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Abstract

Increases of atmospheric water vapor holding capacity with temperature (7-8%Kˆ(-1), CC-rate) can lead to increasing Extreme

Precipitation (EP). Observations show that tropical EP has increased during the last five decades with a rate higher than

in the extratropics. Global climate models (GCM’s) diverge in the magnitude of increase in the tropics, and cloud-resolving

models (CRM’s) indicate correlations between changes in tropical EP and organization of deep convection. We conducted

global-scale aquaplanet experiments at a wide range of resolutions with explicit and parameterized convection to bridge the

gap between GCM’s and CRM’s. We found increases of tropical EP beyond the CC rate, with similar magnitudes when using

explicit convection and parametrized convection at the resolution it is tuned for. Those super-CC rates are produced due

to strengthening updrafts where extreme precipitation occurs, and they do not exhibit relations with changes in convective

organization.
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Key Points:8

• The sensitivity of tropical extreme precipitation to warming is larger than the Clausius-9
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Abstract15

Increases of atmospheric water vapor holding capacity with temperature (7−8%K−1,16

CC-rate) can lead to increasing Extreme Precipitation (EP). Observations show that trop-17

ical EP has increased during the last five decades with a rate higher than in the extra-18

tropics. Global climate models (GCM’s) diverge in the magnitude of increase in the trop-19

ics, and cloud-resolving models (CRM’s) indicate correlations between changes in trop-20

ical EP and organization of deep convection. We conducted global-scale aquaplanet ex-21

periments at a wide range of resolutions with explicit and parameterized convection to22

bridge the gap between GCM’s and CRM’s. We found increases of tropical EP beyond23

the CC rate, with similar magnitudes when using explicit convection and parametrized24

convection at the resolution it is tuned for. Those super-CC rates are produced due to25

strengthening updrafts where extreme precipitation occurs, and they do not exhibit re-26

lations with changes in convective organization.27

Plain Language Summary28

Theory and observations indicate tropical extreme precipitation might increase with29

global warming. Projections from climate models agree on increases in the extratrop-30

ics, but not in the tropics. More idealized simulations indicate links between increases31

of tropical extreme precipitation and changes in the spatial organization of the meteo-32

rological systems producing those extremes. Using a novel model approach, we found33

that tropical extreme precipitation increases with warming more than expected due to34

increases in the dynamics of the extreme precipitation systems, whereas changes of the35

spatial organization have a small role.36

1 Introduction37

The Clausius-Clapeyron relation provides a theoretical starting point for under-38

standing the response of extreme precipitation to a warming climate. At lower tropo-39

spheric temperatures this relation predicts a saturation specific humidity change of ap-40

proximately 7− 8%K−1 (CC rate) (Trenberth et al., 2003). With such an increase of41

saturation water vapor in the atmosphere it is likely that the amount of precipitation42

from events where most of the water vapor precipitates out will increase with warming,43

and thus this value represents a basic scaling for the sensitivity of extreme precipitation44

to warming (Berg et al., 2013). This behavior of extreme precipitation events stands in45

contrast with global mean changes in precipitation with warming, which is instead linked46

to enhanced longwave cooling of the troposphere. This cooling is mostly balanced by en-47

hanced convective heating through release of latent heat, leading to increasing mean global48

precipitation at a rate lower than, and not physically related to, the CC rate (Newell et49

al. (1975); Mitchell et al. (1987); Boer (1993)).50

Observations provide evidence partly in favor of this scaling of extreme precipita-51

tion. Since the 1950s there have been statistically significant increases in the number of52

extreme precipitation events in more regions than there have been statistically signif-53

icant decreases (Hartmann et al., 2013). However, observations indicate that sensitiv-54

ities depend also on the type of precipitation with higher values than CC rate (super-55

