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Abstract

In climate reconstructions by data assimilation, the sensitivities to both proxies and prior estimates need to be taken into account

because models are uncertain and proxies are limited spatiotemporally. This study examines these sensitivities using multiple

climate model simulations and different combinations of proxies (corals, ice cores, and tree-ring cellulose). Experiments were

conducted based on an offline data assimilation approach. These experiments show annual variations in the global distribution

of surface air temperature and precipitation range from 850 to 2000. The results indicate that standard deviations of surface air

temperature and precipitation amount during the entire period differ by up to 50% due to prior estimates. Experiments with

different types of proxies show that the El Niño-like distribution of positive anomalies in the central to eastern tropical Pacific

can be reproduced adequately in experiments with corals, but not in experiments without corals. The correlation coefficient of

the NINO.3 index from 1971 to 2000 between experiments with corals and the Japanese 55-year Reanalysis (JRA-55) were 0.79

at maximum, while the correlation coefficient between experiments without corals and JRA-55 were 0.20 at maximum.
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Abstract 

In climate reconstructions by data assimilation, the sensitivities to both proxies and prior estimates 

need to be taken into account because models are uncertain and proxies are limited 

spatiotemporally. This study examines these sensitivities using multiple climate model 

simulations and different combinations of proxies (corals, ice cores, and tree-ring cellulose). 

Experiments were conducted based on an offline data assimilation approach. These experiments 

show annual variations in the global distribution of surface air temperature and precipitation range 

from 850 to 2000. The results indicate that standard deviations of surface air temperature and 

precipitation amount during the entire period differ by up to 50% due to prior estimates. 

Experiments with different types of proxies show that the El Niño-like distribution of positive 

anomalies in the central to eastern tropical Pacific can be reproduced adequately in experiments 

with corals, but not in experiments without corals. The correlation coefficient of the NINO.3 index 

from 1971 to 2000 between experiments with corals and the Japanese 55-year Reanalysis 

(JRA-55) were 0.79 at maximum, while the correlation coefficient between experiments without 

corals and JRA-55 were 0.20 at maximum. 

1 Introduction 

Climate reconstruction enables us to understand past climate changes. A variety of climate 

proxies have been used for long-term climate reconstruction (Jones et al., 2001; Mann and Jones, 

2003; Mann et al., 2008). As an example of proxies, tree rings provide information on the density 

of rings and ring width, as well as carbon, oxygen, and hydrogen isotopes (McCarroll and Loader, 

2004; Sheppard, 2010). Oxygen and hydrogen isotopes are called water isotopes. Due to the 

physical and chemical processes associated with water, the water isotope ratio changes under the 

influence of temperature, precipitation amount, moisture transport, etc. Based on the relationship 

between temperature and water isotope ratio (Dansgaard, 1964), we can estimate temperature 

using empirical equations. Water isotope ratios are recorded in not only tree rings but also various 

types of proxies such as corals and ice cores (e.g., Felis and Pätzold, 2004; Kawamura, et al., 

2017). 

Recently, data assimilation has been introduced into climate reconstruction. Data 

assimilation provides optimal estimates based on both proxy data and climate model simulations. 

So far, fluctuations in climate variables have been reproduced at time intervals from month to year 

(Hakim et al., 2016; Franke et al., 2017; Steiger et al., 2018; Tardif et al., 2019). 

However, in most research, before the data assimilation procedure, water isotope ratios 

were converted into climate variables such as annually averaged temperature based on an 

empirical equation. Variations in water isotope ratios are influenced by not only temperature but 

also precipitation amount. If the reconstructed temperature is used for data assimilation, 

information from other factors would be overlooked. Moreover, it is uncertain whether empirical 

equations based on the current climate state are valid in the past climate state. 

