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Abstract

Historical and future simulated temperature data from five climate models in the Coupled Model Intercomparing Project Phase

6 (CMIP6) are used to understand how climate change might alter cold air outbreaks (CAOs) in the future. Three different

Shared Socioeconomic Pathways (SSPs), SSP 1 – 2.6, SSP 2 – 4.5, and SSP 5 – 8.5 are examined to identify potential fluctuations

in CAOs across the globe between 2015 and 2054. Though CAOs may remain persistent or even increase in some regions through

2040, all five climate models show CAOs disappearing by 2054. Climate models were able to accurately simulate the spatial

distribution and trends of historical CAOs, but there were large errors in the simulated interannual frequency of CAOs in the

North Atlantic and North Pacific. Fluctuations in complex processes, such as Atlantic Meridional Overturning Circulation,

may be contributing to each model’s inability to simulate historical CAOs in these regions.
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Key Points: 11 

1. Cold air outbreaks (CAOs) may largely disappear across the globe by 2054  12 

2. CAOs may not decrease much for North America and Europe until closer to 2040 13 

3. CMIP6 climate models struggle to simulate historical CAOs in several regions, like the 14 

North Atlantic and North Pacific  15 

 16 

 17 
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Abstract 18 

Historical and future simulated temperature data from five climate models in the Coupled 19 

Model Intercomparing Project Phase 6 (CMIP6) are used to understand how climate change 20 

might alter cold air outbreaks (CAOs) in the future. Three different Shared Socioeconomic 21 

Pathways (SSPs), SSP 1 – 2.6, SSP 2 – 4.5, and SSP 5 – 8.5 are examined to identify potential 22 

fluctuations in CAOs across the globe between 2015 and 2054. Though CAOs may remain 23 

persistent or even increase in some regions through 2040, all five climate models show CAOs 24 

disappearing by 2054. Climate models were able to accurately simulate the spatial distribution 25 

and trends of historical CAOs, but there were large errors in the simulated interannual 26 

frequency of CAOs in the North Atlantic and North Pacific.  Fluctuations in complex processes, 27 

such as Atlantic Meridional Overturning Circulation, may be contributing to each model’s 28 

inability to simulate historical CAOs in these regions. 29 

 30 

Plain Language Summary 31 

Cold air outbreaks (CAOs) are extreme events that can have large, negative impacts on society. 32 

Because of these impacts it is important to understand how climate change might alter CAOs in 33 

the future. Three future scenarios from five different climate models are examined to see 34 

where CAOs might change the most between 2015 and 2054. While changes in CAOs may be 35 

small for some regions through 2040, all the climate models show CAOs disappearing by 2054. 36 

Where the climate models did a good job simulating historical CAOs, like in North America, we 37 

have confidence that future projections are relatively accurate. Where the models did poorly at 38 

simulating historical CAOs, like the North Atlantic and North Pacific, we have less confidence in 39 

future projections.  More work needs to be done to understand the complex processes that 40 

lead to these errors.  41 

 42 

Keywords: Cold air outbreaks, extreme cold events, climate modeling, ERA5, CMIP6, shared 43 

socioeconomic pathways 44 



2 
 

1. Introduction 45 

Cold Air Outbreaks (CAO) are extreme events that can negatively impact multiple facets of 46 

society. Though infrequent, extreme weather events cause significantly more damage than 47 

non-extreme events (Bell et al., 2018; Schewe et al., 2019). CAOs have been shown to increase 48 

the risk of human mortality (Smith & Sheridan, 2019), cause agricultural production losses (Lesk 49 

et al., 2016), and cause widespread power outages from increased energy consumption (Y. Kim 50 

& Lee, 2019; Klinger et al., 2014). Because of the large impacts on society, accurately projecting 51 

how extremes like CAOs will change under future warming scenarios is a critical step in 52 

developing a more resilient society.  53 

 54 

Climate models, which are derived from substantiated physical principles of the earth system 55 

process, are the best tool we have for predicting changes in CAOs (Flato, 2011; Raäisaänen, 56 