CC) for convective precipitation (Berg et al., 2013). This discrepancy arises naturally56

between midlatitudes, where extreme precipitation is usually associated with frontal ac-57

tivity and midlatitude storms (Kodama et al., 2019), and the tropics where convection58

is the main driver. This was shown by O’Gorman (2015), who found that daily extremes59

in the tropics are more sensitive to climate warming than those in the extratropics and60

suggested one possible cause is from dynamical origin - changes in vertical motion.61

General Circulation Model (GCM) simulations also produce a general increase of62

extremes, the strength of which depends on latitude (O’Gorman & Schneider, 2009b; O’Gorman,63

2012). In models from the Coupled Model Intercomparison Project (CMIP) phase 3 for64
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example, extratropical sensitivities consistently predict that precipitation extremes in-65

crease more slowly with surface air temperature than atmospheric water vapor content;66

however, tropical changes are not consistent among models, with sensitivities ranging67

from 1.3%K−1 to 30%K−1 (O’Gorman & Schneider, 2009a). These studies suggest that68

the discrepancy in the tropics may arise from inaccurate simulation of upward velocity69

during convection. Bhattacharya et al. (2017) suggested that to improve modeled trop-70

ical precipitation extremes, it is essential to better represent the upward velocity asso-71

ciated with those extremes. Increasing horizontal resolution may be a way to improve72

the simulation of convection in GCM’s where precipitation is not resolved by the coarse73

grid and has to be parametrized. However, those convective parametrization schemes are74

sensitive to horizontal model resolution and time-step length (Li et al., 2011a, 2011b; Yang75

et al., 2014; Lu et al., 2014; Benedict et al., 2017; Williamson, 2013) and thus the sen-76

sitivity of extreme precipitation to warming varies not just among individual models but77

also across horizontal resolutions with a single model.78

Given the long-standing structural uncertainties among CGM’s, Cloud Resolving79

Models in idealized setups of Radiative-Convective Equilibrium (RCE) (Manabe and Strick-80

ler (1964); Nakajima and Matsuno (1988); Tompkins and Craig (1998)) have been used81

to study tropical convection and sensitivities of extreme precipitation to warming. On82

such setups and under certain conditions RCE can become unstable (Nilsson & Emanuel,83

1999) and lead to spontaneous spatial organization of convection. In RCE simulations,84

it has been shown that extreme precipitation increases close to the CC rate if self-aggregation85

is absent (Romps, 2011; Muller et al., 2011) or if the degree of organization does not change86

(Bao et al., 2017); whereas super-CC behaviour has been found when self-aggregation87

increases with warming (Singleton & Toumi, 2013; Pendergrass et al., 2016; Bao et al.,88

2017; Bao & Sherwood, 2019).89

Here we use a less idealized set of aquaplanet simulations to study the uncertain-90

ties of changes in tropical extreme precipitation by using a nonhydrostatic atmospheric91

GCM in rotating configuration with a meridional gradient of temperature (Neale & Hoskins,92

2000; Medeiros et al., 2015). Model description and methods are presented in Section93

2. In Section 3, we compare the sensitivity of tropical extreme precipitation to warm-94

ing between simulations with parametrized and explicit convection and its resolution de-95

pendency, study contributors to those sensitivities, and look for relationships between96

the change of convective organization and the change of precipitation extremes. Finally,97

we present the conclusions in Section 4.98

2 Model setup and methods99

Simulations were performed using the ICOsahedral Nonhydrostatic Atmospheric100

general circulation model (ICON-A). ICON-A is built using the Max Planck Institute101

physical parametrization package, which originates from the ECHAM6.3 general circu-102

lation model (Mauritsen et al., 2019) and with adaptations to account for the change in103

the dynamical core and a new turbulence parametrization. A full description is given in104

Giorgetta et al. (2018).105

The experiments were conducted using the aquaplanet configuration, which uses106

the Qobs zonally symmetric SST as surface boundary conditions (Neale & Hoskins, 2000).107