To solve these problems, Okazaki and Yoshimura (2017) used an isotopes-incorporated 

climate model and assimilated oxygen isotope ratios directly. The data assimilation method 

followed those of Bhend et al. (2012) and Steiger et al. (2014). The surface air temperature and 

precipitation amount for the last 130 years were validated. The results showed the feasibility of 

climate reconstruction based on data assimilation using oxygen isotope ratios of corals, ice cores, 

and tree-ring cellulose. However, the difference due to prior estimates was not validated in 
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Okazaki and Yoshimura (2017). As these results can be changed by prior estimates, the impact of 

using different climate models needs to be tested. 

The current study uses multiple climate model simulations based on the method of Okazaki 

and Yoshimura (2017). Annual variations in climate variables are reconstructed over the past 1000 

years, and differences due to prior estimates are investigated. We also test the impacts of proxies 

with experiments using different combinations of proxies. In this data assimilation method, 

reconstructed fluctuations are dependent on the impacts of proxies because prior estimates are 

constant throughout the entire target period. The impacts of proxies need to be evaluated, as well 

as differences due to prior estimates, to improve climate reconstruction by data assimilation. 

In Section 2, the models, proxy data, climate data sets, data assimilation, and experimental 

design are introduced. In Section 3, we show the results of proxy data assimilation. We discuss 

differences by climate models and the impacts of proxies in Section 4, and end by presenting our 

conclusions in Section 5. 

2 Materials and Methods 

2.1 Models 

To validate the influence of the difference due to prior estimates, we use two 

isotopes-incorporated atmospheric general circulation models to make prior estimates. One is the 

isotopes-incorporated model for interdisciplinary research on climate (MIROC5-iso; Okazaki 

and Yoshimura, 2019) based on the atmospheric component of MIROC5 (Watanabe et al., 2010). 

The other is the isotopes-incorporated global spectral model (IsoGSM; Yoshimura et al., 2008) 

based on the Scripps Experimental Climate Prediction Center's (ECPC) GSM (Kanamitsu et al., 

2002). For climate model simulations, two datasets of sea surface temperature (SST) and sea ice 

were used. They are provided by the historical run of the Coupled Model Intercomparison 

Project Phase 5 (CMIP5; Taylor et al., 2007); one is from the atmosphere-ocean coupled version 

of MIROC5, while the other is from the Community Climate System Model (CCSM4; Gent et al., 

2011). Each simulation period is of 130 years. The method for making prior estimates is detailed 

in section 2.4. 

 

In this study, proxy models for corals (Liu et al., 2014) and tree-ring cellulose (Roden et al., 

2000) were used. Isotope ratios of corals, ice cores, and tree-ring cellulose were calculated from 

climatic variables of the climate model simulations. Each proxy model is described here. 

To calculate the isotope ratios of corals, we used monthly precipitation, evaporation, SST, and 

oxygen isotope ratio data in the seawater studied LeGrande and Schmidt (2006). Coral isotope 

ratios are based on the linear combination of SST and oxygen isotope ratio data in seawater. In 

calculating the isotope ratio in seawater, the isotopic mass balance is considered using 

precipitation and evaporation. 

 

Isotope ratios of ice cores are assumed to be equal to those in precipitation. The isotope ratios 

change after snow deposition (Hoshina et al., 2014) and the governing post-depositional 

processes can vary by region. As it is difficult to reflect the entire process, isotope ratios in 

precipitation calculated from the climate models were used without any post-depositional 

processes when assimilating the isotope ratios of ice cores. 
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A model developed by Roden et al. (2000) was used to obtain isotope ratios of tree-ring cellulose. 

The monthly isotope ratios were calculated from climatic variables such as precipitation and 

evapotranspiration. To estimate the annual isotope ratios, the monthly isotope ratios were 

weighted by climatological net primary production (NPP) provided by the National Aeronautics 

and Space Administration National Aeronautics and Space Administration (NASA). 

