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Abstract

Extreme temperatures have warmed substantially over recent decades and are projected to continue warming in response to

future climate change. Warming of extreme temperatures is amplified over land where the impacts on human health, wildfire

risk and food production are most severe. Using simulations with climate models, I show that hot days over tropical land warm

substantially more than the average day. For example, warming of the hottest 1% of land days is 24% larger than the time-mean

warming averaged across models. The climate-change response of extreme temperatures over tropical land is interpreted using

a theory based on atmospheric dynamics. According to the theory, warming is amplified for hot land days because those days

are dry: I term this the “drier get hotter” mechanism. Changes in near-surface relative humidity further increase tropical land

warming , with decreases in land relative humidity particularly important. The theory advances physical understanding of

the tropical climate and highlights land-surface dryness as a key factor determining how extreme temperatures will respond to

future climate change.
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Extreme temperatures have warmed substantially over recent decades1, 2 and are projected

to continue warming in response to future climate change3–5. Warming of extreme tempera-

tures is amplified over land6–8 where the impacts on human health9, wildfire risk10 and food

production11 are most severe. Using simulations with climate models, I show that hot days

over tropical land warm substantially more than the average day. For example, warming

of the hottest 1% of land days is 24% larger than the time-mean warming averaged across

models. The climate-change response of extreme temperatures over tropical land is inter-

preted using a theory based on atmospheric dynamics. According to the theory, warming is

amplified for hot land days because those days are dry: I term this the “drier get hotter”

mechanism. Changes in near-surface relative humidity further increase tropical land warm-

ing, with decreases in land relative humidity particularly important. The theory advances

physical understanding of the tropical climate and highlights land-surface dryness as a key

factor determining how extreme temperatures will respond to future climate change.

Warming of extreme temperatures has large human9 and economic impacts12 particularly

over land where the warming is strongest8. The land-ocean warming contrast – whereby annual-
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mean near-surface temperatures increase more rapidly over land relative to ocean13–18 – implies

stronger warming of extreme land temperatures even in the absence of changes in temperature

variability19. But increases in temperature variability with climate change further increase warm-

ing of extreme land temperatures20, with soil moisture feedbacks playing a key role in mid-

latitude regions19–25. Temperature advection26–28, atmospheric circulation anomalies29 and local

thermodynamics30 also shape extreme mid-latitude temperatures – both cold and hot – and their

response to climate change.

Compared to the rapidly advancing knowledge of temperature extremes in mid-latitudes24, 27–32,

understanding of extreme temperatures over tropical land remains limited. Extreme temperatures

in the tropics are only weakly influenced by temperature advection33, and atmospheric blocking –

often the driver of extremes in mid-latitudes34 – does not typically occur at low latitudes35. Soil

moisture feedbacks partially account for the amplified warming of extreme temperatures relative

to time-mean temperatures over tropical land23. But the effects of soil moisture on surface tem-

perature are complex36, vary considerably across climate models19 and are challenging to quantify

a priori (i.e. without running a climate model). The limited understanding of extreme tempera-

tures over tropical land – compounded by incomplete long-term temperature records37 – compares

unfavourably with the burgeoning understanding of mid-latitude temperature extremes and robust

theories for precipitation and snow extremes in a changing climate38–40. With tropical regions

emerging as a hotspot of intensifying temperature extremes41, 42, a quantitative theory for extreme

temperatures over tropical land is now needed to interpret and underpin projections from climate

models and address a notable gap in understanding of the Earth system.
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Figure 1: Projected warming of the hottest 1% of days relative to the zonal-mean warming.

Surface-air temperature change averaged over the hottest 1% of days at each grid cell between

the historical (control; 1980-2000) and ssp245 (perturbed; 2080-2100) simulations for the GFDL-

CM4 model. To highlight the differing responses of extreme temperatures over land and ocean,

anomalies with respect to the zonal-mean change at each latitude are shown.