Owing to its simplicity (e.g. no topography, land-sea contrasts, surface heterogeneities),108

this configuration helps to understand the physical atmospheric processes driving the changes109

of extremes in response to global warming (Li et al., 2011a). Moreover, because diur-110

nal insolation and the radiatively active species are held at equinoctial and hemispher-111

ically symmetric geometry, the model statistics are zonally and hemispherically symmet-112

ric, which helps to identify significant signals using relatively short integrations.113

A range of simulations at different horizontal resolutions were performed with parametriza-114

tion of convection on and off (explicit convection) for the control and uniformly increased115

SST of 4K (Table 1). We used explicit convection at resolutions lower than 10 km since116

even at coarse resolutions without parametrization of convection, models are able to pro-117
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Table 1. Experiment resolutions, time step lengths and cases with parameterized and explicit

convection. The resolution is the approximate side length of squares with the same area as the

average triangle in the ICON grid.

Grid name Resolution [km] Time step [min] Parametrized Explicit

R2B4 160 7.5 yes yes
R2B5 80 3.75 yes yes
R2B6 40 0.83 yes yes
R2B8 10 0.25 no yes

duce large scale features related to convection (Webb et al., 2015; Retsch et al., 2019).118

The simulations were initialized analytically and used time-invariant boundary condi-119

tions for SST, spectral solar irradiation, well mixed greenhouse gases CO2, CH4, N2O,120

CFC’s and O3 concentration. All experiments were run for four years and we treated121

the first year as spin-up, except for R2B8 where the simulation length was limited to six122

months with one month of spin-up.123

Daily zonal mean precipitation for explicit and parametrized experiments are shown124

in supporting information Figure S1. As is to be expected the global mean precipitation125

increases with warming, whereas the zonal distribution of precipitation follows a dou-126

ble ITCZ structure for explicit convection simulations. When resolution is increased, pre-127

cipitation tends to be more zonally distributed with a displacement of the ITCZ away128

from the equator and an increase of midlatitude precipitation at the expense of tropi-129

cal precipitation, particularly for R2B6 and R2B8. In general, however, the zonal dis-130

tribution of precipitation in the parametrized convection experiments is somewhat er-131

ratic across resolutions, and the ITCZ behaviours in our experiments differ from those132

of Retsch et al. (2019) who used an earlier version of ICON-A and found a single ITCZ133

structure for explicit convection simulations at resolutions R2B4, R2B5 and R2B6, while134

a double ITCZ prevailed for parametrized convection. Since extremes in the tropics are135

more likely to occur within the ITCZ, simulated shifts in the large-scale tropical circu-136

lation might obscure our results and so in the following we shall discuss precipitation ex-137

tremes in the entire tropics from 30◦S and 30◦N .138

To study changes in tropical Extreme Precipitation (EP) with warming, we define139

EP as the cases of grid points between 30◦S to 30◦N over the entire period exceeding140

the ith percentile of daily precipitation:141

EP (i) =
1

n

n∑
0

Prn ≥ Pri, (1)142

where i varied from 99.9 to 99.99, Pr is daily precipitation and Pri is the ith per-143

centile of daily precipitation. The selection of this metric allows us to capture the be-144

haviour of the precipitation distribution tail instead of focusing on one particular per-145

centile. With it we calculate the Sensitivity of tropical Extreme Precipitation to warm-146

ing (SEP) as the fractional change in EP (δEP (i)/EP (i)) normalized by change in tem-147

perature (δT ):148

SEP (i) =
δEP (i)

δT · EP (i)
=
EP (i)4K − EP (i)CTL

4K · EP (i)CTL
, (2)149

where the subscripts CTL and 4K denote control and 4K experiments, respectively.150

–4–
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Figure 1. Solid lines show sensitivities of tropical extreme precipitation to warming. Frac-

tional changes of lower tropospheric saturation specific humidity for each simulation are displayed

as dots and the dashed line shows the mean across resolutions.

