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Abstract

Midlatitude prediction on subseasonal timescales is difficult due to the chaotic nature of the atmosphere and often requires

the identification of favorable atmospheric conditions that may lead to enhanced skill (“forecasts of opportunity”). Here, we

demonstrate that an artificial neural network can identify such opportunities for tropical-extratropical teleconnections to the

North Atlantic circulation at a lead of 22 days using the network’s confidence in a given prediction. Furthermore, layer-wise

relevance propagation, an ANN interpretability technique, pinpoints the relevant tropical features the ANN uses to make

accurate predictions. We find that layer-wise relevance propagation identifies tropical hot spots that correspond to known

favorable regions for midlatitude teleconnections and reveals a potential new pattern for prediction over the North Atlantic on

subseasonal timescales.
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Key Points:5

• Neural networks can be used to identify forecasts of opportunity for subseasonal6

prediction7

• Neural network explainability techniques pinpoint relevant tropical regions for pre-8

dictions in the North Atlantic9

• Clustering of neural network relevance heat maps reveals a potential new forecast10

of opportunity for the North Atlantic11
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Abstract12

Midlatitude prediction on subseasonal timescales is difficult due to the chaotic nature13

of the atmosphere and often requires the identification of favorable atmospheric condi-14

tions that may lead to enhanced skill (“forecasts of opportunity”). Here, we demonstrate15

that an artificial neural network can identify such opportunities for tropical-extratropical16

circulation teleconnections within the North Atlantic (40◦N, 325◦E) at a lead of 22 days17

using the network’s confidence in a given prediction. Furthermore, layer-wise relevance18

propagation, an ANN explainability technique, pinpoints the relevant tropical features19

the ANN uses to make accurate predictions. We find that layer-wise relevance propa-20

gation identifies tropical hot spots that correspond to known favorable regions for mid-21

latitude teleconnections and reveals a potential new pattern for prediction in the North22

Atlantic on subseasonal timescales.23

Plain Language Summary24

Weather forecasting on 2 week to 2 month timescales is known for its lack of pre-25

dictability due to the chaotic nature of the atmosphere. One way to improve prediction26

skill on these timescales involves the identification of periods of atmospheric conditions27

that lead to enhanced predictability (“forecasts of opportunities”). Here, we show that28

a neural network can accurately identify these opportunities when trying to predict the29

atmospheric circulation over the North Atlantic Ocean 4 weeks in advance. A neural net-30

work explainability technique is then used to uncover what the network has “learned”31

to make these accurate predictions. We show that the network identifies known patterns32

of storminess ideal for midlatitude prediction and uncovers a possible new favorable re-33

gion for enhanced prediction.34

1 Introduction35

Subseasonal timescales (2 weeks - 2 months) are known for their lack of predictabil-36

ity (Mariotti et al., 2018), yet reliable and actionable information on these timescales37

are required for decision making in many sectors such as public health and water man-38

agement (e.g. Vitart et al., 2012; White et al., 2017). Over the past decade, there has39

been a substantial research effort to improve prediction on these timescales (e.g. Vitart40

et al., 2012; Robertson et al., 2015; Vitart et al., 2017; Pegion et al., 2019). One area of41

subseasonal prediction research focuses on forecasts of opportunity, the idea that cer-42

tain earth system conditions provide opportunities for enhanced subseasonal prediction43

skill (Mariotti et al. 2020). When these opportunities arise, the information provided44

by the earth system’s state can then be leveraged to improve forecast skill. For exam-45

ple, when the Madden-Julian Oscillation (MJO; Madden and Julian (1971, 1972)), a prop-46

agating tropical convective phenomenon, is active, its convective heating can lead to the47

excitation of quasi-stationary Rossby waves (Hoskins and Ambrizzi 1993) that subsequently48

modulate the midlatitude circulation over the first few weeks following MJO activity (e.g.,49

Hoskins and Karoly, 1981; Sardeshmukh and Hoskins, 1988; Henderson et al., 2016; Baggett50

et al., 2017; Zheng et al., 2018). When opposing convective anomalies are located over51

the Indian Ocean and western Pacific (defined as phases 2, 3, 6, and 7), the MJO has52

been shown to lead to more coherent and consistent modulations of midlatitude weather53

on subseasonal timescales and consequently, enhanced prediction skill (Tseng et al., 2018).54