2007; Randall et al., 2007). Climate models use dynamical and statistical calculations to 57 

represent earth’s climate system and propagate the current atmospheric state forward in time 58 

(Collins et al., 2013; Randall et al., 2007; Richardson, 2007). The accuracy of future projections 59 

depends on the data used to initialize the climate model, thus small inaccuracies are 60 

exacerbated through time, leading to increased error with longer range projections (Polkova et 61 

al., 2019). With no way to evaluate future projections from climate models, the ability of a 62 

climate model to represent future climates must be assessed by comparing simulations of 63 

historical climates with observations or reanalysis datasets (Edwards, 2011). While observations 64 

are point based, atmospheric reanalysis datasets are a gridded historical dataset of global 65 

atmospheric circulation that use weather models to reanalyze assimilated observations over 66 

much shorter timescales than climate models (Dee et al., 2011). Because reanalysis datasets are 67 

gridded, they provide an easier comparison with climate model output. They also allow 68 

comparisons in data sparse regions like the Arctic and across oceans.  69 

 70 

The Coupled Model Intercomparison Project (CMIP) has become the foundation for numerous 71 

climate assessments (IPCC, 2013). CMIP uses multiple climate models from modelling centers 72 
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around the world to better understand past climates and future changes (Eyring et al., 2016). 73 

Phase 6 of CMIP (CMIP6) aims to make the multi-model output publicly available and more 74 

user-friendly by standardizing the format. New to CMIP6 is the Scenario Model Intercomparison 75 

Project (ScenarioMIP), which integrates inputs from both the climate science and integrated 76 

assessment modelling communities to create future modeling scenarios (Eyring et al., 2016; 77 

O’Neill et al., 2016; Tebaldi et al., 2020). These new scenarios, called Shared Socioeconomic 78 

Pathways (SSPs), combine pathways of future radiative forcing with alternative pathways of 79 

socioeconomic development to characterize the range of uncertainty in climate adaptation and 80 

mitigation efforts (O’Neill et al., 2014). Global energy systems, which are the leading 81 

contributor to carbon emissions, are particularly vulnerable to climate changes, yet 82 

developments are limited by political and social acceptance (Bauer et al., 2017). The addition of 83 

SSPs in CMIP6 is an essential step in determining how carbon emissions may fluctuate with 84 

changes in global energy systems (Davis et al., 2018; X. Liu et al., 2019).  85 

 86 

Though we cannot be certain if modeled changes in CAOs will be realized, we can get a good 87 

idea if models are on the right track based on how models simulate historical climates (Jeuken 88 

et al., 1996; Han-Li Liu et al., 2018). While many studies have examined projected changes in air 89 

temperature (Almazroui et al., 2020; Friedrich et al., 2016; Jones et al., 2013; Kumar et al., 90 

2013; Tokarska et al., 2020), only a few studies have explicitly investigated changes in CAOs 91 

(Kolstad & Bracegirdle, 2008; Vavrus et al., 2006). These studies showed that while CAOs have 92 

decreased across much of the globe in recent decades, there was also an increase in some 93 

regions (J. L. Cohen et al., 2012; Smith & Sheridan, 2020). While this increase in CAOs may 94 

continue over the next few decades for some regions (Kolstad & Bracegirdle, 2008; Vavrus et 95 

al., 2006), most places will likely experience a large decrease in CAOs throughout the 21st 96 

century (Ayarzagüena & Screen, 2016; Vavrus et al., 2006; Zahn & von Storch, 2010).  97 

 98 

This study uses climate model output from CMIP6 to better understand how the frequency of 99 

CAOs may change across the globe between 2015 and 2054. Historical climate model 100 
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simulations from 1979 – 2014 are examined to determine how well five different climate 101 

models reproduce the spatial and temporal distribution of CAOs. Three different SSPs are 102 

examined to determine a range of potential fluctuations in CAOs between 2015 and 2054. 103 