3 Results151

3.1 Sensitivity of tropical extreme precipitation to warming152

Sensitivities of tropical extreme precipitation to warming are displayed as solid lines153

in Figure 1. Extremes from both explicit and parametrized convection experiments in-154

crease with warming. For explicit convection simulations, sensitivities vary from 9%K−1
155

to 15%K−1 with a tendency to converge for the strongest extremes. This tendency is156

not clear for the experiments with parametrized convection, where at low resolution (R2B4)157

we observe a nearly constant sensitivity value, then at R2B5, it ranges from 14%K−1
158

to 24%K−1; and finally for the highest resolution (R2B6) it drops for the strongest ex-159

tremes.160

Fractional changes of lower tropospheric saturation specific humidity with warm-161

ing in the tropics fall close to the CC rate (dots in Figure 1). In all simulations, extreme162

increases are higher than those fractional changes (super-CC, compare solid lines and163

dots). This suggests that not just increases in the capacity of the atmosphere to hold164

water vapor have an impact on extremes, but other processes contribute too. However,165

we note that for parametrized convection the amplitude of this difference varies with res-166

olution more than it does for explicit convection. Since the convective parametrization167

implemented in ICON-A has been tuned for a grid resolution of R2B4, spurious behav-168

iors at resolutions R2B5 and R2B6 resolutions might occur. This is mainly because the169

convective scheme is tuned to remove convective instability on a certain timescale. When170

resolution is increased from R2B4, the model dynamics may produce finer scale insta-171

bilities more rapidly than the parametrization can remove these, resulting in explicitly172

resolved updrafts or so-called grid-point storms (Williamson, 2013). We speculate that173

the erratic behavior of the higher resolution simulations is caused by the inadvertent com-174

petition between parameterized convection and partially resolved convective clouds. Given175

this, we restrain our analysis to explicit convection simulations and R2B4 with parametrized176

convection. Increases of extreme precipitation from parametrized convection at the res-177

olution it is tuned for (R2B4) are similar to the increases with explicit convection, par-178

ticularly to that at R2B4. This indicates a low model sensitivity of extreme precipita-179
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tion changes with warming to the activation of convective parametrization for this res-180

olution.181

3.2 Contributors to increases of tropical extreme precipitation182

Next we will use a scaling derived by Muller et al. (2011), which assumes that changes183

in precipitation efficiency with warming are negligible and separates changes in extremes184

in terms of changes in dynamics, through vertical motion (here pressure velocity, ω), and185

in thermodynamics, through the vertical gradient of saturation specific humidity, respec-186

tively. Derivation and testing of the scaling are presented in supporting information S1.187

SEP ≈

[
δ(ω)∂qs

∂p

]
δT ·

[
ω ∂qs

∂p

]
︸ ︷︷ ︸

Dynamic

+

[
ωδ ∂qs

∂p

]
δT ·

[
ω ∂qs

∂p

]
︸ ︷︷ ︸

Thermodynamic

. (3)188

From the components of the scaling, we can identify that increases of tropical extreme189

precipitation derive from convective circulation strength through increases in ω and/or190

increases of vertical gradient of saturation specific humidity with warming, which are ex-191

pected to follow the CC rate as long as the strongest vertical gradients of saturation spe-192

cific humidity are located in the lower troposphere.193

Results of the scaling (Equation 3) are displayed in Figure 2. We note a similar be-194

haviour across resolutions with explicit convection and R2B4 with parametrized convec-195

tion, in that increases of extreme precipitation result from both positive dynamics and196

thermodynamics contributions. In all simulations the dynamic contribution is positive,197

therefore contributing to the super-CC behavior of the model, whereas the thermody-198

namic contribution alone is close to the CC rate. It should be noted that the dynamic199

response exhibits a larger dependency on resolution when going from R2B4 to R2B5, than200

to the use of parametrization of convection, and that there is a nearly constant offset be-201

tween the scaling and the actual sensitivities which might indicate either that the pre-202

cipitation efficiency assumption is inaccurate or that other processes influence changes203

in tropical extreme precipitation.204

3.3 Are sensitivities related to changes in convective organization?205

We showed that tropical extreme precipitation increases with warming at rates higher206