Using the strength and location of tropical convective activity of the MJO to identify55

periods of enhanced midlatitude prediction skill is, therefore, an example of forecast of56

opportunity identification. Mundhenk et al. (2018) also show that an empirical model,57

which solely uses information about the state of the MJO and the Quasi-Biennial Os-58

cillation, outperforms a state-of-the-art numerical prediction model for prediction of at-59

mospheric river activity on subseasonal timescales. This highlights the importance of sta-60

tistical models for enhancing subseasonal prediction.61
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Albers and Newman (2019) demonstrate a technique for forecast of opportunity62

identification through the utilization of expected skill from a linear inverse model. The63

study demonstrates the ability of the linear statistical model to identify forecasts of op-64

portunity, and raises the question of whether other statistical models, such as artificial65

neural networks (ANNs), can identify forecasts of opportunity for subseasonal predic-66

tion. ANNs are very good at nonlinear function estimation (Chen & Chen, 1995), and67

thus, may be able to identify both linear and nonlinear relationships that lend predictabil-68

ity. Recently, ANNs have been successfully applied to seasonal prediction of meteoro-69

logical variables such as monthly rainfall (Abbot & Marohasy, 2014) and surface tem-70

perature (Toms et al., 2020) as well as yearly prediction of the El Nino Southern Oscil-71

lation (Ham et al., 2019), suggesting ANNs may be useful for identifying subseasonal fore-72

casts of opportunity as well.73

In this paper, we test whether an ANN can be used for subseasonal forecast of op-74

portunity identification. To do so, we input tropical outgoing longwave radiation (OLR)75

anomalies into an ANN and task the network to predict the sign of 500 hPa geopoten-76

tial height (z500) anomalies in the North Atlantic (40◦N, 325◦E) 22 days later (e.g. Week77

4). Tropical OLR is used to explore the ability of an ANN to identify known relation-78

ships between the MJO and the North Atlantic via tropical-extratropical teleconnections79

(e.g. Cassou, 2008; Henderson et al., 2016). We demonstrate that an ANN can identify80

subseasonal forecasts of opportunity related to tropical OLR, and through an ANN ex-81

plainability technique, demonstrate that the ANN identifies these known MJO-like OLR82

patterns. In addition, we find a possible new tropical OLR pattern associated with pre-83

dictable behavior of the North Atlantic circulation on subseasonal timescales.84

2 Data and Methods85

2.1 Data86

We use daily mean OLR (1979-2019) from the National Center for Atmospheric87

Research/National Oceanic and Atmospheric Administration (NCAR/NOAA; Liebmann88

and Smith (1996)) and daily mean z500 (1979-2019) from the European Centre for Medium-89

Range Weather Forecasts (ECMWF) Interim reanalysis (ERA-I; Dee et al. (2011)). MJO90

teleconnections tend to be stronger during boreal winter (Madden, 1986), and therefore,91

the extended boreal winter months (November-February) are used for the OLR fields.92

Since we task the network to predict the sign of the z500 anomaly 22 days following a93

given OLR field, March is also included in the z500 analysis (see Text S1 for reasoning94

behind the choice of lead).95

The annual cycle is removed from both the z500 and OLR data. For z500, the an-96

nual cycle is removed by subtracting the daily climatology over the record (1979-2019).97

A Fast Fourier Transform high-pass filter is then applied to the z500 anomalies to re-98

move seasonal oscillations (frequencies smaller than 1
120days ) to ensure the network fo-99

cuses on subseasonal anomalies. The median of the z500 anomalies for the training data100

(see 2.2.1) is subtracted to obtain an equal number of positive and negative values. These101

anomalies are then converted into 0s and 1s depending on the sign (negative or positive,102

respectively). To filter the testing data, z500 anomalies from 2017-2019 are appended103

to the unfiltered z500 anomalies from 1979-2016 and another FFT high pass filter is ap-104

plied to all years. The now filtered 2017-2019 data are then subset and used as testing105

data. The median of the z500 anomalies for the training data (see 2.2.1) is then subtracted106

and the anomalies are converted into 0s and 1s. For OLR, the annual cycle is removed107

by subtracting the first 3 harmonics of the daily climatology from the raw field. The first108

3 harmonics are used instead of the daily mean because OLR is a noisier field than z500.109
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2.2 Methods110

2.2.1 Artificial Neural Network Architecture111

A two layer ANN (Figure 1) is tasked to ingest tropical OLR and predict the sign112

of the z500 anomaly over the North Atlantic (40◦N, 325◦E; red dot in Figure 1) 22 days113

later. The North Atlantic is chosen for this analysis since the MJO is known to force cir-114

culation anomalies over this region on subseasonal timescales and thus allows us to ex-115

plore the utility of an ANN in the context of a well known problem (e.g. Cassou, 2008;116

Roundy et al., 2010; Henderson et al., 2016). In addition, we find that this grid point117

is representative of a larger area within the North Atlantic (see supplemental Figure S1).118

