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Abstract

In the mid-sixties of the 20th century, a seismicity one-dimensional

model, based on a spring system with friction, was presented by the

two authors mentioned in the title. Through this model was studied the

viscosity behaviour involved in the stratums mutual displacement.

However, in the analysis pertinent to the occasion, seeing the fig.13

ibid it can be observed an error related to the viscosity function (low

speeds’) limits, which determines its “performance” during the time -

lapse of the stratums breaking. From the height of the present knowledge, using the

Elementary Catastrophes Theory developed in later times by René Thom

and Zeeman, we have reached certain conclusions which, although do

not refute the results of said article, they can significantly improve some aspects of

the model and in general of the earthquakes physics.
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Abstract6

In the mid-sixties of the 20th century, a seismicity one-dimensional model, based7

on a spring system with friction, was presented by the two authors mentioned in the ti-8

tle. Through this model was studied the viscosity behaviour involved in the stratums9

mutual displacement. However, in the analysis pertinent to the occasion, seeing the fig.1310

ibid it can be observed an error related to the viscosity function (low speeds’) limits, which11

determines its “performance” during the time - lapse of the stratums breaking. From the12

height of the present knowledge, using the Elementary Catastrophes Theory developed13

in later times by René Thom and Zeeman, we have reached certain conclusions which,14

although do not refute the results of said article, they can significantly improve some as-15

pects of the model and in general of the earthquakes physics.16

1 Introduction17

Starting in the first half of the 20th century, the data coming from seismic obser-18

vations lead to the (although loin) possibility of arriving at earthquakes forecasts based19

on a better understanding of their mechanisms. In the article by Burridge, R., & Knopoff,20

L. (1967) a study of telluric phenomena through simulations and experiments is proposed,21

beginning from an introduced there one-dimensional model. After this first attempt to22

analyze the details of the mechanisms of earthquakes, the results of other investigations23

have come to light. The report presented by Dahl, P. R. (1968) is a reference that is cited24

by different authors when considering a friction model; however, this work does not delve25

into the dependence in relation to relative velocity and neither in the behavior that oc-26

curs at critical points. In the article by Haessig Jr, D. A., & Friedland, B. (1991), the27

friction model and its dependence on relative velocity are presented, however, even in28

its approach there is no clarity when considering the critical points. De Sousa Vieira,29

M. (1999) assumes the earthquake model from a different perspective that considers Chaos30

theory, nevertheless, there is no type of consideration regarding the friction dependence31

on the relative velocity. In the article by Carlson, J. M., & Langer, J. S. (1989) taking32

into account the characteristics presented in the Burridge, R., & Knopoff, L. (1967) model,33

the dependence of the relative velocity with respect to the friction force leads to simi-34

lar considerations that leave aside the critical points. Later, Karnopp, D. (1985) improves35

the experiments and simulations made by the previous authors, reaching results that are36

in some sense inconclusive. However, it should be noted that their conclusions are based37

on an empirical approach and that is why it is difficult to agree or rule out the validity38

of the different reasonings.39

A later article by Galvanetto, U. (2002) reconsiders the characteristic form of fric-40

tion but the motion equation leaves aside the physical phenomenon around critical points.41

More recently Awrejcewicz, J., & Olejnik, P. (2005) reviewed the differents friction mod-42

els, including the one presented in Burridge, R., & Knopoff, L. (1967), however, the dis-43

continuity around the critical points are neglected.44

In these circumstances, taking into account the high complexity estimating any type45

of viscosity, we have opted for the application of a tool of a completely theoretical na-46

ture. Our intention is to use the Elementary Catastrophes Theory in order to obtain rig-47

orously the friction behaviour within the Newton’s viscosity segment of the relative ve-48

locity domain where, in our modest opinion, unfortunately, an important part of more49

objective information has remained lacking or lost. All this came to the surface when50

we during the analysis of the fig.13 of the first “founding” article have detected a non-51

compliance error at the limits of the resistance function values. The catastrophes the-52

ory is part of the (semi-)qualitative theory of the nonlinear complex systems (Thom, R.53

(1975), Mathematical Models of Morphogenesis, (1974)). There it is considered how mi-54

nuscule (even infinitesimal) external perturbations change the behavior of a specific sys-55

tem (no matter its nature) within certain critical circumstances (Zeeman, E. C. (1976)).56
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The strong conviction that the Catastrophes Theory in this case is applicable, is57

based on an epistemological point of view, similar to the justification used when it is about58

the Statistical Mathematics handling i.e., when one has to deal with large numbers. In59

others words we agree to take that, the mathematics, in general, reflects the objective60

laws of the nature and therefore, if we have a situation where a certain classification the-61

orem allows only a strongly determinate set of options, the last is also valid in the “real62

life” which in the present context is the geological and geophysical sciences.63

2 The total (“all-inclusive”) friction formula64

In the Burridge, R., & Knopoff, L. (1967) article it is used the viscosity function65

F (v) that includes all the effects of the between stratum resistance (although immedi-66

ately below fig. 13 in the text a symbol F ∗ is inserted apart from F ). Following the con-67

cepts of this article, we will split the function’s graph by three branches (the symbols68

−∞ and ∞ signify its natural finite limits)69

F (v) =


F−(v)

f(v)

F+(v).

