can928

be derived. In this way, robust features for which there is high confidence may be iden-929

tified, and the set of such edges may in turn form the focus of model comparisons. To930

illustrate this approach, we have applied an MCMC based approach to learn DBNs de-931

scribing associations between teleconnections in two different reanalyses, with the goals932
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of identifying the robust structural differences between the two products and to estab-933

lish a set of baseline estimates for subsequent model evaluation studies.934

In general, features in the networks derived from NNR1 and JRA-55 data that have935

high estimated posterior probabilities agree reasonably well. While not surprising, as both936

reanalyses attempt to provide an estimate of the same climate state, this provides some937

reassurance that consistent results are obtained using a sampling algorithm, and that938

the expected associations and dependence structures, such as long memory in oceanic939

modes and close correspondence between the AO and NAO, are recovered with reason-940

able levels of certainty. Differences between the models estimated from the two reanal-941

yses are not only limited to edges with low posterior mass, however. In some cases, these942

differences involve modes for which there are known biases in one reanalysis or the other;943

the lack of evidence for a dependence of the PNA on the MJO in JRA-55 is one such ex-944

ample. In other cases, these features may arise as a result of the effects of omitted con-945

founding effects, such as seasonal cycles and other common drivers, that nevertheless dif-946

fer between the two reanalyses. Some evidence for this is found by considering networks947

fitted from data restricted to only the winter season in each hemisphere. In these fits,948

apparently spurious cross-equatorial dependence present in fits to year-round data are949

no longer found to have strong evidence to support their presence. A greater number of950

differences between the networks derived from the two reanalyses are found for edges that951

have lower posterior probabilities, with this being particularly noticeable for the SH modes.952

This may in part be due to greater differences in the representation of these modes, as953

well as lower signal-to-noise ratios, at least outside of the austral winter.954

It is important to note that in this study our aim has not been to perform a de-955

tailed evaluation of the differences between the two reanalysis products. Extensive char-956

acterization of the performance and biases of both NNR1 and JRA-55 has been done in957

the past, and further investigations of the differences found here would require additional958

detailed study of the involved processes in each product. Rather, our purpose has been959

to demonstrate the applicability of the Bayesian approach to structure learning in de-960

riving graphical models suitable for use as tools for process-based model evaluation. We961

argue that an important aspect of this application is the need to account for inevitable962

model uncertainty in order to identify differences that are likely to be robust and hence963

represent genuine model biases. Independent of the context of the analysis, this can be964

naturally achieved in the Bayesian approach. By considering a relatively straightforward965
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initial application to reanalysis data, for which there exists (at least some) consensus on966

the interactions between modes, we have shown that a score-based sampling approach967

recovers the expected relationships, while also providing additional benefits over constraint-968

based approaches in the form of estimates for the posterior distribution over models and969

features.970

Given this, we have primarily focused on a single analysis of year-round monthly971

mean data, or data within a single season. While sufficient to illustrate the relevant fea-972

tures of the results, in order to utilize this approach in the context of causal discovery973

it would be necessary to further extend the analysis presented here. In addition to care-974

ful selection of the relevant variables, time periods, and temporal resolution, further con-975

sideration should be given to the form of the likelihood and priors used in defining the976

model. In this work, the simplest case of a linear model with conjugate priors on the pa-977

rameters defining the conditional PDFs has been used, together with priors on the struc-978

tures to ensure structural modularity. No prior restriction has been enforced to ensure979

stationarity of the resulting autoregressive model. Additionally, no attempt has been made980

to incorporate pre-existing or expert knowledge into the definition of the chosen priors.981

More complex forms for the conditional PDF, as well as the use of non-conjugate pri-982

ors and inclusion of additional constraints, may be directly handled using a generic re-983

versible jump MCMC instead of the more specialized MC3 used here.984

Whether or not the resulting model has analytic structure, care must be taken in985

the design of the sampler and in assessing the approximate convergence of the simula-986

tion to the target posterior distribution. For the results presented here, the non-parametric987

convergence diagnostics of Brooks et al. (2003) have been used to monitor (non-)convergence,988

but in general assessing convergence for trans-dimensional MCMC remains challenging989