Each input sample to the ANN consists of vectorized daily anomalous OLR from119

30◦N to 20◦S and 45 to 210◦E, where the number of input nodes is equal to the num-120

ber of OLR grid points (N = 1407). The ANN then outputs two values that describe the121

categorical prediction, positive or negative sign of z500, given the initial OLR input im-122

age. The softmax activation function is applied to this final layer and transforms the two123

output values such that they sum to 1. The output then represents an estimation of the124

likelihood that an input belongs to a particular category. We refer to this estimation of125

likelihood as “model confidence”. A more confident prediction will, therefore, have a pre-126

dicted category value closer to 1. We define forecasts of opportunities as the top 10%127

most confident predictions by the network, although we explore alternative percentages128

as well.129

The ANN architecture consists of two hidden layers of 128 and 8 nodes, respectively,130

and both use the rectified linear activation function. The final layer includes 2 nodes and131

uses the softmax activation function. Categorical cross entropy is used for the loss func-132

tion. This architecture is chosen because it was found to consistently lead to reasonably133

high accuracies across many combinations of training/validation sets, but our ANN ap-134

proach should be equally applicable to both shallow and deep networks. The batch size135

is set to 256 samples (i.e. OLR vectorized images) and the ANN is trained for 50 epochs136

unless the validation loss increases for two epochs in a row. If this occurs, the ANN stops137

training early and restores the model’s best weights to reduce overfitting. It is found that138

50 epochs is sufficient for training as the ANN rarely completes all 50 epochs. A more139

detailed explanation of ANNs is provided in the supplemental material for reference along140

with a comparison of this ANN approach to multinomial logistic regression.141

The data used to train and test the ANN is composed of three groups: training,142

validation, and testing. Training and validation data are used during training, where train-143

ing data is used to update the weights and biases of the ANN and the validation data144

is used to evaluate the model. The testing data is data that has never been “seen” by145

the ANN to evaluate the ability of the ANN to generalize to new data. To create the test-146

ing data, we assume that the years 2017-2019 have not yet occurred when training the147

model. In this way, these years act as true testing data for the ANN. While the specific148

accuracies likely would change with different testing data, the main point of this paper149

is to introduce a method to identify forecasts of opportunity and then to further iden-150

tify the associated relevant regions for the enhanced prediction skill, not to provide the151

most accurate model for this scenario.152

For this analysis, the ANN validation data is from November 2007 through Febru-153

ary 2011 (N = 481) and the testing data is from November 2017 through February 2019154

(N = 240). The remaining extended boreal winter (NDJF) data are used for training (Novem-155

ber 1979 - February 2007 and November 2011 - February 2016; N = 4450; see supple-156

mental Figure S2). All data is standardized for each grid point by the years used for train-157

ing and validation. To choose a model for the following analysis, ANN training is repeated158

for a variety of validation years. Different consecutive four-year chunks are removed from159

the training data and set aside to use as validation. For each of the nine four-year chunks,160

the ANN was trained 20 times with random initialized weights. We find that our con-161

clusions are robust to our choice in training period and do not change with variations162
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in random initialization weights. We present one model with reasonably high accuracy163

here and using the training, validation, and testing groups outlined above.164

… …

Input	Layer
[number	of	grid	points] Hidden	Layers

[128	Nodes]		 [8	Nodes] Output	Layer
[2	Nodes]

Confidence	that	Z500	>	0

Confidence	that	Z500	<	0

Softmax Output

…

Figure 1. Artificial neural network architecture for prediction of the sign of z500 anomalies

over the North Atlantic 22 days following tropical OLR anomalies. The neural network consists

of two hidden layers of 128 and 8 nodes, respectively, and an output layer of two nodes (one node

for each sign). The output layer uses the softmax activation function.

2.2.2 Layer-Wise Relevance Propagation (LRP)165

While ANNs are a useful tool for making predictions, in doing so, they are learn-166

ing how to make accurate predictions. Therefore, understanding the inner workings of167

a trained ANN can provide valuable information for improving prediction skill and un-168

derstanding, as well as increasing user confidence in the results. Here, we utilize a rel-169

atively new neural network explainability technique to the geosciences called layer-wise170

relevance propagation (LRP; Bach et al. (2015); Montavon et al. (2019)) to extract and171

visualize the features the trained ANN employs to make accurate predictions. While Toms172

et al. (2020) describes the use of LRP for geoscience applications in detail, we briefly pro-173

vide a high-level description here (see supplemental material for a more detailed expla-174

nation). After network training is completed, a single sample is passed through the net-175

work and a prediction is made (in our case, two output values are predicted). Our im-176

plementation of LRP then takes the highest of these values (i.e. the winning category)177

and back-propagates this value through the network via a series of predefined rules, ul-178

timately distributing it across the input nodes (i.e. input gridpoints). What results is179

a heat map of “relevance” across the input space, where input nodes that are more rel-180

evant for the network’s specific prediction for that sample are given higher relevance. This181

process is then repeated for every sample of interest, resulting in a unique relevance heat182

map for each sample. In our study, since the input layer consists of maps of OLR anoma-183

lies, the LRP heat maps are maps of the relevant tropical OLR patterns for each pre-184

diction of the circulation in the North Atlantic (40◦N, 325◦E). These maps are discussed185

in detail in Section 3.2.186

3 Results187

3.1 Identifying Forecasts of Opportunity188

ANNs with the architecture shown in Figure 1 are trained 100 times with random189

initialized weights to predict the sign of the z500 anomalies 22 days following the trop-190

ical OLR anomalies. Figure 2a shows the distribution of the testing prediction accuracy191

for all 100 models, where dark teal represents the distribution of all predictions and light192
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teal represents the distribution of the 10% most confident predictions. The correspond-193

ing colored vertical dashed lines indicate a threshold for what is expected by random chance.194