These findings have the potential to mitigate damages and future energy system vulnerabilities 104 

by quantifying regional changes in CAOs. 105 

  106 

2. Data and Methods 107 

The global CAO dataset from Smith (2020) and CAO regions created by Smith & Sheridan (2020) 108 

were used to compare historical CMIP6 CAO simulations with actual CAOs. This CAO dataset 109 

was created from daily mean T2m from the ERA5 reanalysis dataset from the European Center 110 

for Medium-Range Weather Forecasts (ECMWF; from 111 

https://cds.climate.copernicus.eu/cdsapp#!/home; Copernicus Climate Change Service) at a 1o 112 

spatial resolution from 1979 – 2014. CAOs were quantified using a set of criteria concerning 113 

intensity, duration, and spatial extent of the extreme cold airmass, where the daily mean T2m 114 

was required to be below the 2.5th percentile, based on the 1981 – 2010 climate normal period, 115 

for at least 5 consecutive days for a contiguous area of at least 1,000,000 km2 (Smith & 116 

Sheridan, 2020). The use of a percentile threshold limits the impact of the skewness of the data 117 

on the spatial distribution of CAOs. Future simulations of CAOs use the percentile thresholds 118 

from the 1981 – 2010 climate normal period. CAO regions were used to simplify the analysis 119 

from thousands of grid points to 10 regions with similar CAO characteristics and CAO trends 120 

(Smith & Sheridan, 2020). 121 

 122 

As CMIP6 is still in progress, output from all models is not yet available. Historical and projected 123 

daily mean two-meter temperature (T2m) data were acquired from the same variant, r1i1p1f1, 124 

of five Earth System Models: CESM2, CESM2-WACCM, MPI-ESM1-2-HR, MRI-ESM2-0, and 125 

CanESM5 (Danabasoglu et al., 2020; Gutjahr et al. 2019; Swart et al., 2019; Yukimoto et al., 126 

2019). Three different shared socioeconomic pathways (SSPs), SSP1, SSP2, and SSP5 are 127 

integrated with three different forcing pathways stabilizing at 2.6 W m−2, 4.5 W m−2, 8.5 W m−2 128 
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to create three scenarios of future climate and societal change (O’Neill et al., 2014). From each 129 

of the five climate models, these integrated scenarios, denoted as SSP1-2.6 (SSP126), SSP2-4.5 130 

(SSP245), and SSP5-8.5 (SSP585), were used to explore a range of potential changes in CAOs 131 

across the globe. Data from the CMIP6 archive is publicly available from the Earth System Grid 132 

Federation (ESGF; https://esgf-node.llnl.gov/search/cmip6/). To maintain consistency with the 133 

time period used in Smith & Sheridan (2020) and because CMIP6 historical output ends in 2014, 134 

historical T2m was acquired for 1979 – 2014 while projected T2m was acquired for 2015 – 135 

2054. These five models allow for an in-depth analysis of both historical climate simulations and 136 

future projections of CAOs. The T2m for each climate model was regridded to a 1o x 1o 137 

resolution using a bilinear interpolation to match the resolution of the ERA5 derived CAO 138 

dataset. Because bilinear interpolation creates a quadratic sample by linearly interpolating the 139 

data in two different directions, it is generally better at rescaling data than a linear 140 

interpolation (Wang et al., 2016).  141 

 142 

Trends in the annual number of CAO days, derived from historical T2m climate model output, 143 

were calculated and compared with the observed trends. This is used to determine if each 144 

climate model is able to accurately simulates spatial and temporal fluctuations in CAOs. As 145 

outlined by Smith & Sheridan (2020), trends for the Southern Hemisphere (SH) were calculated 146 

for 36 winter seasons (January 1 – December 31) while trends in the Northern Hemisphere (NH) 147 

were calculated for 35 winter seasons (July 1 – June 30). Due to the limited sample size (35 in 148 