(Sisson, 2005). In our case, trace plots and convergence diagnostics applied to individ-990

ual edge indicators suggested that (model-averaged) estimates derived from individual991

chains were consistent and stable, but there was evidence for non-homogeneity in the pos-992

terior distribution over structures across chains based on 10×106 samples. For this rea-993

son, we have avoided making definitive statements with respect to Bayes factors and other994

model-specific quantities, recognizing that further sampling would be required for these995

to be reliably determined. Poor mixing and multi-modal posterior distributions over mod-996

els may also be problematic, with the sampled chains remaining trapped in the vicin-997

ity of a single mode. Given the large model space considered here, this is a concern as998
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ensuring the chains have adequately explored the full posterior distribution is unlikely999

to be feasible, raising the possibility that the fits have converged to a local mode in the1000

model space. For generating causal hypotheses, it may be more suitable to restrict at-1001

tention to smaller systems of variables. On the other hand, the relatively close agree-1002

ment between the fits for the two reanalyses shown here suggests that the simulations1003

explore sufficiently similar regions of the model space for useful qualitative comparisons1004

to still be performed. As in this paper only two datasets were compared, direct inspec-1005

tion of the individual fitted networks, amounting to visual inspection of the sampled pos-1006

terior distributions, was sufficient. In more extensive evaluation studies, this may be ex-1007

tended by the use of appropriate summary measures computed on the fits for different1008

models.1009

The DBN models obtained for the NNR1 and JRA-55 reanalyses form a set of ground1010

truth results against which free-running models may be compared; we are currently per-1011

forming such a comparison over the historical period. However, the homogeneous mod-1012

els considered here cannot model one of the most notable features of the observed cli-1013

mate over this period, namely, the existence of secular trends in the behavior of partic-1014

ular modes. Key open questions remain as to whether there is evidence for accompany-1015

ing changes in the underlying interaction structures, and whether models indicate the1016

possibility of regime shifts under future forcing scenarios. Addressing these questions in1017

this framework will require the use of non-homogeneous network models in which either1018

the model parameters or structure are allowed to vary. In a forthcoming article, we per-1019

form just such a comparison against the reanalysis-derived networks presented here for1020

a subset of the CMIP5 ensemble, as well as relaxing the time-homogeneity assumptions1021

discussed above to study the existence of regime transitions in projections. Assessing the1022

evidence for, say, the existence of sudden structure changes versus slow variation in the1023

underlying network parameters does not entail any additional conceptual changes, mak-1024

ing the approach presented here well-suited for investigating such questions.1025
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Appendix A MCMC sampling methods1048

In this appendix we summarize the MCMC methods used for structure learning.1049

We employ the composite parameter space formulation described in detail in Godsill (2001).1050

For the models considered in the main text, in the absence of same-time edges the net-1051

works are structurally modular and the parent set associated with each index can be in-1052

ferred independently. However, in general a given structure G ∈ G will describe the joint1053

distribution of all of the indices simultaneously at a given time. To accommodate such1054

models, we keep the notation relatively general.1055

The observed data takes the form of a time series of one or more indices D = {y1, . . . ,yT }.1056

The allowed set of models G to describe these data are taken to be specified a priori. Let1057