To calculate the random chance accuracy threshold, 100,000 randomly generated groups195

(N=240 for all and N=24 for 10% most confident predictions) of zeros and ones are used196

to create a distribution of accuracies, and the 90th percentile of this distribution is used197

as the random chance threshold. In Figure 2a, the top 10% most confident prediction198

accuracies (light teal) are shifted towards higher accuracies compared to the distribu-199

tion with all predictions (dark teal). This shift in the distributions demonstrates that200

in general, higher model confidence leads to substantially enhanced prediction accuracy.201

Figure 2. (a) Histograms of testing prediction accuracy for 100 trained ANNs. The dark teal

represents the histogram of all prediction accuracies and the light teal represents the histogram

for the 10% most confident prediction accuracies. The dark teal and light teal dashed lines in

(a) are the maximum accuracies expected by random chance at the 90% confidence level for the

corresponding colored histogram (see text for details). (b) Accuracy of one particular model as a

function of the percent most confident predictions for training and validation (black) and testing

(light teal) data. The dashed lines indicate the maximum accuracies expected by random chance

at the 90% confidence level for the corresponding colored lines (see text for details).

We chose one model from Figure 2a to further understand how accuracy varies when202

a different percent model confidence is used (Figure 2b). The solid lines represent the203

accuracy across various model confidence values for training and validation (black) and204

testing (light teal) data sets. Figure 2b shows that the testing accuracy (light teal line)205

barely outperforms the random chance 90% confidence bound (light teal dashed line) for206

all predictions (“all”) while the skill is substantially larger than random chance for the207

top 10% of predictions. Accuracy increasing with increasing model confidence is also ap-208

parent in the training and validation data. Together, Figure 2a and b illustrate that model209

confidence and prediction accuracy generally increase together and therefore, can be used210

to identify forecasts of opportunities, or periods of enhanced prediction skill. From this211

analysis, the 10% most confident predictions are chosen to define forecasts of opportu-212

nity since this threshold has one of the largest accuracy differences from random chance213

while still retaining 10% of the samples.214

When evaluating the network with the training and validation data, the prediction215

accuracy for all predictions is 58% and for the top 10% most confident predictions is 73%.216

For the testing data, the prediction accuracy for all predictions is 56% and for the top217

10% most confident predictions is 79%. The ANN predictions as a function of time are218

detailed in Figure S2, and additional skill metrics are provided in Figure S3 and Table219

S1.220
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3.2 Tropical Sources of Predictability221

We have shown that ANNs can identify forecasts of opportunity using model con-222

fidence; however, understanding where this enhanced skill originates is critical for im-223

proving physical understanding as well as gaining trust in the network’s predictions. To224

do so, layer-wise relevance propagation is used to identify the OLR patterns that lead225

the ANN to make correct predictions (see Section 2.2.2). The correct 10% most confi-226

dent predictions from the training, validation and testing data sets are combined for this227

LRP analysis. All three sets of data are used instead of only testing data because all data228

sets have similar accuracies and LRP values (not shown). Thus, including all the data229

increases the sample sizes for the analysis. The shading in Figure 3c-h shows the regions230

the network found relevant, on average, to make confident and correct positive (Figure 3c,e,g)231

and negative (Figure 3d,f,h) z500 predictions. The contours correspond to the average232

OLR anomalies for these confident and correct predictions.233

The average LRP heat map for the correct forecasts of opportunity of positive sign234

predictions (Figure 3c) indicates four hot spots, one over the southern Indian Ocean into235

the southern Maritime Continent (20-0◦S, 70-130◦E), one over the western Pacific (20-236

0◦S, 155◦E-170◦E), another northwest of Hawaii (25◦N, 170◦W), and the fourth over Saudi237

Arabia (30◦N, 40-60◦E). The average LRP heat map for the correct forecasts of oppor-238

tunity of negative sign predictions (Figure 3d) indicates four hot spots, one over the Mar-239

itime Continent (20-0◦S, 110-150◦E), one in the western and central Pacific Ocean (20-240

0◦S, 155◦E-170◦W), another to the west of Hawaii (20◦N, 170◦W), and the fourth over241