 

2.2 Proxy data used in this study 

We used 129 isotopic proxy data (65 corals, 43 ice cores, and 21 tree-ring cellulose) archived at 

the National Oceanic and Atmospheric Administration (NOAA; 

https://www.ncdc.noaa.gov/data-access/paleoclimatology-data) and the 2k Network of the 

International Geosphere-Biosphere Programme Past Global Changes (PAGES 2k; Ahmed et al., 

2013). The spatial and temporal distribution of the proxies is shown in Figure 1. We assimilate 

the annual mean oxygen isotopic ratios of corals, ice cores, and tree-ring cellulose from 850 to 

2000. All proxy data were processed in the same way as Okazaki and Yoshimura (2017) before 

data assimilation, and their errors were set to 0.50. Note that isotope ratios of real proxies and 

modeled proxies were normalized over the same period in Okazaki and Yoshimura (2017), 

whereas they were normalized over different periods in this study. 

 

 
Figure 1. Spatial and temporal distribution of proxies used in this study from 850 to 2000. Each 

color indicates corals (red), ice cores (blue), and tree-ring cellulose (green), respectively. 

 

2.3 Reference climate datasets used for comparison 

Two types of climate datasets were utilized to validate this climate reconstruction. One is 

provided by the Climatic Research Unit (CRU; Harris et al., 2020). The data cover the entire 

land area except for Antarctica from 1901 with a spatial resolution of 0.5°. The surface air 

temperature [°C] and precipitation [mm/day] of CRU were used for validation. The other data 

come from the Japanese 55-year Reanalysis (JRA-55; Kobayashi et al., 2015) by the Japan 

Meteorological Agency (JMA). They produce global climate variables at intervals of 1.25°. The 

analysis data from 1958 are available. We used temperature [K] from the surface analysis fields 



manuscript submitted to Earth and Space Science 

 

and total precipitation [mm/day] from two-dimensional average diagnostic fields. Before 

comparison with the results, each climate variable was averaged annually because annual 

analyses were computed in this data assimilation. 

 

2.4 Data assimilation method 

Figure 2 shows the schematic of this proxy data assimilation. In this study, we follow the method 

of Okazaki and Yoshimura (2017) using the so-called offline data assimilation approach (e.g. 

Bhend et al., 2012; Steiger et al., 2014) based on the sequential ensemble square root filter 

(EnSRF; Whitaker and Hamill, 2002), a variant of the ensemble Kalman filter (EnKF; Evensen, 

2003). Note that the offline data assimilation does not ensure the temporal continuity of analyses 

because prior estimates were constructed from existing climate model simulations. 

 

We use a 130-year single run (1871-2000) to construct the prior estimates. The annual means are 

calculated from the simulation, and each mean of 130 years is regarded as an ensemble member. 

The same ensemble members were used for each year of the target period from 850 to 2000. 

Therefore, prior estimates used for data assimilation are constant throughout the entire period. 

The equations for data assimilation are as follows: 

𝐗𝐚 = 𝐗𝐛 + 𝐊[𝐲 − 𝐻(𝐗𝐛)] 
𝐊 = 𝐁𝐇𝐓[𝐇𝐁𝐇𝐓 + 𝐑]−1 
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Xa is the state vector of the analysis and Xb is that of the background estimate. Eight variables, 

namely, surface air temperature, precipitation amount, evapotranspiration, relative humidity, 

surface pressure, and three types of isotope ratios (corals, ice cores, and tree-ring cellulose) are 

included in the state vector. Vector y consists of proxy data observations. Function H is the 

observation operator that converts the model state to the observation state. Innovation, y - H(Xb), 

is the difference between the observations and the background estimates. The matrix K, the 

Kalman gain, weights the innovation and transforms it into state space. Matrix B is the background 

error covariance matrix, and R is the observation error covariance matrix. Matrix H is a linearized 

H around the background mean. In the offline data assimilation, both B and R are constant over 

time. Following Steiger et al. (2014), a localization function (Gaspari and Cohn, 1999) with a scale 

of 12,000 km is used and applied to the gain K. 

 
Figure 2. Schematic of this proxy data assimilation. 