θ denote the collection of all such parameters across all of the possible models in G. For1058

example, for the set of all linear Gaussian models, the vector θ would contain all of the1059

possible regression coefficients βi(j,τ) associated with the possible edges Y jt−τ → Y it as1060

well as the conditional precisions τ2i and intercept parameters βi0. Any given model G1061
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will only use a small subset of all of the possible parameters. The subset of the param-1062

eters used by a structure G will be written θI(G); here I(G) is an appropriate index set1063

indicating which components of the complete parameter vector θ are required by G. The1064

remaining parameters not used by G will be denoted by θ−I(G). A particular model for1065

the indices {Y 1, . . . , Y n} is described by the pair (G,θ) ∈ G × Θ, where G × Θ is the1066

composite model space (Godsill, 2001).1067

To infer the network structure and parameters given data D, we aim to sample from1068

the posterior distribution1069

P (G,θ|D) ∝ P (D|G,θ)P (G,θ).1070

The likelihood P (D|G,θ) is taken to depend only on the subset of parameters associ-1071

ated with G,1072

P (D|G,θ) ≡ P (D|G,θI(G)),1073

while the prior distribution P (G,θ) is taken to be of the form1074

P (G,θ) = P (θI(G)|G)P (θ−I(G)|θI(G), G)P (G).1075

The factor P (θ−I(G)|θI(G), G) corresponds to a set of proper pseudo-priors (Carlin &1076

Chib, 1995) for the parameters not used by G, and may otherwise be chosen essentially1077

freely. The samplers that we use correspond to Metropolis-Hastings schemes in the com-1078

posite model space (Godsill, 2001) with a proposal density of the form1079

q(G′,θ′;G,θ) = q1(G′;G)q2(θ′I(G′);θI(G))P (θ′−I(G′)|θ
′
I(G′), G

′), (A1)1080

for a move from (G,θ) to (G′,θ′) with corresponding acceptance probability1081

α = min

{
1,
q1(G;G′)

q1(G′;G)

q2(θI(G);θ
′
I(G′))

q2(θ′I(G′);θI(G))

P (G′,θ′I(G′)|D)

P (G,θI(G)|D)

}
. (A2)1082

When the class of models considered does not admit analytic evaluation of any of1083

the required integrals, we make use of the simple reversible jump MCMC scheme given1084

in Algorithm 1. At each iteration, either an update to the parameter associated with the1085

structure G is chosen, with probability jθ(G,θI(G)), or an update to the current struc-1086

ture is proposed. In the case of a parameter update, the model structure is left unchanged,1087

G′ = G, and a new set of parameter values θ′I(G) is drawn from a proposal density qθ(θ
′
I(G);θI(G)).1088

The updated state (G,θ′I(G)) is accepted with probability1089

α = min

{
1,
jθ(G,θ

′
I(G))

jθ(G,θI(G))

qθ(θI(G);θ
′
I(G))

qθ(θ′I(G);θI(G))

P (G,θ′I(G)|D)

P (G,θI(G)|D)

}
. (A3)1090
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Note that, when the probability of a parameter update move is the same in both states,1091

this is simply an ordinary Metropolis-Hastings update for a single model. If instead a1092

structure update move is chosen, a new structure G′ is proposed according to the pro-1093

posal distribution qG(G′;G). Any parameters that are common to both G′ and G are1094

held fixed at their current values, while any new parameters θ′I(G′)\I(G) are sampled from1095

an additional proposal density q̃θ(θ
′
I(G′)\I(G)); if I(G′) ⊂ I(G) we set q̃θ → 1. Pa-1096

rameters that are either present in the initial structure but not in the proposed struc-1097

ture, or are not used by either, are left unchanged for simplicity. The acceptance ratio1098

for this move is1099

α = min

{
1,
jG(G′,θ′I(G′))

jG(G,θI(G))

qG(G;G′)

qG(G′;G)

q̃θ(θI(G)\I(G′))

q̃θ(θ′I(G′)\I(G))

P (G′,θ′I(G′)|D)

P (G,θI(G)|D)

}
. (A4)1100

This structure update move is just a particular case of the general reversible jump move1101