Saudi Arabia (30◦N, 40-60◦E).242

For both sign predictions, the hot spots over the Maritime Continent and the west-243

ern Pacific have opposing signed OLR anomalies (contours) that straddle 150◦E. These244

dipoles of convection over the Indian Ocean into the Maritime Continent and over the245

western Pacific have similar structures to phase 4-5 and phase 1,7-8 of the MJO (Wheeler246

& Hendon, 2004). This structure of OLR is consistent with previous research of MJO247

teleconnections over the North Atlantic for average lead times of 10-14 and 15-19 days248

(e.g. Cassou, 2008; Henderson et al., 2016; Henderson & Maloney, 2018; Tseng et al., 2018).249

In addition, this dipole structure is known to lead to higher pattern consistency of tele-250

connections in the midlatitudes (Tseng et al., 2019), which has been shown to lead to251

enhanced prediction skill (Tseng et al., 2018). Rossby waves initiated by the MJO tend252

to be quasi-stationary, which suggests that these OLR anomalies may also correspond253

to 22 day leads as well. This Maritime Continent and western Pacific Ocean dipole high-254

lighted in part by LRP is therefore consistent with previous research and demonstrates255

that the ANN has learned physically relevant structures.256

To test the robustness of these average LRP results for this particular ANN, we257

calculated the frequency of occurrence of average relevance hotspots greater than 0.5 for258

models with testing accuracies greater than 70% (Figure 3a,b, n = 42 models). We find259

that all of the hotspots (i.e. the MJO-like structure, the hot spot over Saudi Arabia and260

the hot spot west of Hawaii) are robust features for enhanced subseasonal prediction through-261

out these 42 models. In the next section, we hypothesize that the hot spot over Saudi262

Arabia is associated with the two-way relationship between the North Atlantic Oscilla-263

tion (NAO) and the MJO (Lin et al., 2009). On the other hand, the hot spot west of Hawaii264

in both sign predictions is discussed as a possible new region relevant for enhanced sub-265

seasonal prediction.266

3.2.1 K-means Clustering of LRP Maps267

To further distinguish the relevant regions for the ANN’s predictions, k-means clus-268

tering (Hartigan and Wong (1979), see supplemental material for more information) is269

applied to the LRP maps (Figure 3e-h). This analysis reveals that the composite LRP270

maps for each sign (Figure 3c,d) actually consist of multiple distinct patterns used by271

the ANN. For positive sign predictions (Figure 3e,g), both clusters have a hot spot lo-272

cated between the central Indian ocean and the maritime continent, which are associ-273
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Figure 3. (a,b) LRP frequency of occurrence maps for average relevance values greater than

0.5. Both (a) and (b) consist of models from every 4-year validation chunk. Of these models, only

average LRP maps of confident and correct predictions (training, validation, and testing) from

models with testing accuracies greater than 70% are included. Maps (c-h) are the LRP maps

associated with the ANN from Figure 2b where the shading denotes smoothed composites of LRP

fields for all correct forecasts of opportunity for (c) positive sign and (d) negative sign predictions

across training, validation and testing periods. The associated two k-means clusters of LRP for

(e,g) positive sign predictions and (f,h) negative sign predictions are also shown. Contours repre-

sent the corresponding smoothed OLR anomalies where solid lines are positive values and dashed

lines are negative values. (a) and (b) contours range from 0.4−1.0 W
m2 and -1.0− -0.4 W

m2 and (e-h)

contours range from 0.4-1.6 W
m2 and -1.6−-0.4 W

m2 , both with a contour interval of 0.2 W
m2 .

ated with negative OLR anomalies. While not highlighted by LRP in cluster 2 (Figure 3g),274

each negative OLR anomaly region is accompanied by a region of positive OLR anoma-275

lies over the western Pacific. This suggests the model is identifying an MJO-like pattern.276

More specifically, the clustering has identified two types of relevance for this MJO-like277

pattern. The LRP map for cluster 1 (Figure 3e) highlights both the positive and neg-278

ative OLR anomalies. As previously mentioned, these regions lead to more consistent279

midlatitude teleconnections (Tseng et al., 2018) and have been shown to be associated280

with a positive NAO anomaly (Cassou, 2008), which corresponds to a positive z500 anomaly281

at the predicted location. Cluster 1, therefore, supports previously identified tropical OLR282

regions and patterns ideal for enhanced prediction skill on subseasonal timescales in the283