 

2.5 Experimental design 

We tested whether the results depended on the background fields with three simulations (Table 

1). The first one was based on MIROC5-iso forced by the SST of MIROC5. The second one was 

based on IsoGSM forced by the SST of MIROC5. The last was based on the IsoGSM forced by 

SST of CCSM4. 

 

Table 1.  

Experimental design. 

Experimental 

name 

MIROC5-iso-m IsoGSM-m IsoGSM-c 

Model MIROC5-iso IsoGSM IsoGSM 

SST for simulation MIROC5 MIROC5 CCSM4 

Reconstruction 

period 

850-2000 850-2000 850-2000 
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First, we conducted experiments that reconstructed climate fields from 850 to 2000 using all 129 

proxies (ALL). Next, we limited the proxies used for data assimilation to investigate the impacts 

of proxies on analysis. The impacts of proxies were validated based on experiments using corals 

(C), ice cores (I), tree-ring cellulose (T), corals and ice cores (CI), corals and tree-ring cellulose 

(CT), and ice cores and tree-ring cellulose (IT). This study focused on experiments C and IT 

because the differences in the impacts of proxies are clear between these two types of 

experiments. 

 

3 Results 

3.1 Experiments using different prior estimates in the last millennium 

In Section 3.1, the results of the experiment ALL are focused. Figure 3 shows the annual 

variations in the global mean surface air temperature [°C] and precipitation amount [mm/day] 

from 850 to 2000. The fluctuations of the surface air temperature are similar to one another. 

Similarly, the precipitation amounts of IsoGSM-m and IsoGSM-c also varied. On the other hand, 

the precipitation amount of MIROC5-iso-m did not change as greatly as those of IsoGSM-m and 

IsoGSM-c. In the 10
th

 century and latter half of the 12
th

 to 16
th

 centuries, fluctuations in 

precipitation amount are represented in the results of IsoGSM-m and IsoGSM-c; this fluctuation 

is not shown in MIROC5-iso-m. 

 

 
Figure 3. Annual variations of reconstructed global mean surface air temperature [°C] (upper) 

and precipitation amount [mm/day] (bottom) from 850 to 2000 (left axis). Each line shows the 

result of MIROC5-iso-m (black), IsoGSM-m (red), and IsoGSM-c (blue). Gray lines indicate 

CRU from 1901 to 2000 (right axis). 

 

The averages and standard deviations of the global mean surface air temperature and 

precipitation amount are shown in Table 2.  In the three experiments, the standard deviations in 

surface air temperature and precipitation amount in the 10
th

 century were smaller than those in 

the 20
th

 century, as shown in Figure 3. However, the differences in standard deviations of surface 

air temperature and precipitation amounts between the 10
th

 and 20
th

 centuries vary in each 
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experiment. Standard deviations of surface air temperature and precipitation amount in the 10
th

 

century are 33–57% and 33–50%, respectively, compared with those in the 20
th

 century. During 

the entire target period, the standard deviations of surface air temperature did not differ 

significantly in each experiment. However, in the case of precipitation amount, the standard 

deviations of MIROC5-iso-m are less than half those of IsoGSM-m and IsoGSM-c. 

In the 20
th

 century, the results were evaluated with the data of CRU. In the case of CRU, the 

standard deviations of the global mean surface air temperature and precipitation amount are 

0.26 °C and 0.04 mm/day, respectively. Compared with the standard deviations of CRU, those of 

the three experiments are 27–35% and 25–75% respectively for surface air temperature and 

precipitation amount. The fluctuation range of this study is smaller than that of CRU. However, 

the warming trend in the 20
th

 century is clearly indicated in the three experiments, as well as in 

the case of CRU. 

 

Table 2.  

Averages (left) and standard deviations (right) of global mean surface air temperature [°C] (top) 

and precipitation amount [mm/day] (bottom). Values in the 10
th

 century, 20
th

 century, and from 

850 to 2000 are shown. 