than the CC rate and that strengthening of convective circulations when extremes oc-207

cur leads to those super-CC tendencies in our experiments. As mentioned in Section 1,208

the amplitude of the sensitivity of tropical extreme precipitation to warming might be209

related to changes of convective organization whereby super-CC changes in extremes are210

correlated with increases of convective organization, and so we investigate if this is also211

the case in our simulations. To this end, we quantify the degree of convective organiza-212

tion in the tropics and its change with warming in a variety of ways: using subsiding frac-213

tion prime (SF´, Noda et al. (2019)) in the entire tropical band, as well as in smaller sub-214

domains of varying sizes centered at the extreme event, and solely in the tropical band215

using organization index with eight point connectivity for resolutions R2B6 and R2B8216

(Iorg, Tompkins and Semie (2017)) and an organization index with zero connectivity to217

include coarse resolutions (Iorg 0, Becker and Wing (2020)). A detailed description of218

the metrics is given in supporting information S2.219

We found both increased and decreased tendencies of convective organization with220

warming (Figure 3). At high resolution (R2B5-8) all indices show a reduction in convec-221

tive organization, whereas at coarse resolution (R2B4) convection tends to self-organise222

with warming in the areas where extremes occurs, while disorganise at large scale (we223

obtained similar results for coarse grained resolutions to R2B4, see Figure S6). Those224
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Figure 2. Sensitivity of tropical extreme precipitation to warming (black), scaling (blue) and

contributions to sensitivities from dynamics (yellow) and thermodynamic (red). Values are calcu-

lated by averaging the extremes interval (99.9 to 99.99). The dashed grey line indicates the mean

fractional change of lower tropospheric saturation specific humidity across simulations and the

vertical line separates explicit convection experiments from parametrized convection at R2B4.

results are in agreement with Muller and Held (2012) who found that self-organization225

of convection is favored by coarse resolution but opposite to Bao et al. (2017), Singleton226

and Toumi (2013) and Pendergrass et al. (2016) where increases of extremes correlate227

with self-organization. This discrepancy across resolutions suggests that changes in trop-228

ical convective organization have a negligible impact on changes of tropical extreme pre-229

cipitation with warming in our simulations.230

4 Conclusions231

Aquaplanet simulations with the ICON-A model are performed to explore the sen-232

sitivity of tropical extreme precipitation to warming across a wide range spatial resolu-233

tions with and without parametrization of convection. We find positive sensitivities with234

amplitudes larger than the increase of lower tropospheric saturation specific humidity,235

or CC rate, at all resolutions. Results from explicit convection simulations converge for236

the strongest precipitation extremes, whereas for parameterized convection simulations,237

the sensitivities strongly vary with horizontal resolution, although results from R2B4 are238

similar to those from the explicit convection simulations. We suggest this occurs since239

the parametrization scheme used in ICON-A was tuned for that particular resolution.240

We next investigate whether dynamical changes can explain the super-CC behaviour241

of tropical extreme precipitation using a diagnostic framework. In all simulations we find242

positive contributions from dynamics, resulting in stronger updrafts where extreme pre-243

cipitation occurs. Nevertheless, thermodynamical changes resulting from changes in the244

vertical gradient of saturation specific humidity also contributes relative to the simple245

CC-scaling in the higher resolution explicit simulations, but not in the coarse resolution246

simulations (R2B4). Furthermore, it should be noted that there is a considerable resid-247

ual in the diagnosed changes, suggesting that assuming invariant precipitation efficiency248

is inaccurate or that other processes might be involved.249

Finally, we explore whether convective organization could be involved using an ar-250

ray of indices that in various ways characterise the degree of organization. We find some-251

what surprisingly in most cases organisation decreases with warming: in the explicit con-252
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Figure 3. Fractional changes of organization metrics for large scale (SF´ trop, Iorg 0 trop

and Iorg trop) and for subdomains centered where extremes occur (SF´ 30, SF´ 10, SF´ 8, SF´ 6,