(Green, 1995) with a unit Jacobian. For more general mappings from the current to pro-1102

posed parameters a non-trivial Jacobian factor would remain following the change of vari-1103

ables in the proposal density Eq. (A1).1104

When the models considered allow for the conditional posterior distribution P (θA(G)|θI(G)\A(G), G,D)1105

of some subset of the parameters θA(G), A(G) ⊆ I(G), to be evaluated given G and1106

any remaining parameters θI(G)\A(G), we adopt a conditional Metropolis-Hastings scheme1107

that takes better advantage of this structure. For simplicity, we assume that the set of1108

parameters θI(G)\A(G), if not empty, is shared across all of the possible structures. Up-1109

dates to the structure are proposed as before under the proposal qG(G′;G). The shared1110

parameters θI(G)\A(G) are kept at their previous values, while the remaining parame-1111

ters are drawn from the exactly known posterior distribution P (θ′A(G′)|θ
′
I(G′)\A(G′), G

′, D).1112

Under this proposal, the acceptance ratio simplifies to1113

α = min

{
1,
qG(G;G′)

qG(G′;G)

P (G′|θ′I(G′)\A(G′), D)

P (G|θI(G)\A(G), D)

}
. (A5)1114

The parameters associated with the current structure can be updated via a standard Metropolis-1115

Hastings or Gibbs step, as in the parameter update move for the simple reversible jump1116

scheme. Parameter and structure updates can either be proposed randomly or performed1117

in a fixed order. For the models presented in Section 4, the conditional posterior distri-1118

bution for all of the parameters can be evaluated, i.e., the set θI(G)\A(G) is empty. In1119

this case, the scheme reduces to the MC3 scheme of Madigan et al. (1995), with the de-1120

pendence on the graph parameters dropping out entirely. The acceptance ratio for a struc-1121
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Algorithm 1 Simple RJMCMC sampler

Require: initial state x(1) ≡ (G(1),θ(1)), observed data D, chain length 2S

1: for s = 2, . . . , 2S do

2: Draw u1, u2 ∼ Uniform(0, 1)

3: if u1 < jθ(x
(s−1)) then

4: Set G′ ← G(s−1)

5: Draw new parameters θ′I(G′) from qθ(θ
′
I(G′);θ

(s−1)
I(G(s−1))

)

6: Calculate α according to Eq. (A3)

7: else

8: Draw new parent set G′ from qG(G′;G(s−1))

9: Draw θ′I(G′)\I(G(s−1))
from q̃θ(θ

′
I(G′)\I(G(s−1))

)

10: Calculate α according to Eq. (A4)

11: if u2 < α then

12: x(s) ← (G′,θ′)

13: else

14: x(s) ← (G(s−1),θ(s−1))

15: Discard first S samples as warm-up

16: return {x(S+1), . . . , x(2S)}

ture drawn according to qG(G′;G) is in this case1122

α = min

{
1,
qG(G;G′)

qG(G′;G)

P (D|G′)
P (D|G)

P (G′)

P (G)

}
, (A6)1123

where the likelihood can be written in terms of the local marginal likelihoods, as in Eq. (8).1124

Particular choices of the proposal density and structure priors are described in Section 3.3.1125

We summarize the resulting sampling scheme for the structures in Algorithm 2. For each1126

sampling method, we run multiple chains, discarding the first half of each sample as burn-1127

in. For the MC3 sampler, approximate convergence of the chains to the target distribu-1128

tion is assessed using the χ2 and Kolmogorov-Smirnov tests proposed in Brooks et al.1129

(2003).1130
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Algorithm 2 MC3 sampler

Require: initial state G(1), observed data D, chain length 2S

1: for s = 2, . . . , 2S do

2: Draw u ∼ Uniform(0, 1)

3: Draw new parent set G′ from qG(G′;G(s−1))

4: Calculate α according to Eq. (A6)

5: if u < α then

6: G(s) ← G′

7: else

8: G(s) ← G(s−1)