Surface air 

temperature 
10C 20C 850–2000 

MIROC5-iso-m 14.62 0.04 14.71 0.07 14.62 0.06 

IsoGSM-m 14.73 0.03 14.79 0.07 14.72 0.05 

IsoGSM-c 14.54 0.03 14.66 0.09 14.55 0.06 

CRU   -   - 13.09 0.26   -   - 

 

Precipitation 

amount 
10C 20C 850–2000 

MIROC5-iso-m 3.23 0.003 3.24 0.01 3.23 0.01 

IsoGSM-m 3.15 0.01 3.17 0.02 3.16 0.01 

IsoGSM-c 3.18 0.01 3.20 0.03 3.18 0.02 

CRU   - - 2.29 0.04   -   - 

 

Figure 4 and Figure 5 show the spatial distribution of standard deviations of surface air 

temperature and precipitation amount. In Figure 4, the three experiments show high variability in 

the Arctic and Antarctic regions and Northern America in the 10
th

 century. In the case of 

IsoGSM-m and IsoGSM-c, high variations were also observed in the tropical Pacific. In the 20
th

 

century, variability in the tropical Pacific and the Arctic and Antarctic regions was higher than in 

the 10
th

 century. In addition, the high value areas spread from the Arctic regions to most of the 

Northern Hemisphere in the three experiments. In Figure 5, values are high in the tropical Pacific 

and higher in IsoGSM-m and IsoGSM-c than in MIROC5-iso-m. In the three experiments, 

values were higher in the 20
th

 century than in the 10
th

 century. 
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Figure 4. Spatial distribution of standard deviations of surface air temperature [°C] in the 10

th
 

(left) and 20
th

 (right) century. The results of MIROC5-iso-m (top), IsoGSM-m (middle), and 

IsoGSM-c (bottom) are shown. 

 

 
Figure 5. Same as in Figure 4 but for precipitation amount [mm/day]. 

 

3.2 Validation of reconstructed climate fields 

To validate the climate field reconstructed in this study, we focus on El Niño from 1971 to 2000 

(Table 3). Figure 6 shows annual variations of standardized surface air temperature anomalies in 

NINO.3. The values of each result are positive in some El Niño years as seen in JRA-55. The 

fluctuations of IsoGSM-m are closer to that of JRA-55 especially. Compared with each 

experiment, the fluctuations of experiment ALL and C are more similar to that of JRA-55. 

 

Table 3.  

El Niño from 1971 to 2000 announced by JMA. 

 Period (year.month) Max [°C] 

E1 1972.4–1973.3 +2.7 

E2 1976.5–1977.3 +1.5 

E3 1982.3–1983.8 +3.3 
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E4 1986.8–1988.1 +1.7 

E5 1991.3–1992.7 +1.6 

E6 1997.3–1998.5 +3.6 

 

 
Figure 6. Standardized annual variations of surface air temperature anomalies [°C] in NINO.3 

from 1971 to 2000. The results of MIROC5-iso-m (top), IsoGSM-m (middle), and IsoGSM-c 

(bottom) are shown. Each color represents experiment ALL (red), C (orange), and IT (yellow), 

respectively. Black lines indicate JRA-55. 

 

Table 4 shows the root mean square differences (RMSD) between each result and JRA-55, 

correlation coefficients (r) with JRA-55, and standard deviations (σ). These values are based on 

the annual variations of the surface air temperature anomalies from 1971 to 2000. As seen in 

Table 4, the RMSD of experiment C is the smallest, while that of experiment IT is the largest for 

each result. Comparing the results of experiments ALL and IT, each RMSD differed by 10–27%. 

The RMSD of IsoGSM-m is smaller than those of MIROC5-iso-m and IsoGSM-c. The 

correlation coefficients of IsoGSM-m and IsoGSM-c are higher than those of MIROC5-iso-m. 

Each correlation coefficient of experiment C is higher than those of experiments ALL and IT. 