SF´ 4 and SF´ 2). The vertical line separates explicit convection experiments from parametrized

convection at R2B4. Note that, given the resolution of R2B4, a subdomain of 2◦ x 2◦ will contain

a unique grid point and the fractional change of SF´ will be zero; and subdomains from 6◦ x 6◦

and 8◦ x 8◦ will contain the same amount of grid points, producing equal fractional changes.

vection simulations with 10-80 km resolution (R2B5-8) it decreases by about 1%K−1.253

In the two simulations with 160 km (R2B4) convection disorganizes at large scale; but254

self-organizes in the areas where extremes occur. It is concluded that convective organ-255

ization played either no or a negligible role in causing the model’s super-CC behaviour256

of tropical extreme precipitation.257
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S1. Derivation of the scaling of sensitivity of tropical extreme precipitation to

warming

We start from the definition of liquid ice water static energy (hL) and total ice water
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mixing ratio qT :

hL = h− LvqT , (1)

qT = q + qr + qc + qs + qg + qi + l, (2)

where h is moist static energy, Lv is latent heat of vaporization, q is water vapor mixing

ratio, qr is rain mixing ratio, qc is cloud water mixing ratio, qs is snow mixing ratio,

qg graupel mixing ratio, qi is cloud ice mixing ratio and l is liquid water mixing ratio.

We have neglected the differences between latent heat of vaporization and sublimation

(Lv ≈ LS).

Having h = s+ Lvq, where s is dry static energy, and replacing equation 2 in equation 1

we have:

hL = s− Lv(qr + qc + qs + qg + qi) − Lvl. (3)

Since hL is conserved in adiabatic fluid parcel displacements:

[
DhL
Dt

]
=
[
Ds

Dt

]
− Lv

[
D(qr + qc + qs + qg + qi)

Dt

]
− LvP = 0, (4)

where P = Dl/Dt is surface precipitation and the square brackets denote vertical inte-

gration:

[· · ·] = −
∫ 100hPa

surface
(· · ·)dp

g
. (5)

Thus:

[
Ds

Dt

]
= Lv

[
D(qr + qc + qs + qg + qi)

Dt

]
+ LvP. (6)

The left side of equation 6 can be written as:

[
Ds

Dt

]
=

[
∂s

∂t

]
+

[
u
∂s

∂x

]
+

[
v
∂s

∂y

]
+

[
−ω∂s

∂p

]
, (7)
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where u, v and ω are zonal wind, meridional wind and pressure velocity, respectively.

When extreme precipitation occurs, vertical advection (last term on the right side of equa-

tion 7) is the main contributor to the budget for all resolutions with explicit convection

and for R2B4 and R2B5 with parametrized convection (Figure S2). In those resolutions,

we can approximate the tendency equation of dry static energy by the vertical advection

term:

[
Ds

Dt

]
≈ −

[
ω
∂s

∂p

]
. (8)

On the other hand, when extremes occur, specific humidity approximates the saturation

specific humidity for all explicit convection simulations and for R2B4 with parametrized

convection. (For the rest of the resolutions with parametrized convection, the atmo-

spheric lapse rate is not restored to its equilibrium state). At those resolutions where this

assumption is met, and given the conservation of moist static energy we can write:

ds ≈ −Lvdqs. (9)

Using this assumption we tracked if the vertically integrated advection of dry static energy

is approximated by minus latent heat times the vertical integrated advection saturation

specific humidity (equation 10). Figure S4 shows the confirmation of this assumption.