9: Discard first S samples as warm-up

10: return {G(S+1), . . . , G(2S)}

Appendix B Expressions for marginal likelihoods1131

In this appendix we state the closed-form expressions for the prior and posterior1132

densities for the parameters of the node conditional distributions, and the resulting marginal1133

likelihoods or local scores, for the models used in the main text.1134

The linear Gaussian model given in Section 2 reads

τ2i ∼ Gamma(aτ , bτ ),

βi0|τ2i , ν2i ∼ N
(

0,
ν2i
τ2i

)
,

βi(kj ,τj)|τ
2
i , ν

2
i ,paG(Y it ) ∼ N

(
0,
ν2i
τ2i

)
, j = 1, . . . , |paG(Y it )|,

Y it |βi0, βi(kj ,τj), τ
2
i ,paG(Y iT ) ∼ N

βi0 +

|paG(Y it )|∑
j=1

βi(kj ,τj)Y
kj
t−τj ,

1

τ2i

 ,

For the prior on the conditional precision τ2i , we adopt the convention1135

P (τ2i |aτ , bτ ) =
1

Γ(aτ )

(τ2i )aτ−1

baττ
exp

(
−τ

2
i

bτ

)
.1136

With this convention, the unconditional prior distribution for a given coefficient β is a1137

generalized t-distribution with scale σ̂2 = ν2/(aτ bτ ) and 2aτ degrees of freedom, β ∼1138

T1(0, ν2/(aτ bτ ), 2aτ ). For the models shown in Section 4, aτ , bτ , and ν2i are taken as fixed1139

hyperparameters. In practice, the signal-to-noise ν2i may be poorly known, in which case1140

it is possible to also sample it from a conjugate inverse gamma prior using the sampling1141
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schemes for models with partial analytic structure discussed in Appendix A. For a given1142

parent set, we write the vector of predictor variables as (pi = |paG(Y it )|)1143

xiTt = (1, yk1t−τ1 , . . . , y
kpi
t−τpi

),1144

at each time t = 1, . . . , T and introduce the T × (pi + 1) design matrix1145

Xi =


xiT1

...

xiTT

 .1146

The likelihood for the observed values of the index Y i then takes the simple form of a1147

product of normal densities, and the local marginal likelihood Ψi(D;G) can be evalu-1148

ated using standard conjugacy results. The marginal joint distribution for the observed1149

index values yTi = (yi1, . . . , y
i
T ) under this model is a multivariate t-distribution, giv-1150

ing1151

Ψi(D;G) =
Γ
(
T+2aτ

2

)
Γ
(
2aτ
2

)
πT/2(2aτ )T/2

(det Σi)
−1/2

(
1 +

1

2aτ
yTi Σ−1i yi

)−T+2aτ
2

, (B1)1152

where1153

Σi =
1

aτ bτ

(
IT×T + ν2iXiX

T
i

)
, (B2)1154

and IT×T is the T×T identity matrix. For a given parent set, the regression coefficients1155

and precision can be sampled from the conditional posterior distributions1156

τ2i |D,G, ν2i ∼ Gamma

(
T + 2aτ

2
,

bτ

1 + 1
2aτ
yTi Σ−1i yi

)
, (B3)1157

βi|τ2i , ν2i , D,G ∼ N
(
τ2i ΣβiX

T
i yi,Σβi

)
, (B4)1158

1159

where the posterior covariance matrix for the coefficients βTi ≡ (βi0, β
i
(k1,τ1)

, . . . , βi(kpi ,τpi )
)1160

is given by1161

Σβi =
ν2i
τ2i

(
I(pi+1)×(pi+1) + ν2iX

T
i Xi

)−1
.1162
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Lèbre, S. (2009). Inferring Dynamic Genetic Networks with Low Order Independen-1416

cies. Statistical Applications in Genetics and Molecular Biology , 8 , 1 – 38. doi:1417

10.2202/1544-6115.12941418
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Figure 3. Subgraphs corresponding to the fitted parent sets of the tropical indices in JRA-55

based on full-year data for aτ = 1.5, bτ = 20, and ν2 = 3. All edges with an estimated posterior

probability π̂ greater than 0.5 are shown.