Amplified warming of hot days

Here I show, using simulations with climate models together with a theory based on atmospheric

dynamics, that the response to climate change of extreme temperatures over tropical land – defined

here as high percentiles of daily-mean near-surface temperature – is controlled by ocean warming

and near-surface humidities over land and ocean. In particular, amplified warming of hot land

days is driven by those days being dry; I term this the “drier get hotter” mechanism. Simulations

from 18 climate models contributing to the World Climate Research Programme’s Coupled Model

Intercomparison Project Phase 643 are analysed (Methods). Climate change is defined as the differ-

ence between the historical (or control) simulations and the Shared Socioeconomic Pathway44 4.5

(ssp245 or perturbed) simulations. Land between 20◦S and 20◦N is analysed as the key assump-

tions underlying the theory are primarily applicable to tropical regions17, 18, 45.
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Projected warming of extreme temperatures is amplified over tropical land (Fig. 1). Averaged

across models, daily-mean near-surface tropical temperatures exceeding the 99th percentile warm

by 3.6 K over land compared to 2.1 K over ocean (Fig. 2a). Warming of high percentiles of land

temperature is strongly amplified relative to the mean warming46 (Fig. 2b), implying a change in

the shape of the temperature distribution. The higher the percentile the greater the amplification,

with the hottest 1% of land days warming 24% (or 0.7K) more than the mean day. Consistent with

previous work47, amplified warming of extreme temperatures is weak over tropical oceans where

the hottest 1% of days warm by only 5% (or 0.1K) more than the mean day (Fig. 2).

A theory for the response of extreme temperatures over tropical land

I now introduce a theory to understand the response of extreme temperatures over tropical land.

In the tropics, active atmospheric convection48 and weak horizontal temperature gradients above

the boundary layer49 constrain changes in near-surface moist static energy to be approximately

equal over land and ocean18, 45, 50, 51. Near-surface moist static energy is a function of temperature

and specific humidity (Methods). Individually, temperature and specific humidity over land and

ocean respond very differently to climate change in the annual mean13–18, 50, 52, 53. But the com-

bined response of temperature and specific humidity (specifically the moist static energy change)

is approximately uniform across the tropics because of the dynamical processes connecting the

atmospheres above land and ocean18.

I use this atmospheric dynamics constraint to develop a theory for the response of extreme
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temperatures over tropical land to climate change (see Methods for the complete derivation). The

key assumption underlying this theory is that changes in moist static energy percentiles are equal

over land and ocean:

δhL(ph) = δhO(ph), (1)

where h(ph) is the ph-th percentile of near-surface moist static energy over land (L) or ocean (O)

in the control simulation and δ denotes a change between the control and perturbed simulations.

Compared to changes in percentiles of temperature or specific humidity, which show clear land-

ocean contrasts, changes in moist static energy percentiles are approximately equal over land and

ocean, particularly for high percentiles (Fig. 3). Ocean relative humidity is approximately constant

under climate change54, 55 implying – together with (1) – that ocean warming constrains changes in

high percentiles of moist static energy over land.

The coupling between moist static energies over land and ocean is the basis of a new theory

for extreme temperatures over tropical land. To transform (1) into a theory for the land temperature

response, I first assume that the change in average moist static energy of the hottest (100− x)% of

land days (δhxL) is equal to the change in ocean moist static energy (δhO) plus a contribution (∆h)

to account for hot land days becoming relatively less energetic under climate change:

δhxL = δhO(p∗h) + ∆h, (2)
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where p∗h is the moist static energy percentile over land corresponding to the average moist static

energy of the hottest (100− x)% of land days in the control simulation [i.e. hL(p∗h) = hxL]. [Note

that p∗h varies with temperature percentile, x (Fig. S1)]. Over ocean, hotter days are associated with

larger moist static energies (Fig. S1). Small variability in ocean relative humidity implies that the

change in the p∗h-th percentile of ocean moist static energy is well approximated by changes in the

p∗h-th percentiles of ocean temperature and specific humidity (Fig. S2). But over land, where hotter

days are drier56 (Fig. S3), the hottest 1% of days have a moist static energy equal to approximately

the median land day and become relatively less energetic as climate warms (Fig. S1). The relative

decrease with warming of the moist static energy of hot land days is quantified by ∆h, which is

well approximated by changes in land relative humidity (Fig. S4b):