North Atlantic. On the other hand, the LRP map for cluster 2 (Figure 3g) focuses ex-284

clusively on the south-central Maritime Continent, which is associated with enhanced285
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convection from the Indian Ocean to the Maritime Continent. This is more consistent286

with recent research that suggests that convection over the Indian Ocean dominates the287

formation of a positive NAO anomaly (Shao et al., 2020). This relationship is nicely il-288

lustrated in Figure 3a as the Indian Ocean is highlighted by the LRP analysis more of-289

ten than the western Pacific.290

For cluster 1 of the negative sign predictions (Figure 3f), there are two hot spots,291

one over the Maritime Continent and the other over the Pacific Ocean. As with the pos-292

itive sign predictions, each hot spot is associated with opposing sign OLR anomalies, how-293

ever, unlike cluster 1 of the positive sign predictions, the LRP analysis more strongly high-294

lights the western Pacific region, and suggests that the network finds the region of en-295

hanced convection more relevant. This is similar to cluster 2 of the positive sign predic-296

tions and is consistent with Figure 3b which shows that the region over the western Pa-297

cific is more often highlighted by the LRP analysis compared to the Maritime Continent.298

This suggests that the network often focuses on the region of enhanced convection for299

both sign predictions.300

Unexpectedly, there is also a hot spot located over Saudi Arabia in cluster 1 for301

both positive and negative predictions. As seen in Figure 3a and b, this region is frequently302

highlighted by LRP in many ANNs. This hot spot appears to only be important when303

an MJO-like dipole structure is present. To the authors’ knowledge, this region has not304

been shown to be important for tropical-extratropical teleconnections to the North At-305

lantic. However, previous research has shown that there is a two-way relationship be-306

tween the MJO and NAO. Following the NAO, there tends to be a significant modula-307

tion of the tropical upper troposphere zonal wind over the Atlantic-Africa region (Lin308

et al., 2009). This modulation has been hypothesized to play a role in MJO initializa-309

tion (Lin et al., 2009; Lin & Brunet, 2011). Since the NAO can persist over many weeks,310

the network may be identifying an influence of the NAO on the MJO and back to the311

NAO. We leave a deeper exploration of this possible mechanism to future work.312

Unlike the other clusters, cluster 2 of the negative sign predictions (Figure 3h) has313

only one hot spot west of Hawaii (25◦N, 170◦W) and no MJO-like OLR anomalies. We314

hypothesize that this region is physically important as it is located south of the subtrop-315

ical jet exit region and is associated with a large OLR anomaly. Rossby waves can be316

generated through advection of vorticity by upper level divergence or convergence as-317

sociated with OLR anomalies (Sardeshmukh & Hoskins, 1988). Since this hot spot re-318

gion is close to the jet exit region, these waves can more easily propagate into the mid-319

latitudes or become trapped within the North Atlantic jet and directed into the North320

Atlantic (Hoskins & Karoly, 1981; Hoskins & Ambrizzi, 1993). Based on these known321

tropical-extratropical teleconnection dynamics, it is likely that this hot spot west of Hawaii322

is a new pattern identified by the ANN. This hot spot is also weakly apparent in clus-323

ter 1 of the positive sign predictions (Figure 3e), but is associated with MJO-like OLR324

anomalies. Given the lack of MJO-like patterns in cluster 2 of the negative sign predic-325

tions for this region, we hypothesize that this hot spot in cluster 1 of the positive sign326

prediction may not actually be associated with the MJO, but instead acting as an ad-327

ditional source of predictability.328

4 Conclusions329

Improving subseasonal prediction accuracy and understanding requires identify-330

ing opportunities that can lead to enhanced predictability (e.g. Mariotti et al., 2020).331

Here, we show that an artificial neural network can identify forecasts of opportunity for332

subseasonal prediction using the network’s confidence in its prediction. In addition, we333

demonstrate that layer-wise relevance propagation can extract knowledge gained by the334

ANN to identify relevant physical tropical features important for the predictions. K-means335

clustering of the LRP maps further provides insight into multiple distinct patterns used336

by the ANN for enhanced prediction and reveals a possible new forecast of opportunity337

for prediction over the North Atlantic.338
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The hot spots identified by the ANN provide a stepping stone to further our un-339

derstanding of tropical-extratropical teleconnections. For example, lagged composite anal-340

ysis or simplified models can be used to further explore the physical mechanisms behind341

enhanced midlatitude predictability associated with these regions. In addition, analy-342

sis of the incorrect predictions made by the ANN may also be useful for improving our343

understanding of ideal tropical patterns for enhanced subseasonal prediction. Finally,344

while our application is focused on subseasonal prediction, the approach outlined here345

should be applicable to predictions across timescales. Ultimately, this paper demonstrates346

that ANNs are not only a useful tool for prediction, but can also be used to gain phys-347

ical insight into predictability and subsequently, improve prediction skill.348
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Introduction Here we provide information about the choice of lead day for the predictand and

a more detailed description of artificial neural networks (ANNs), layerwise relevance propagation

(LRP), and k-means clustering. In addition, we include composite z500 figures for both positive

and negative correct predictions, a timeseries of z500 anomaly predictions, as well as a confusion

matrix and a table of additional skill metrics for all and the 10% most confident predictions.