[
ω
ds

dp

]
≈ −Lv

[
ω
dqs
dp

]
. (10)

Introducing equation 10 in equation 8 and using equation 6 to solve for EP (i) (we sub-

stitute P by EP (i) since the assumptions are met just for extreme precipitation values),

we have:

EP (i) ≈
[
w
∂qs
∂p

]
−
[
D(qr + qc + qs + qg + qi)

Dt

]
(11)
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Now, we define a precipitation efficiency:

ε = 1 −

[
D(qr+qc+qs+qg+qi)

Dt

]
[
w ∂qs

∂p

] . (12)

Finally we get the scaling as the product of precipitation efficiency ε and total condensa-

tion:

EP (i) ≈ ε

[
w
∂qs
∂p

]
. (13)

We test the scaling (equation 13) by computing correlations between the total condensa-

tion term and the actual extreme precipitation in our CTL and 4K simulations (Figure

S5). As expected from the above assumptions we found that the scaling reproduces the

behaviour of extreme precipitation for all resolutions with explicit convection and for

R2B4 with parametrized convection.

Using this EP scaling and neglecting changes in precipitation efficiency a SEP can be

derived in terms of changes in dynamics and thermodynamics through omega and vertical

gradient of saturation specific humidity, respectively.

SEP (i) =
δEP (i)

δT · EP (i)
≈

[
δ(ω)∂qs

∂p

]
δT ·

[
ω ∂qs

∂p

]
︸ ︷︷ ︸

Dynamic

+

[
ωδ ∂qs

∂p

]
δT ·

[
ω ∂qs

∂p

]
︸ ︷︷ ︸
Thermodynamic

. (14)

S2. Convective organization metrics.

1. Subsiding fraction prime (SF´): The development of convective aggregation in GCM

is closely associated with the tendency of the atmosphere to develop large areas of dry,

subsiding air, and the tendency of convection to clump within narrow areas of large-scale

ascents. SF´ is designed to measure the degree of convective organization in simulations

with background circulation (i.e Hadley circulation) that has to be excluded to more
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appropriately measure the behavior of individual cumulus convection. To remove the

background circulation, the tropics is divided into squared subdomains of 10◦ longitude

and the mean of omega over each subdomain is computed. Then, SF´ is defined as the

fractional coverage of negative ω′, where ω′ = ω− < ω > at each subdomain.

2. Organization index (Iorg): A simple organization index that permits to classify a

field as regular, random or clustered. We use a threshold of omega higher or equal to the

mean subsiding omega at the level of 500 hPa to distinguish convective grid cells. Then,

to identify convective grid cells that are part of the same cluster, eight point connectivity

is employed in resolutions R2B6 and R2B8.

3. Organization index with zero connectivity (Iorg 0): For low resolutions the minimum

distance to cluster by vicinity used by Iorg is too large and the resulting clusters might

not represent individual convective systems. To avoid this issue we identify convective

grids cell as individual entities using zero connectivity.
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Figure S1. Global mean precipitation (top) and zonal mean precipitation normalized

by global mean (bottom). For the comparison, we used a mass-conserving interpolation

method to aggregate the results to the coarsest resolution (R2B4) in order to distinguish

between the effect of grid size and change in physical processes
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Figure S2. Relative proportion of local change (black), zonal advection (red) meridional

advection (blue) and vertical advection (green) of vertical integrated dry static energy to

the total vertical integrated material derivative of dry static energy when EP99.9 (“x”)

and EP99.99 (“+”) occurs.
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Figure S3. Ratio of specific humidity to saturation specific humidity profiles when

EP99.9 (solid) and EP99.99 (dashed) occurs.
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Figure S4. Ratio of negative latent heat times vertical integrated advection of satu-

ration specific humidity to vertical integrated advection of dry static energy when EP99.9

(“x”) and EP99.99 (“+”) occurs.
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Figure S5. Correlation between total condensation and extreme precipitation.
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Figure S6. Fractional changes of organization metrics for large scale (SF´ trop and

Iorg 0 trop) and for subdomains centered where extremes occurs (SF´ 30, SF´ 10, SF´ 8,

and SF´ 4) at coarse grained resolutions to R2B4. Note that, given the resolution of

R2B4, a subdomain of 2◦ x 2◦ will contain a unique grid point and the fractional change

of SF´ will be zero; and subdomains from 6◦ x 6◦ and 8◦ x 8◦ will contain the same amount

of grid points, producing equal fractional changes.
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