∆h ≈ Lv(δr
x
Lq

x
L,sat − δrL qL,sat), (3)

where Lv is the latent heat of vapourisation, δrxL is the change in land pseudo relative humidity50

for the hottest (100 − x)% of days (Methods), qxL,sat is the land saturation specific humidity for

the hottest (100 − x)% of days in the control, δrL is the time- and spatial-mean change in land

pseudo relative humidity and qL,sat is the mean land saturation specific humidity. Combining (2)

with (3), writing changes in specific humidity in terms of changes in saturation specific humidity

and relative humidity and rearranging, the land temperature change for the hottest (100 − x)%

of days is estimated as a function of physical constants, the control state and three components

associated with changes in ocean temperature, ocean relative humidity and land relative humidity:

6



δT xL =

(
1

1 + εδrxL

)(
γTOδTO + γrOδrO − ηδrL

)
. (4)

where δTO is the change in the p∗h-th percentile of ocean temperature and δrO is the change in ocean

relative humidity. The parameters ε = LvαLq
x
L,sat/(cp + LvαLq

x
L) and η = (qL,sat/q

x
L,sat)(ε/αL)

are functions of physical constants, control-state quantities and the Clausius-Clapeyron param-

eter αL, which quantifies the fractional sensitivity of saturation specific humidity over land to

a 1K temperature change. The parameters γTO = (cp + LvαOqO)/(cp + LvαLq
x
L) and γrO =

LvqO,sat/(cp+LvαLq
x
L) are also functions of physical constants, the control state and the Clausius-

Clapeyron parameter for ocean αO. The γ parameters represent the sensitivities of land temperature

to changes in ocean temperature (γTO) and ocean relative humidity (γrO) assuming other quantities

are fixed (Fig. S5).

The theory (4) captures the key features of the land temperature response across a wide

range of percentiles, including the magnitude of the response (Fig. 2a) and amplified warming at

high percentiles (Fig. 2b). Inter-model differences in the temperature response are also largely

explained by the theory (Fig. S6). For constant land and ocean relative humidities, the theory

simplifies to:

δT xL,δr=0 = γTOδTO. (5)

This fixed-relative humidity version of theory qualitatively captures the amplified warming of hot

land days relative to the mean day (Fig. 2b), with the amplification driven by larger values of γTO
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for high temperature percentiles (Fig. S5a). The sensitivity parameter γTO is larger for hot land

days because those days are drier (qxL < qO; Fig. S7) – this is the “drier get hotter” mechanism.

I have shown that amplified warming of hot days over tropical land is primarily a conse-

quence of those days being dry in the control state. But changes in relative humidity affect the

magnitude of the land temperature response across all percentiles (Fig. 2a) and the degree to

which warming of hot days is amplified (Fig. 2b). Small increases in ocean relative humidity with

warming (Fig. S3) – consistent with surface energy balance arguments54, 55, 57 – marginally increase

the land warming (by 0.11 K averaged across percentiles; Fig. S8). Increasing ocean relative hu-

midity enhances land warming as it increases the moist static energy change over land compared

to a fixed-relative humidity scenario.

Land relative humidity changes further increase the land temperature response (Fig. S8).

Although the sensitivity of land temperature to a 1% change in land relative humidity is small

compared to the sensitivity to ocean relative humidity changes (Fig. S5b), substantial decreases

in land relative humidity with warming50 (Fig. S3) contribute 0.38 K to the land temperature

response averaged across percentiles (Fig. S8). The physical intuition for why decreases in land

relative humidity strengthen warming is straightforward: For a given increase in moist static energy

over land, the larger the decrease in relative humidity the larger the temperature increase is to

compensate. As the for land-ocean warming contrast17, changes in land relative humidity are an

important influence on the response of hot land days to climate change.