Text S1: Reasoning behind Prediction of Lead Day 22

Previous research has shown that MJO impacts on the North Atlantic Oscillation occur approx-

imately 5-15 days following phases 2-3 and 6-7 (Lin et al. 2009; Cassou 2008). Henderson et

al. (2016) show that MJO impacts over the North Atlantic are statistically significant out to

20 days. In addition, Barnes et al. (2019) illustrate a causal connection between the MJO and

NAO on the order of 15-20 days; however, they hypothesize that the MJO may still impact the

NAO after the 20 days due to the autocorrelation of the NAO and MJO. Therefore, we evalu-

ated the ANN on a variety of leads from 5-28 days. We found that the network performed well

across leads within week 3 (days 15-21), but started to decrease in skill after lead day 22. A

lead of 22 days is, therefore, used for our analysis, as it was one of the later leads with higher

skill. While daily anomalies are used here, the ANN can also be used to predict a smoothed

z500 anomaly (e.g. 7-day running mean anomalies). We find that the network performs simi-

larly well for both weekly and daily anomalies, and therefore, use daily anomalies for this analysis.

Text S2: Artificial Neural Networks (ANNs)

In this analysis, we use an artificial neural network (ANN) as a tool for subseasonal forecast
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of opportunity identification where Figure 1 shows the ANN architecture used for this analysis.

The architecture includes an input layer (teal and brown nodes) and is followed by two hidden

layers (grey nodes) and an output layer (red and blue nodes). The network is tasked to predict

the sign of the geopotential height at 500hPa (z500) at a point in the North Atlantic (40◦N,

325◦E, white ‘X’ in Figure S1) given tropical OLR anomalies. The input layer receives vectorized

OLR anomalies so that each input node represents an OLR anomaly from a single grid point.

The output layer returns two values, one in each output node, where the nodes represent the

sign of the z500 anomaly. The node with the larger value signifies the predicted sign of the z500

anomaly.

The network architecture is set up so that each node in a layer receives a value from the

preceding layer. The value of a single node in a layer is calculated through a weighted sum of

the incoming values in the preceding layer with an added bias (equation 1).

zj =
∑
i

wijxi + b (1)

In equation 1, j denotes the node for the value being calculated in a given layer and i denotes a

node from the preceding layer. Therefore, wij signifies the weight connecting the ith and jth node

and xi represents the value of node i. b denotes the added bias term. A nonlinear transformation

is then applied to zj (equation 2). For this analysis, the Rectified Linear Unit (ReLU; equation

2) is used as the nonlinear activation function.

f(zj) = max(0, zj) (2)

Both equation 1 and 2 are repeated for each node in the layer, which results in a single value

(f(zj)) for each node. These new calculated values are then be passed to the following layer and
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the process continues. At the final layer, a softmax activation function is applied:

ỹi =
exp(xi)∑
j exp(xj)

(3)

where xi represents the presoftmax value for output node i , the denomenator is the sum of the

exponential of all the presoftmax output values, and ỹi represents the predicted output value

for the ith output node. This function converts the raw values in the output layer into values

that sum to one. By doing so, the output values then represent an estimation of likelihood that

an input belongs to a particular category. We refer to this estimation of likelihood as “model

confidence”. A confident prediction will, therefore, have a value closer to one.

The architecture used here is often referred to as a fully-connected ANN since all the nodes

from one layer are connected to all the nodes in the next layer. We have used the simplest

ANN architecture that provided a relatively high accuracy since this set-up is sufficient for this

application (two hidden layers). Additional information on ANNs can be found in Nielsen (2015)

or Goodfellow et al. (2016).

In addition to the model architecture, there are also important parameters to specify for the

training process. This includes the type of loss function, batch size, and number of epochs. The

loss function estimates the accuracy of the predicted value to the actual value. For this example

we use categorical cross entropy (equation 4) where ỹi is the predicted value of the ith node in

the output layer and yi is the actual value.

loss = −
∑
i

yilog(ỹi) (4)

This loss function assigns error to the ANN output so that larger errors are punished more

than smaller errors due to the logarithmic transformation. The weights and biases of the neural

network are updated using the gradient of the loss function through back propagation (a series
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of chain-rule operations). An incremental step, defined here by the Adam method (Kingma &

Ba, 2014), is then taken in the direction of greatest decrease along the loss function, in attempt

to minimize the loss.

In addition, we also use ridge regression (L2 norm penalty) to limit the magnitude of the

coefficients. The penalty forces the model to combine values from many grid points for each

prediction. We apply this additional penalty because individual grid points on the globe are

spatially correlated with nearby points.

The weights and biases are updated after each batch, a subset of the training data. A batch size

of 256 is used. After the network iterates through the entire training dataset using a batch of

256 (an epoch), the process is repeated again for a defined number of epochs. In this analysis,

we use 50 epochs, however, we apply early stopping (ending the training before 50 epochs) if the

validation loss increases for 2 epochs in a row. This is done in order to reduce overfitting on the

training data.