–58–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0.5 ≤ π̂ < 0.6 0.6 ≤ π̂ < 0.7 0.7 ≤ π̂ < 0.8 0.8 ≤ π̂ < 0.9 π̂ ≥ 0.9

(a) NNR1 NH extratropical, all seasons

AOt−1

NAO+
t

NAO−
t−1

ARt−1 ARt

PNAt

AOt

SCANDt

NAO−
t

PSA2t−1

PSA1t−1

MEIt−1

RMM1t−1

NAO+
t−1

PNAt−1

(b) JRA-55 NH extratropical, all seasons

PSA1t−1

ARt

SCANDt−1

MEIt−1

PSA2t−1

NAO−
t

AOt−1

NAO+
t−1

PNAt−1

SCANDt

AOt

PNAt

NAO+
t

NAO−
t−1

Figure 4. Subgraphs corresponding to the fitted parent sets of the NH extratropical indices

in (a) NNR1 and (b) JRA-55 for aτ = 1.5, bτ = 20, and ν2 = 3. All edges with an estimated

posterior probability π̂ greater than 0.5 are shown.
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indices in (a) NNR1 and (b) JRA-55, for aτ = 1.5, bτ = 20, and ν2 = 3. All edges with an

estimated posterior probability π̂ greater than 0.5 are shown.
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Figure 7. Subgraphs corresponding to the fitted parent set of the monthly PNA index in (a)

NNR1 and (b) JRA-55, for aτ = 1.5, bτ = 20, and ν2 = 3. All edges with an estimated posterior

probability π̂ greater than 0.5 are shown.
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NNR1 and (b) JRA-55, for aτ = 1.5, bτ = 20, and ν2 = 3. All edges with an estimated posterior

probability π̂ greater than 0.5 are shown.
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Figure 9. Subgraphs corresponding to the fitted parent set of the monthly NAO indices in

(a) NNR1 and (b) JRA-55, for aτ = 1.5, bτ = 20, and ν2 = 3 during DJF. All edges with an

estimated posterior probability π̂ greater than 0.5 are shown.
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Figure 10. Subgraphs corresponding to the fitted parent set of the monthly PSA1 index in

(a) NNR1 and (b) JRA-55, for aτ = 1.5, bτ = 20, and ν2 = 3 during JJA. All edges with an

estimated posterior probability π̂ greater than 0.5 are shown.
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Figure S1. AO loading pattern of 500 hPa geopotential height anomalies in NNR1 (left) and

JRA-55 (right).
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Figure S3. Seasonal MSLP anomaly patterns contributing to the MEI in HadISST and NNR1

(odd numbered rows) and JRA-55 (even numbered rows).
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MEI.v2 SST patterns (base period 19790101 - 20011230)

Figure S4. Seasonal SST anomaly patterns contributing to the MEI in HadISST and NNR1

(odd numbered rows) and JRA-55 (even numbered rows).
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MEI.v2 u-wind patterns (base period 19790101 - 20011230)

Figure S5. Seasonal zonal wind anomaly patterns contributing to the MEI in HadISST and

NNR1 (odd numbered rows) and JRA-55 (even numbered rows).
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Figure S6. Seasonal meridional wind anomaly patterns contributing to the MEI in HadISST

and NNR1 (odd numbered rows) and JRA-55 (even numbered rows).
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Figure S7. Seasonal OLR anomaly patterns contributing to the MEI in HadISST and NNR1

(odd numbered rows) and JRA-55 (even numbered rows).
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Figure S8. Northern hemisphere cluster loading patterns of 500 hPa geopotential height

anomalies in NNR1 (left column) and JRA-55 (right column).
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Figure S9. PNA loading pattern of 500 hPa geopotential height anomalies in NNR1 (left) and