The contribution of land relative humidity changes to the land temperature response has two
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components (Methods): The first quantifies the effect of a land relative humidity change on the

land temperature response assuming ∆h = 0, and the second quantifies the effect of a non-zero

∆h [recall that ∆h is well approximated as a function of changes in land relative humidity (3)].

Note that ∆h < 0 (Fig. S4b) meaning that hot land days become relatively less energetic under

climate change. In particular, the moist static energy of the hottest 1% of land days is equal to

the 52nd percentile of moist static energy in the control simulation but only the 46th percentile

in the perturbed simulation (Fig. S1). The two components of the land temperature response

associated with changes in land relative humidity counteract each other (Fig. S8), with the ∆h

component strongly tempering the land warming that would otherwise occur if the moist static

energy percentile corresponding to hot land days stayed fixed in a changing climate (i.e. if ∆h =

0).

Discussion

My theory based on active convection and weak horizontal temperature gradients above the bound-

ary layer quantitatively describes the simulated response of temperature over tropical land to cli-

mate change across a wide range of percentiles. The main result from the theory is that warming

is amplified for hot land days relative to the mean day: the “drier get hotter” mechanism. This

mechanism provides a simple way in which to interpret changes in extreme temperatures in the

tropics. The mechanism is also predictive in the sense that it emerges from the control-state con-

trast in specific humidity between hot and less-hot days and is not reliant on running a climate

model. Amplified warming at high percentiles suggests that trends in the temperature of hot land
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days may be an early indicator of climate change in the tropics.

The magnitude of tropical land warming is strongly enhanced by changes in relative hu-

midity, with decreases in land relative humidity particularly important. Extending the theory to

incorporate the influence of land relative humidity changes as a function of the ocean warming

and control state18, 50 would be a natural next step, as would be the application of the theory to

individual regions and to other climate perturbations (e.g. the El Niño/Southern Oscillation).

Methods

Simulations. The following 18 models are analysed: ACCESS-CM2, ACCESS-ESM1-5, BCC-

CSM2-MR, CanESM5, CESM2-WACCM, CNRM-CM6-1, CNRM-ESM2-1, GFDL-CM4, GFDL-

ESM4, HadGEM3-GC31-LL, INM-CM4-8, INM-CM5-0, KACE-1-0-G, MIROC-ES2L, MPI-

ESM1-2-LR, MRI-ESM2-0, NorESM2-LM and UKESM1-0-LL. Daily-mean near-surface tem-

perature and specific humidity from the historical (control; 1980–2000) and ssp245 (perturbed;

2080–2100) simulations are used to investigate the response of tropical temperatures to climate

change and evaluate the theory. The ssp245 simulations broadly assume that emissions of green-

house gases will continue at historical trends44 resulting in a radiative forcing of 4.5 W/m2 by

2100.

Percentiles are computed at each latitude individually by aggregating daily-mean quantities

over time and longitude. Before plotting, percentiles are averaged from 20◦S to 20◦N with area

weighting. Percentiles over land and ocean are calculated separately. Land is defined as grid
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cells where the percentage area occupied by land is greater than 50%; otherwise the grid cell is

defined as ocean. Twenty six percentiles of temperature, specific humidity and moist static energy

between the 0th and the 99th percentiles are computed; spline interpolation is used to estimate

the percentiles between these computed values. The theory, derived below, is applied at each

latitude individually before averaging the results from 20◦S to 20◦N. Saturation specific humidity

is calculated based on Bolton (1980)58.