NH and 36 in SH), a Theil-Sen slope estimation was calculated from 1000 bootstrapped samples 149 

and statistical significance determined from the confidence intervals produced from the 150 

bootstrapped samples. Moreover, a false detection rate was used to limit the false significance 151 

of the spatiotemporal relationships of the gridded data (Wilks, 2016).  152 

 153 

Because of inherent errors in climate model simulations, various statistical or dynamical 154 

techniques are often used to reduce biases (Maraun, 2016). However, many of these methods 155 

can mask the uncertainty in projections by altering simulations without providing a physical 156 

https://esgf-node.llnl.gov/search/cmip6/
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mechanism to explain why the corrections reduce the bias (Ehret et al., 2012). Climate 157 

projections based on an ensemble of several models increase the reliability and consistency of 158 

independent projections while maintaining transparency of systematic model errors (Tebaldi et 159 

al., 2020; Yun et al., 2003). For this reason, the mean of the five climate models is used as an 160 

ensemble for both historical simulations and each SSP to provide the least biased estimate of 161 

future changes in CAOs.  162 

 163 

3. Results 164 

3.1. Historical Simulations of CAOs 165 

From 1979 – 2014, CAOs occurred most frequently across North America and Eurasia. Each of 166 

the five climate models were able to reproduce the same general spatial distribution of CAOs as 167 

observed with the ERA5, however, each model had a warm bias in the North Atlantic, with the 168 

CESM2, WACCM, and MPI having the largest bias (Figure 1). This bias can likely be attributed to 169 

how each climate model handles the Atlantic Meridional Overturning Circulation (AMOC; Gent, 170 

2018) or air-sea interactions from fluctuations in Arctic sea ice (Kolstad & Bracegirdle, 2008). 171 

Climate model simulations have been shown to underestimate the weakening of the AMOC (Hu 172 

et al., 2013; Meehl et al., 2020), which favors more CAOs in the North Atlantic. This may 173 

account for the simulation of too few CAOs early in the historical period (R4; Figure A1). The 174 

CanESM5 has a cold bias across the western United States and like the MPI, a warm bias across 175 

the oceans which is largest in the Southern Pacific. Conversely, the MRI has a large cold bias in 176 

the Northern Hemisphere (NH), particularly across the Arctic.  177 

 178 

Spatial and temporal similarity were calculated to determine which climate model most 179 

accurately simulated the spatial distribution and annual frequency of CAOs for each region 180 

(Table 2). While each model was able to simulate the general spatial distribution of CAOs, some 181 

regions were better modeled than others (SS; Table 2). Moreover, there were large 182 

discrepancies between the time series of mean regional annual CAO days simulated by the 183 

climate models and  184 
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 185 

Figure 1:Observed annual cold air outbreak (CAO) days from 1979 – 2014 (ERA5) and the difference between the simulated 186 
annual CAO days for the five CMIP6 climate models (CESM2, WACCM, MPI, MRI, and CanESM5) and the ensemble. Regions are 187 
denoted with bounding boxes in the ERA5 figure (Smith and Sheridan, 2020).  188 

the mean regional annual CAO days from the ERA5 (mean absolute error; MAE; Table2). The 189 

CESM2 and MPI had a large warm bias across multiple regions and the largest total error in the 190 

SS of annual CAO days. The WACCM (full name: CESM2-WACCM), an extension of CESM2 that 191 

models the entire atmosphere (Liu et al., 2010), had less overall bias in SS than the CESM2, 192 

followed by theCanESM5 and the MRI. The MRI had the lowest MAE with North America (R1 193 



8 
 

and R2) while the MPI and WACCM had the lowest MAE in Eurasia. In nearly every region, the 194 

model ensemble reduces the errors in spatial similarity (SS) and temporal similarity (MAE). 195 

Table 1: Climate model spatial (SS) and temporal (MAE) historical simulation accuracy (1979-2014). Spatial similarity (SS) - 196 
difference between regional mean annual CAO days and the observed annual mean CAO days from the ERA5. The mean 197 
absolute error (MAE) is calculated for the annual number of CAO days per region in the historical climate model simulations and 198 
the observed (ERA5). Red/blue SS shows where the mean annual CAO days is less than/more than the ERA5. A red/yellow MAE 199 
shows where the MAE is large/small. Color intensity of the MAE is relative to the region. Total error is the sum of the absolute 200 
values of each column.  201 