The ratios of standard deviations (this study/JRA-55) are about 22–35% in MIROC5-iso-m. In 

the cases of IsoGSM-m and IsoGSM-c, these ratios are about 30–94%. The standard deviations 

of experiments ALL and C are higher than those of experiment IT. Table 5 shows years when the 

annual surface air temperature anomalies in NINO.3 exceed +σ from 1971 to 2000. The values 

are evaluated after standardization. The values of JRA-55 are higher +σ in the El Niño years of 

E1, E3, E4, and E6. On the other hand, El Niño E1, E4, E5, and E6 are indicated in this study. 

The years in which El Niño events did not occur are also pointed out. El Niño E6 is strongest in 

this period (Table 3). It is regarded as the largest El Niño in the 20
th

 century. This case is 

reproduced in experiments ALL and C but not in experiment IT. 

 

Table 4.  

Values of root mean square difference (RMSD) [°C] between each result and JRA-55, correlation 

coefficients (r) with JRA-55, and standard deviations (σ) [°C] based on the annual variations of 



manuscript submitted to Earth and Space Science 

 

surface air temperature anomalies in NINO.3 from 1971 to 2000. Each result is based on 

MIROC5-iso-m (left), IsoGSM-m (middle), and IsoGSM-c (right). 

 RMSD [°C] r σ [°C] 

ALL 0.57 0.40 0.45 0.46 0.78 0.71 0.22 0.59 0.53 

C 0.55 0.40 0.41 0.65 0.79 0.77 0.15 0.59 0.56 

IT 0.63 0.63 0.65 0.14 0.20 0.05 0.14 0.23 0.19 

JRA-55 - - 0.63 

 

Table 5.  

Years in which surface air temperature anomalies in NINO.3 exceed +σ. The underlined years 

imply El Nino years. 

 MIROC5-iso-m IsoGSM-m IsoGSM-c 

ALL 1991, 1992, 1996, 

1997, 1998 

1987, 1991, 1992, 

1993, 1997, 1998 

1991, 1992, 1993, 

1997, 1998 

C 1981, 1997, 1998 1987, 1991, 1992, 

1993, 1997, 1998 

1991, 1992, 1993, 

1997, 1998 

IT 1988, 1990, 1991, 

1992, 1996 

1988, 1991, 1992, 

1996, 1998, 1999 

1972, 1988, 1991, 

1992, 1997, 1998, 

1999 

JRA-55 1972, 1982, 1983, 1987, 1997 

 

Figure 7 shows the spatial distribution of surface air temperature anomalies in the tropical Pacific 

in 1997. Anomalies are defined based on 30 years from 1971 to 2000. The figure of JRA-55 

represents a positive anomaly in the central to eastern tropical Pacific and a negative anomaly in 

the western tropical Pacific. We can find a similar spatial distribution in each result of 

experiments ALL and C, although the positive anomaly is smaller compared with JRA-55. On 

the other hand, the results of experiment IT do not show a positive anomaly in the tropical 

Pacific and a negative anomaly in the western tropical Pacific. 

 
Figure 7. Spatial distribution of surface air temperature anomaly [°C] in the tropical Pacific in 

1997. The results of this study are represented in Figure (a–i), and JRA-55 is in (j). Figures (a–c) 

represent experiment ALL, (d–f) experiment C, and (g–i) experiment IT. The results of 
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MIROC5-iso-m (left), IsoGSM-m (middle), and IsoGSM-c (right) are shown. Note that the color 

bar of JRA-55 is different from the other. 

 

4 Discussion 

4.1 Difference due to prior estimates 

The difference due to prior estimates is indicated in Figure 3. In the 10
th

 century and the latter 

half of the 12
th

 to 16
th

 centuries, fluctuations in the global mean precipitation of IsoGSM-m and 

IsoGSM-c were larger than that of MIROC5-iso-m. In the same period, the number of coral 

proxies increased (Figure 1). As prior estimates are constant for the entire target period in this 

method, the fluctuations are dependent on the impacts of proxies. The results indicated that coral 

proxies can significantly influence the precipitation fluctuations of IsoGSM-m and IsoGSM-c. 