Derivation of theory for extreme temperatures over tropical land. The key assumption un-

derpinning the theory for the response of extreme temperatures over tropical land to climate

change is that percentiles ph of moist static energy h change equally over land (L) and ocean

(O): δhL(ph) = δhO(ph). My focus is on hot days over land; the change in average moist static en-

ergy (in J/kg) of the hottest (100−x)% of land days between the control and perturbed simulations

is given by:

δhxL = cpδT
x
L + Lvδq

x
L, (6)

where cp = 1004.6 J/kg/K is the specific heat capacity of air at constant pressure, Lv = 2.5× 106

J/kg is the latent heat of vapourisation, T xL is the near-surface land temperature (in kelvin) averaged

over the hottest (100 − x)% of days and qxL is the average near-surface land specific humidity (in

kg/kg) conditioned on T xL .

Defining p∗h to be the moist static energy percentile over land corresponding to the average

moist static energy of the hottest (100− x)% of days in the control simulation [i.e. hL(p∗h) = hxL]
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and using the assumption of equal changes in moist static energy percentiles over land and ocean,

the change in moist static energy of the hottest (100− x)% days is expressed as:

δhxL = δhO(p∗h) + ∆h, (7)

where ∆h = hpert
L (p∗h + δp∗h) − h

pert
L (p∗h) quantifies the effect of a change in the percentile of land

moist static energy to which hot land days correspond (δp∗h) on the moist static energy of these hot

days. Note that hpert
L is the moist static energy in the perturbed simulation. As climate warms, hot

land days become relatively less energetic (δp∗h < 0; Figs. S1 and S4a) implying that ∆h < 0 (Fig.

S4b). The relative decrease in the moist static energy of hot land days with warming (compared to

a scenario where ∆h = 0) reduces the absolute increases in moist static energy on those days, and

has an important tempering influence on the response of extreme temperatures over tropical land.

Through (7), changes in the moist static energy of hot land days are related to changes in

ocean moist static energy. Specifically, it is the change in the p∗h-th percentile of ocean moist static

energy that is relevant for hot land days. Over oceans, higher temperatures are associated with

higher moist static energies (Fig. S1) implying that the change in the p∗h-th percentile of ocean

moist static energy can be written to good approximation as a function of changes in the p∗h-th

percentiles of temperature and specific humidity (Fig. S2):

δhO(p∗h) ≈ cpδTO(p∗h) + LvδqO(p∗h). (8)

Combining (6) and (8), equation (7) can be written as:
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cpδT
x
L + Lvδq

x
L = cpδTO(p∗h) + LvδqO(p∗h) + ∆h. (9)

Defining pseudo relative humidities50 over land [rxL = qxL/q
x
L,sat] and ocean [rO = qO(p∗h)/qO,sat(p

∗
h)],

where qxL,sat and qO,sat(p
∗
h) are the saturation specific humidities calculated using T xL and TO(p∗h),

respectively, changes in specific humidity over land and ocean are written in terms of temperature

and relative humidity:

δqxL = qxL,satδr
x
L + αLq

x
LδT

x
L + αLq

x
L,satδr

x
LδT

x
L (10)

δqO ≈ qO,satδrO + αOqOδTO, (11)

where αL = (δqxL,sat/q
x
L,sat)/δT

x
L and αO = (δqO,sat/qO,sat)/δTO are the fractional sensitivities of

land and ocean saturation specific humidities, respectively, to a 1K temperature change. For the

change in ocean specific humidity (11), the nonlinear term associated with temperature and relative

humidity changes has been omitted as it is negligible, but this term is substantial over land and is

retained (10). Inserting expressions (10) and (11) into (9), dividing both sides by cp +LvαLq
x
L and

rearranging, I obtain the following expression for the land temperature response:

δT xL =

(
1

1 + εδrxL

)(
γTOδTO + γrOδrO − [ε/αL]δrxL + ∆h

)
, (12)

where ε = LvαLq
x
L,sat/(cp + LvαLq

x
L). The parameters
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γTO =
cp + LvαOqO

cp + LvαLqxL
and (13)

γrO =
LvqO,sat

cp + LvαLqxL
(14)

quantify the sensitivities of land temperature to changes in ocean temperature and ocean relative

humidity, respectively, for fixed land relative humidity and ∆h = 0 (Fig. S5).