Text S3: Multinomial Logistic Regression

Multinomial logistic regression (MLR) is a form of logistic regression that can be used for a

multi-class problem. Using ANN terminology, the MLR architecture can be described as an in-

put layer and an output layer, where the output values are passed through the softmax activation

function. The ANN architecture used for this analysis is similar, but also includes two hidden

layers. These hidden layers in the ANN make the ANN more complex than MLR and able to

account for additional nonlinearities. As ANN and MLR methods are similar to one another,

we compare the accuracies between the two methods for reference. We find that the ANN and

multinomial logistic regression models have similar accuracies for the validation data, but the
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ANN performs much better (over 20% higher accuracy) on the testing data than MLR. However,

regardless of accuracies, we use an ANN for this paper, instead of MLR, since an ANN makes

the methods more generalizable to other more complex nonlinear systems.

Text S4: ANN Explainability - Layerwise Relevance Propagation

To understand how a trained network makes its prediction, explainability techniques can be used

to extract and visualize what the network has learned. In this paper, we use an explainability

technique known as layerwise relevance propagation (LRP; e.g. Bach et al. (2015); Montavon

et al. (2019)). To apply LRP, a single sample of interest is initially passed through the trained

network (with frozen weights) to obtain a prediction. Using the output values without the

softmax activation, the output node with the highest value (the predicted category) is back-

propagated through the network using the following rule

Ri =
∑
j

aiw
+
ij +max(0, bj)∑

i aiw
+
ij +max(0, bj)

Rj (5)

where i denotes the node of the layer to which the relevance is being back-propagated to while

j denotes the node of the layer in which the relevance is from. Ri is therefore, the relevance

translated backward to the ith node and Rj is the relevance of the jth node. The weight

connecting the ith and jth nodes is denoted as w+
ij where the + signifies that only the positive

weights are used for back propagation. Lastly, ai signifies the value of the ith node (post activation

function) and bj signifies the bias term of the jth node. The above relevance equation is for the

LRP-αβ method where α = 1 and β = 0. This type of LRP method only propagates information

associated with positive weights. In other words, only the information that positively contributed

to the prediction is propagated backward.
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For relevance back-propagation from the first hidden layer to the input layer, the following

equation is used:

Ri =
∑
j

w2
ij∑

iw
2
ij

Rj (6)

At the input layer, the relevance values for each node can then be used to create a heatmap of

relevance where more relevant nodes have larger values. This process is then repeated for every

prediction of interest, resulting in a unique relevance heat map for each prediction. These maps

show the relevant regions from the input sample that positively contributed to the prediction.

For more information on LRP as well as other neural network explainability techniques, see

Toms, Barnes, and Ebert-Uphoff (2020) and McGovern et al. (2019).

Text S5: K-Means Clustering

K-Means cluster analysis (Hartigan & Wong, 1979) is used to group the correct prediction LRP

maps to further explore relevant regions for enhanced prediction skill. K-means clustering cat-

egorizes input data into a user specified number of groups. The method iteratively assigns the

given data to centroids based on the minimum squared Euclidean distance, where each data

point is assigned to the closest centroid. The centroids are moved to the center of their assigned

data points after an iteration and then the process begins again, for a user specified number of

iterations. The data points associated with each centroid are part of that centroid’s cluster.
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a)	All	Correct	Positive	Predictions b)	All	Correct	Negative	Predictions

c)	10%	Most	Confident	Correct	Positive	Predictions d)	10%	Most	Confident	Correct	Negative	Predictions

Figure S1. North Atlantic z500 composite: Composite of z500 anomalies for (a,b) all and

the (c,d) 10% most confident predictions for correct (a,c) positive and (b,d) negative predictions.

Shading represents the composite z500 anomalies and the white ‘X’ denotes the location of the

ANN prediction over the North Atlantic (40◦N, 325◦E).
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Figure S2. Timeseries of ANN z500 predictions: Timeseries of z500 anomalies shaded

by the sign of the ANN predictions. Blue dots represent correct negative predictions, red dots

represent correct positive predictions, and dark colored dots indicate forecasts of opportunities

(i.e. 10% most confident predictions). Grey dots represent incorrect predictions. The vertical

grey shading from 2007-2011 highlights the time period used for validation and the vertical grey

shading from 2017-2019 highlights the time period used for testing. The accuracies for training

and validation as well as testing data for forecasts of opportunities and all predictions are given

in the top left and right, respectively.
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Figure S3. Confusion Matricies: Confusion matrix of training, validation, and testing data

for (a) all predictions and (b) the 10% most confident predictions, where the accuracy is located

at the top of each plot and the shading and the values inside each box represents the sample size

for each category.

Table S1. Additional Skill Metrics: Table of accuracy, precision, and recall for (a) all

predictions and (b) the 10% most confident predictions using training, validation, and testing

data.
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