The difference due to these prior estimates is also shown in Figure 4 and Figure 5. In the tropical 

Pacific, the spatial distribution of MIROC5-iso-m is different from that of IsoGSM-m and 

IsoGSM-c. Compared with MIROC5-iso-m, the results of IsoGSM-m and IsoGSM-c represent 

higher values in the tropical Pacific where coral proxies are available. This suggests the strong 

impact of coral proxies on the spatial distribution of IsoGSM-m and IsoGSM-c. 

 

The impact of coral proxies on the results of IsoGSM-m and IsoGSM-c is also shown in Figure 6. 

Although El Niño events did not occur, the positive anomaly was higher than +σ in 1993. 

Confirming the spatial distribution of JRA-55, a positive anomaly was observed within 180° to 

150°W in the tropical Pacific in 1993. This influence may be reflected in the results of 

IsoGSM-m and IsoGSM-c, which are sensitive to coral proxies. 

4.2 Impacts of proxies 

We compare the results of experiments ALL, C, and IT, and verify the impacts of proxies. The 

fluctuations in the NINO.3 index, such as JRA-55, can be reproduced by experiments ALL and C 

(Figure 6). In particular, the values in 1997 and 1998 exceeded +σ in eight out of nine 

experiments. El Niño E6 was one of the largest cases in the 20
th

 century and can be represented 

better than other cases because its influence spread widely and reflected strongly on coral proxies 

in the tropical Pacific. Coral proxies play an important role in reproducing past El Niño. Cobb et 

al. (2003) revealed fluctuations in oxygen isotope ratios over the last 1100 years based on coral 

proxies in the central tropical Pacific. They analyzed the strength and frequency of El Niño in the 

past and indicated that coral proxies in the tropical Pacific record the information of the past El 

Niño. Information on coral proxies can be reflected in the results of the current study. In Table 4, 

each RMSD is high in experiment IT, and low in experiments ALL, and C. The decrease in 

RMSD is largely dependent on coral proxies. In addition, correlation coefficients were high in 

experiments ALL and C and low in experiment IT. Thus, coral proxies are effective for the 

reconstruction of past El Niño events using this method. 

 

The importance of coral proxies for past El Niño reconstruction is also indicated in Figure 7. The 

results of experiments ALL and C can reproduce positive anomalies in the central and eastern 

tropical Pacific. However, in experiment IT, the positive anomaly is small and the spatial 

distribution of El Niño cannot be shown. 
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5 Conclusions 

This study showed annual variations in the global distribution of surface air temperature and 

precipitation amount from 850 to 2000 by proxy data assimilation. We used 

isotopes-incorporated climate models and proxy models to assimilate oxygen isotope ratios of 

corals, ice cores, and tree-ring cellulose. Experiments based on different prior estimates and 

proxies were conducted to evaluate sensitivity. 

 

The differences due to prior estimates were shown spatiotemporally. Although the fluctuations of 

global mean surface air temperature were similar in the three experiments, those of the 

precipitation amount were different between MIROC5-iso-m and IsoGSM-m (IsoGSM-c). The 

standard deviations of the precipitation amount of IsoGSM-m and IsoGSM-c were twice as large 

as that of MIROC5-iso-m during 850–2000. The fluctuations in the precipitation amounts of 

IsoGSM-m and IsoGSM-c corresponded to the change in the number of coral proxies. In 

addition, surface air temperature and precipitation amount in the tropical Pacific were high in 

IsoGSM-m and IsoGSM-c, and low in MIROC5-iso-m. These results suggest that coral proxies 

significantly influenced the results of IsoGSM-m and IsoGSM-c. 

 

The impacts of proxies were shown in the results of reproduced past El Niño cases. In 

experiments ALL and C, the El Niño-like positive anomaly of surface air temperature in the 

tropical Pacific was reproduced well and fluctuations of surface air temperature anomalies in 

NINO.3 were close to the case of JRA-55. The results indicated that coral proxies were effective 

in reconstructing the past El Niño patterns. 
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