The ∆h term in (12) is estimated as a function of the control land temperature and changes

in land relative humidity. First, I approximate ∆h = hpert
L (p∗h + δp∗h)− h

pert
L (p∗h) as a Taylor series

about ph = p∗h:

∆h = [hL(p∗h + δp∗h)− hL(p∗h)] + [δhL(p∗h + δp∗h)− δhL(p∗h)] (15)

≈ δp∗h

(
∂hL

∂ph

∣∣∣∣
ph=p∗h

+
∂

∂ph
δhL

∣∣∣∣
ph=p∗h

)
. (16)

To estimate δp∗h, I linearise the land moist static energy distribution in the control simulation about

the mean value:

hL(ph) ≈ β1(ph − ph) + hL, (17)

where hL is the time- and spatial-mean moist static energy over land in the control simulation, ph

is the moist static energy percentile corresponding to that mean value and β1 = ∂hL/∂ph|ph=ph
is

the slope of the tangent to the control moist static energy distribution over land at ph = ph (Fig.

S9). The average moist static energy of the hottest (100− x)% of land days is given by:
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hxL = cpT
x
L + Lvq

x
L. (18)

Combining (17) and (18), dropping the approximation symbol associated with (17) and noting that

hL(p∗h) = hxL by definition, I find:

β1(p∗h − ph) + hL = cpT
x
L + Lvq

x
L. (19)

Writing T xL = TL + T ′L, rxL = rL + r′L and qxL,sat = qL,sat + q′L,sat [where () denotes the time- and

spatial-mean and ()′ denotes a departure from that mean], substituting into (19) and rearranging, I

derive an expression for p∗h:

p∗h =
1

β1

[
cpT

′
L + Lv(rLq

′
L,sat + r′LqL,sat + r′Lq

′
L,sat)

]
+ ph. (20)

Changes in the moist static energy percentile corresponding to the hottest (100−x)% of land days

(i.e. δp∗h) are well approximated by truncating a linearised form of (20) to two terms (Fig. S4a):

δp∗h ≈
Lv
β1

(δrxLq
x
L,sat − δrL qL,sat). (21)

Inserting this estimate for δp∗h into (16), defining β2 = ∂hL/∂ph|ph=p∗h
to be the slope of the tangent

to hL(ph) at ph = p∗h, neglecting changes in β2 with warming (i.e. assuming δβ2 � β2) and further

assuming β1 ≈ β2 (Fig. S9), ∆h is well approximated by (Fig. S4b):
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∆h ≈ Lv(δr
x
Lq

x
L,sat − δrL qL,sat). (22)

Substituting (22) into (12) and rearranging, I derive an expression for the temperature response of

the hottest (100−x)% of land days as a function of physical constants, control-state quantities and

four components associated with ∆h and changes in ocean temperature, ocean relative humidity

and land relative humidity:

δT xL =

(
1

1 + εδrxL

)δTO comp.︷ ︸︸ ︷
γTOδTO + γrOδrO︸ ︷︷ ︸

δrO comp.

+

∆h comp.︷ ︸︸ ︷
[ε/αL][δrxL − δrL qL,sat/q

x
L,sat]


−
(

1

1 + εδrxL

)
[ε/αL]δrxL︸ ︷︷ ︸

δrL comp.

.

(23)

The four components of the land temperature response are shown in Figure S8 along with their

sum, which is approximately equal to the full expression for δT xL (23). The ∆h and δrL components

are both functions of changes in land relative humidity and can be combined into a total land

relative humidity component:

δrtotal
L comp. = δrL comp. + ∆h comp. = −

(
1

1 + εδrxL

)
ηδrL, (24)

where η = (ε/αL)(qL,sat/q
x
L,sat). Using (24), I arrive at the final form of the theory [see (4) in

the main text]. Finally, based on (24) and taking δrxL = rL for simplicity, I define the sensitivity

parameter
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γrL = − η

1 + ε
(25)

which quantifies the sensitivity of land temperature to changes in mean land relative humidity (Fig.