JRA-55 (right).
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Figure S10. PSA loading patterns of 500 hPa geopotential height anomalies in NNR1 (left)

and JRA-55 (right).
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Figure S11. SAM loading pattern of 500 hPa geopotential height anomalies in NNR1 (left)

and JRA-55 (right).
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Figure S12. Subgraphs corresponding to the fitted parent sets of the tropical indices in NNR1

based on full-year data for aτ = 0.5, bτ = 10, and ν2 ≈ 2. All edges with an estimated posterior

probability π̂ greater than 0.5 are shown.
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Figure S13. Subgraphs corresponding to the fitted parent sets of the tropical indices in

JRA-55 based on full-year data for aτ = 0.5, bτ = 10, and ν2 ≈ 2. All edges with an estimated

posterior probability π̂ greater than 0.5 are shown.
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Figure S14. Subgraphs corresponding to the fitted parent sets of the NH extratropical indices

in (a) NNR1 and (b) JRA-55 for aτ = 0.5, bτ = 10, and ν2 ≈ 2. All edges with an estimated

posterior probability π̂ greater than 0.5 are shown.
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(a) NNR1 SH extratropical, all seasons
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Figure S15. Subgraphs corresponding to the fitted parent sets of the SH extratropical indices

in (a) NNR1 and (b) JRA-55 for aτ = 0.5, bτ = 10, and ν2 ≈ 2. All edges with an estimated

posterior probability π̂ greater than 0.5 are shown.

December 18, 2020, 3:17am



HARRIES AND O’KANE: DBNS FOR EVALUATION OF GRANGER CAUSAL RELATIONSHIPS X - 15

Table S1. MAP parent sets for monthly tropical teleconnection indices across all seasons for

NNR1 and JRA-55 for fits with aτ = 1.5, bτ = 20, and ν2 = 3, showing the estimated posterior

probability π̂ of the edge, the mean parameter value β̂ conditional on the MAP structure, and

the 95% posterior HDI. Dashes indicate a node that is not in the MAP parent set for a given

reanalysis.
JRA-55 NNR1

Parent node π̂ β̂ 95% HDI π̂ β̂ 95% HDI
DMIt

DMIt−1 1.00 0.63 (0.56, 0.69) 1.00 0.74 (0.68, 0.79)
SAMt−2 0.59 0.09 (0.03, 0.16) 0.33 − −
MEIt−1 0.22 − − 0.80 0.13 (0.06, 0.20)
MEIt−5 0.08 − − 0.65 −0.14 (−0.21,−0.07)
ARt−1 0.04 − − 0.94 0.10 (0.05, 0.16)

MEIt
MEIt−1 1.00 1.45 (1.37, 1.54) 1.00 1.43 (1.34, 1.51)
MEIt−2 1.00 −0.85 (−1.00,−0.70) 1.00 −0.73 (−0.87,−0.59)
MEIt−3 1.00 0.65 (0.49, 0.80) 1.00 0.38 (0.24, 0.52)
MEIt−4 1.00 −0.48 (−0.63,−0.31) 0.98 −0.15 (−0.23,−0.07)
MEIt−5 0.65 0.28 (0.13, 0.42) 0.17 − −
MEIt−6 0.57 −0.14 (−0.22,−0.06) 0.10 − −
NAO+

t−2
0.38 0.04 (0.01, 0.06) 0.17 − −

AOt−2 0.06 − − 0.46 0.05 (0.02, 0.07)
ARt−3 0.05 − − 0.66 −0.04 (−0.07,−0.02)
RMM2t−3 0.34 − − 0.41 0.04 (0.01, 0.06)