 

CESM2 WACCM MPI MRI CanESM5 Ensemble 

Region SS MAE SS MAE SS MAE SS MAE SS MAE SS MAE 

R1 -1.0 3.7 0.2 4.1 -0.5 3.9 -0.2 3.2 0.2 3.9 -0.3 2.8 

R2 -0.2 5.2 -0.2 6.0 0.0 6.3 0.2 4.6 0.0 4.7 0.0 4.2 

R3 0.3 5.4 0.1 5.5 -1.2 5.0 0.2 5.3 -0.4 5.7 -0.2 4.3 

R4 -1.7 4.3 -1.6 5.0 -1.9 5.0 -1.0 5.6 -1.0 4.1 -1.4 4.2 

R5 -0.6 5.5 0.4 4.9 0.1 5.1 0.9 5.6 0.8 6.7 0.3 4.4 

R6 0.2 5.4 0.0 4.7 -0.3 4.5 0.5 5.8 -0.1 5.5 0.1 3.9 

R7 -0.8 4.6 -0.4 4.8 -0.9 4.0 -1.0 3.3 -0.5 3.2 -0.7 3.3 

R8 0.0 3.6 0.6 3.6 0.6 3.4 -0.3 2.9 0.8 3.9 0.3 2.9 

R9 -1.0 2.6 -0.2 2.6 0.3 2.5 0.6 3.3 -0.3 2.2 -0.1 2.2 

R10 -0.1 1.5 0.2 2.0 -0.6 1.6 0.1 1.5 0.3 1.7 0.0 1.3 

Total Error 5.7 42.0 4.0 43.3 6.5 41.2 4.9 41.2 4.4 41.8 3.5 33.6 

 202 

While there were large discrepancies between the observed and simulated annual number of 203 

CAO days (MAE), the spatial distribution of the simulated trends matched the observed trends 204 

relatively well (Figure 2). Each model shows the largest decreases in annual CAO days across 205 

Northern Hemispheric landmasses. The MPI had the smallest historical trends because the 206 

simulation produced too few CAOs early in the historical period and too many late in the period 207 

for most places. On the other hand, the MRI has a large negative trend because it produced too 208 

many CAOs in the Arctic and western Eurasia early in the historical period. Similar to the 209 

observed trends from the ERA5, both the MPI and CESM2 had a neutral to positive trend in CAO 210 

days in Eurasia. However, the MPI more accurately replicated the location of this positive trend 211 

than the CESM2.  Like the ERA5, very few simulated trends in the SH were statistically 212 

significant, though the MRI and CanESM5 most accurately simulated the positive trend in CAOs 213 

across parts of the Southern Ocean.  214 

 215 
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 216 

Figure 2: Change in the mean annual number of CAO days. For the observed trends (ERA5), every 5th significant grid point at the 217 
α = 0.05 level is denoted with green dots. Size and spacing of Ensemble green dots are altered because of the number of dots. 218 

 219 

3.2. Future Projections of CAOs 220 

Similar to (Vavrus et al., 2006), CAOs are expected to continue decreasing across most of the 221 

globe over the next few decades. Compared to the historical period, the ensemble of each SSP 222 

shows the mean annual number of CAO days between 2015 and 2054 will decrease between 223 

50% and 100% in most locations (Figure 3). The largest decrease in annual CAO days is in North  224 
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 225 

 226 

Figure 3: Left - ensemble of simulated annual CAO days from 2015 – 2054 for three future scenarios: SSP126, SSP245 and 227 
SSP585. Right - difference between each SSP and the mean annual number of CAO days from 1979 – 2014.    228 

America and Europe where CAOs have historically occurred most frequently. The CESM2, 229 

WACCM, and MRI show a large increase in CAOs across the North Atlantic, consistent with 230 

previous studies that have shown a continued weakening of the AMOC in climate model 231 

projections (Figure A2; Meehl et al., 2020; Zhang et al., 2019). The MPI and MRI also maintain a 232 

relatively large number of mean annual CAO days across North America in all three SSPs. While 233 

there are generally fewer annual CAO days with SSP245 and SSP585 than in SSP126, SSP245 and 234 