S5b).
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Figure 2: Climate model projections and theoretical estimates of tropical land temperature

responses across percentiles. Multimodel-mean (a) near-surface temperature change and (b)

scaling factor between the control and perturbed simulations for a range of daily-mean temper-

ature percentiles (x) over land (red) and ocean (blue). Temperatures are averaged over the hottest

(100 − x)% of land or ocean days. The scaling factor is defined as the temperature change at

each percentile (δT x) normalised by the time- and spatial-mean temperature change (δT ). Theory

estimates of the land temperature change and scaling factor are also shown [dashed lines, see (4)]

along with a version of the theory assuming fixed relative humidities over land and ocean [dotted

lines, see (5)]. In this and subsequent figures, quantities are spatially averaged from 20◦S to 20◦N.
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Figure 3: Ratios of land-to-ocean changes in tropical temperature, specific humidity and

moist static energy. Land-to-ocean ratios of multimodel-mean changes in percentiles of near-

surface temperature (solid black), specific humidity (dashed black) and moist static energy (dotted

black) between the control and perturbed simulations.
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Figure S1: Moist static energy percentiles (y-axis) corresponding to the average moist static
energy of days exceeding the given temperature percentile on the x-axis over land (red)
and ocean (blue). Solid and dashed lines denote the control and perturbed simulations,
respectively. The decrease with warming of the moist static energy percentile to which hot
land days corresponds is indicated (δp∗h).
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Figure S2: Change in the p∗h-th percentile of ocean moist static energy (solid) and an esti-
mate of this change using the p∗h-th percentiles of ocean temperature and specific humidity
(dashed). The fractional differences between the solid and dashed lines are less than 0.5%
for all percentiles.
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Figure S3: Pseudo relative humidity over land (red) and ocean (blue) for the control (solid)
and perturbed simulations (dashed). Over land, pseudo relative humidity is defined as the
average specific humidity for the hottest (100 − x)% of days divided by the corresponding
average saturation specific humidity (Methods). Over ocean, pseudo relative humidity
is defined as the p∗h-th percentile of specific humidity divided by the p∗h-th percentile of
saturation specific humidity. Note that p∗h is the percentile of land moist static energy in
the control simulation equal to the average moist static energy of the hottest (100−x)% of
land days.
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Figure S4: Simulated (solid) and theory estimates (dashed) of (a) changes in the percentile
of land moist static energy equal to the average moist static energy of the hottest (100−x)%
of land days (i.e. δp∗h) and (b) ∆h = hpertL (p∗h + δp∗h) − hpertL (p∗h). The theory estimates in
panels (a) and (b) are computed using equations (21) and (3), respectively.
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Figure S5: Parameters quantifying the sensitivities of land temperature to changes in (a)
ocean temperature and (b) ocean (blue) and land relative humidities (red). The sensitivity
parameters γTO , γrO and γrL are defined by equations (13), (14) and (25), respectively.
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Figure S6: Correlation coefficients between simulated and estimated changes [using (4)] in
average temperature for the hottest (100 − x)% of land days across climate models.
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Figure S7: Specific humidity over land (red) and ocean (blue) for the control (solid) and
perturbed simulations (dashed). Over land, the average specific humidities for the hottest
(100−x)% of days are shown. Over ocean, the p∗h-th percentile of specific humidity in each
simulation is plotted.
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Figure S8: Theory estimate of the land temperature change [solid black, see (4)] and the
four contributions to the theory (23) due to changes in ocean temperature (cyan), ocean
relative humidity (blue), land relative humidity (solid red) and ∆h (magenta). The sum
of the four contributions (dashed black) is approximately equal to the full theory. The
combined effect of changes in land relative humidity and ∆h [see (24)] is indicated by the
dashed red line.
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Figure S9: Land moist static energy in the control simulation vs moist static energy per-
centile (gray). The parameters β1 (cyan) and β2 (magenta) are the slopes of the tangents
to hL(ph) at ph and p∗h, respectively.
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