RMM1t
MEIt−3 0.47 −0.37 (−0.49,−0.24) 0.37 − −
MEIt−6 0.61 0.24 (0.13, 0.36) 0.33 − −
ARt−1 0.54 −0.12 (−0.20,−0.04) 0.24 − −
PSA1t−3 0.38 −0.14 (−0.22,−0.05) 0.11 − −
SAMt−3 0.34 −0.13 (−0.20,−0.04) 0.09 − −
RMM1t−1 0.40 −0.12 (−0.19,−0.04) 0.86 −0.14 (−0.21,−0.06)
RMM1t−3 0.99 −0.17 (−0.25,−0.09) 0.97 −0.16 (−0.24,−0.08)
RMM1t−4 1.00 −0.20 (−0.27,−0.12) 1.00 −0.19 (−0.27,−0.11)
RMM2t−1 0.99 −0.17 (−0.25,−0.09) 1.00 −0.20 (−0.27,−0.12)
MEIt−4 0.58 − − 0.59 −0.45 (−0.68,−0.22)
MEIt−5 0.41 − − 0.35 0.34 (0.11, 0.57)

RMM2t
AOt−1 0.94 0.18 (0.10, 0.26) 0.63 0.15 (0.07, 0.23)
DMIt−5 0.50 −0.12 (−0.20,−0.04) 0.06 − −
MEIt−4 0.56 −0.15 (−0.23,−0.07) 0.52 − −
ARt−1 0.44 0.13 (0.05, 0.21) 0.93 0.16 (0.08, 0.24)
RMM1t−1 0.71 0.13 (0.05, 0.21) 0.26 0.14 (0.06, 0.22)
RMM2t−1 0.61 −0.13 (−0.21,−0.05) 0.45 − −
RMM2t−3 1.00 −0.24 (−0.32,−0.16) 0.98 −0.16 (−0.23,−0.08)
RMM2t−4 0.94 −0.17 (−0.25,−0.09) 0.94 −0.16 (−0.24,−0.09)
MEIt−1 0.10 − − 0.22 −0.18 (−0.26,−0.10)
ARt−6 0.03 − − 0.33 −0.11 (−0.19,−0.04)
PSA1t−3 0.05 − − 0.59 −0.13 (−0.22,−0.05)
RMM1t−5 0.03 − − 0.20 0.11 (0.03, 0.19)
RMM2t−2 0.02 − − 0.16 0.13 (0.05, 0.20)
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Table S2. MAP parent sets for monthly SH extratropical teleconnection indices across

all seasons for NNR1 and JRA-55 for fits with aτ = 1.5, bτ = 20, and ν2 = 3, showing the

estimated posterior probability π̂ of the edge, the mean parameter value β̂ conditional on the

MAP structure, and the 95% posterior HDI. Dashes indicate a node that is not in the MAP

parent set for a given reanalysis.
JRA-55 NNR1

Parent node π̂ β̂ 95% HDI π̂ β̂ 95% HDI
PSA1t

MEIt−1 0.94 −0.15 (−0.23,−0.07) 0.68 −0.13 (−0.21,−0.05)

NAO+
t−4

0.39 −0.11 (−0.20,−0.04) 0.60 −0.13 (−0.21,−0.05)

PSA1t−1 0.49 0.12 (0.04, 0.21) 0.96 0.16 (0.08, 0.24)
PSA2t−5 0.17 − − 0.58 −0.12 (−0.21,−0.04)

PSA2t
PSA1t−4 0.31 0.12 (0.03, 0.20) 0.30 − −
PSA2t−1 0.49 0.12 (0.04, 0.21) 0.34 − −
RMM1t−4 0.73 0.14 (0.05, 0.21) 0.43 − −
RMM2t−5 0.47 0.12 (0.04, 0.20) 0.41 − −
DMIt−1 0.07 − − 0.54 −0.14 (−0.23,−0.06)

SAMt

MEIt−4 0.75 −0.30 (−0.45,−0.16) 0.51 − −
MEIt−6 0.76 0.27 (0.13, 0.42) 0.54 − −
SAMt−1 1.00 0.29 (0.21, 0.37) 1.00 0.32 (0.24, 0.40)
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