SSP585 do not necessarily result in a larger systematic decrease in CAOs. In the MPI model, 235 

more CAOs occur in the Southern Atlantic with SSP245 than SSP126. In the CESM2 model, more 236 
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CAOs occur in the North Atlantic (R4) from SSP245 than SSP126. SSP585 in the MPI, WACCM, 237 

and CESM2 also favor more CAOs in Eurasia (R5 and R6) than in SSP245. Moreover, the WACCM 238 

SSP245 simulation shows more CAOs in South America (R9) under than the SSP126 simulation. 239 

 240 

Climate models simulate the spatial distribution and trends of CAOs well but are unable to 241 

accurately model interannual variability. Though a perfect match is not expected, the large 242 

discrepancies between historically simulated and observed annual CAO days indicate the 243 

models may be simulating the correct trends for the wrong reasons (Luca et al., 2020). These 244 

inaccurate representations of historical climate variability in the models can exacerbate errors 245 

in future projections of CAOs (Maraun, 2016). As shown with the historical simulations, an 246 

ensemble can be used to reduce the magnitude of individual model error, thus an ensemble is 247 

also used for each SSP to better estimate changes in CAOs in each region between 2015 and 248 

2054 (Figure 4).  249 

 250 

When compared with the observed annual number of CAO days for each region, the ensemble 251 

matches the annual variations and trends well (Figure 4). Only R4 and R5 have particularly poor 252 

historical simulations. Climate models have been shown to underestimate variability in R4 (W. 253 

M. Kim et al., 2018), which may explain why historical simulations simulated too few CAOs early 254 

in the historical period. The complex interaction between and amplified Arctic and surface 255 

temperatures in Siberia, which is poorly represented in climate models, may account for much 256 

of the discrepancy between annual CAO days simulated in R5 (Cohen et al., 2018; Labe et al., 257 

2020). 258 

 259 

 Future simulations show a consistent decrease in annual CAO days for most regions with 260 

several exceptions. All three SSPs simulate a large increase in annual CAO days between 2030 261 

and 2050 in R4. Though historical simulations for R4 where poor, sea ice melt and a weakening 262 

of the AMOC supports the notion that the North Atlantic may be a region of large variability in 263 

coming decades. In R1 and R2, future simulations show a slight increase in annual CAO days 264 

through 2025 and remaining persistent through 2035 before decreasing to approximately zero 265 
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annual CAO days by 2054. In R3 (Alaska), historical simulations overestimate the annual number 266 

of CAO days early in the historical period and underestimate the annual number of CAO days 267 

late in the period which results in an overly negative trend. This suggests the models may be 268 

misrepresenting variability in the North Pacific, thus the steady decline in annual CAO days in 269 

R3, at least in the near-term, may be off-base. Like R3, historical simulations also 270 

underestimated the number of CAO days in R6 (Europe) between 2005 and 2015. Since winter 271 

extremes in Europe are heavily reliant on North Atlantic circulation (D. M. Smith et al., 2020), a 272 

misrepresentation of variability in the North Atlantic may have caused the discrepancies in 273 

observed and simulated CAO days in R6. In South America, annual CAO days remain consistent 274 

through 2035 in all SSPs before declining to approximately zero annual CAO days in all but 275 

SSP126. Across southern Africa, the already infrequent CAO days are shown to steadily decline 276 

to approximately zero annual CAO days by 2035.  277 

 278 

 279 
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 280 

Figure 4: Smoothed time series of observed annual CAO days per region from the ERA5 (black), the simulated historical time 281 
series for the climate model ensemble (green) from 1979 – 2014, and the climate model ensemble projections of annual CAO 282 
days per region for each of the three SSP scenarios, SSP126 (blue), SSP245 (orange), and SSP585 (red), from 2015 - 2054.  283 

 284 

 285 

 286 

 287 
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4. Conclusion 288 

CMIP6 climate models can replicate the historical spatial distribution of CAOs and capture the 289 

decreasing frequency of CAOs for most of the globe. However, there are still large interannual 290 

discrepancies between the historically simulated and observed number of CAO days. An 291 

ensemble of historical simulations from different climate models was used to reduce errors in 292 

individual models. This ensemble approach was applied to each SSP to provide the best 293 

estimate of changes in CAOs for 10 regions across the globe.  294 

 295 

Future simulations of CAOs show the decreasing frequency of CAOs in most regions will 296 

continue over the coming decades and in most cases disappear by 2054, however, there are 297 

several instances where CAOs increase. CAOs in the North Atlantic (R4) are shown to increase in 298 

frequency between 2035 and 2050 which may be a response to the continued weakening of the 299 

AMOC (Gent, 2018). The frequency of CAOs in North America and Eurasia may also remain 300 

consistent over the next 10 to 20 years before decreasing to approximately zero annual CAO 301 

days by 2054. In several regions, climate models incorrectly continued a decreasing trend in 302 

CAOs from the historical simulation through the onset of the future simulations. This was true 303 

in Europe (R6), Siberia (R5), Alaska (R3), and to a lesser extent the eastern United States (R1) 304 

where the frequency of CAOs increased in the last decade. While this observed increase is not 305 

likely to persist in a warming climate, the underestimated frequency of CAOs at the beginning 306 

of the future simulations may have impacted the projected number of CAOs through 2054. 307 

Errors in historical CAO simulations may indicate inaccuracies in future projections, thus 308 

projections of CAOs in the North Atlantic and Alaska should be interpreted with caution. 309 

 310 

Outside of the North Atlantic, all three SSPs showed the largest changes in CAO frequency to be 311 

on land as opposed to the oceans. This is to be expected as the higher heat capacity of water 312 

causes the oceans to change more slowly than land (Rathore et al., 2020). Though SSP126 313 

generally favors a higher frequency of CAOs through 2054, SSP245 and SSP585 have a higher 314 

frequency of CAOs in the near-term for several regions. This suggests interannual fluctuations in 315 
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CAO frequency may be more dependent on regional climate forcing than systematic warming. 316 

Nonetheless, the decrease in the frequency of CAOs is evident in even the most conservative 317 

scenario (SSP126) for every region.  318 

 319 

Because this study uses the 1981 – 2010 climate normal period in the calculation of CAOs, 320 

adjusting this period would certainly impact the frequency of CAOs in future simulations. 321 

Though infrastructure often depends on absolute temperature thresholds, humans have been 322 

shown to be negatively impacted by relative extremes (Sheridan et al., 2019). It would be 323 

worthwhile for future studies to explore projected changes in the frequency of CAOs with a 324 

dynamic 30-year climate normal period as opposed to a single static 30-year period.  325 

 326 
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Appendix 526 

 527 

Table A2: Information for the CMIP6 models used in this study. 528 

Model Native Resolution Country Variant Reference 

CESM2 1.3° × 0.9° USA r1i1p1f1 Danabasoglu et al. (2020) 

CESM2-WACCM 1.3° × 0.9° USA r1i1p1f1 Danabasoglu et al. (2020) 

MPI-ESM1-2-HR 0.9° × 0.9° Germany r1i1p1f1 Gutjahr et al. (2019) 

MRI-ESM2-0 1.1° × 1.1° Japan r1i1p1f1 Yukimoto et al. (2019) 

CanESM5 2.8° × 2.8° Canada r1i1p1f1 Swart et al. (2019) 

 529 
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 530 

Figure A1: Annual number of CAO days (y-axis) simulated by each climate model (solid lines), observed with ERA5 (red dashed 531 
line), and the climate model mean (black dashed line) from 1979 – 2015 (x-axis). Regions are denoted by the numbers in the top 532 
right corner. Lines are smoothed using a 5-year centered moving average.  533 

 534 
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 535 

Figure A2: Simulated annual CAO days from 2015 – 2054 for three future scenarios: SSP126, SSP245 and SSP585 for each of the 536 
five climate models.   537 
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