(1)

Which are as follows: the left part that matches the expression used in the mentioned70

article (with its argument between −∞ and −H, see our fig.1):71

F−(v) =
B

1−A(v +H)
− Ev, (2)

the function f(v) = f(v;α) = v3−αv that represents the simplest, so-called fold catas-72

trophe (Bröcker, T. (1978)) and which velocity domain is [−H,H] being α a positive num-73

ber and finally, the right part, which also matches the expression used in the cited ar-74

ticle (of course, its argument belongs to the interval locked between H and ∞, see again75

our fig.1)76

F+(v) = − B

1 +A(v −H)
− Ev. (3)

Here A, B, E, and H are certain positive constants which values can be found empiri-77

cally. In that, is important underline the same branches dimensions of F: speed cubed.78

Further, always when we refer to the two figures in this article we will use the adjective79

“our”, without mentioning anything else - this are figures in the Burridge, R., & Knopoff,80

L. (1967) article while, the graphics, coming from other sources, will be cited normally.81

3 The Catastrophe Theory correction82

According to the top graph of the fig.11 it is presented the simple law of friction83

without seismic radiation, with instability at zero velocity where there is an “instanta-84

neous” and directly jump from B to −B. As this is unrealistic, the bottom part of the85

same figure presents a situation where the jump is already indirect: at v = 0 the fric-86

tion first goes up (to B), then goes down (to −B), and, finally, it rises to a certain value.87

But this is even less acceptable than the above. Let us remember this behaviour to com-88

pare it later with the borderline case results to which it leads our proposal.89

In the above mentioned Burridge, R., & Knopoff, L. (1967) article (and in other90

ones too), one can read about the potential energy: ”. . . when all the springs are stretched91

so that the masses are all on the verge of instability. . . any trigger applied to the system92

will cause a large shock to take place. . . ” which means, that there, there are all the con-93

ditions to be applied the Elementary Catastrophes Theory - a sudden response during94

the little by little continuous perturbations increasing. We are going to take advantage95
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of the well-known principle of simplicity by using the simplest known elementary catas-96

trophe – the fold catastrophe (Bröcker, T. (1978)). Graphically, after all the three branches97

of the total resistant function (1) have been assembled, we obtain the following figure:98

Figure 1. Example of a total resistant function graph , with A = 1, B = 2, E = 0.5, H =

1.3247, α = 3.76449027.

In order to achieve the analytical construction let us sew the three branches of F (v)99

at its two joining points −H and H, see the equation (1), (2), and (3):100

F−(H) = f(−H), f(H) = F+(H). (4)

And after to executing the calculations we obtain:101

B + EH = −H3 + αH ⇔ H3 − αH = −B − EH. (5)

Because in Classical Physics it is settled that all the auxiliary expressions with phys-102

ical sense are differentiable at least once time, we iron the two joints of the graph (see103

our fig.1):104

F
′

−(−H) = f
′
(−H), f

′
(H) = F

′

+(H), (6)

and this gives us respectively:105

BA− E = 3H2 − α⇔ 3H2 − α = BA− E. (7)

From the equation (7), we can express directly our unique co-variable i.e. the per-106

turbation α = 3H2 + E −BA. Despite, it easy to see, that, the total resistance func-107

tion F = F (v) has a continuous first derivative, it cannot be polished more, however,108

it is not necessary either according to the well-known theorem of existence and unicity109

of the ordinary differential equations.110

Multiplying the equation (7) by H and subtracting it from the equation (5) we get:111

−2H3 = −B −BAH. (8)

That is, for H we have the following cubic equation:112
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2H3 −BAH −B = 0. (9)

Its unique real solution according to the Cardano procedure is:113

H =
1

2

 3

√√√√2B

(
1 +

2

√
1− 2BA3

27

)
+ 3

√√√√2B

(
1− 2

√
1− 2BA3

27

) > 0. (10)

The other two roots are conjugated complex numbers and that is why we are going to114

abandon them. It is obvious that there are limitations on A and B (the discriminants115

of a real square root are non-negative):116

BA3 ≤ 27

2
. (11)

The above cubic equation allows us to deduce that in this case, the parameter α117

will always be positive; in fact B > 0 then from eq.(9) BA−2H2 < 0 and hence 3H2 >118

BA. Using the existence of first derivatives we can easily find the coordinates of the four119

extremities of our curve. These are120

v−,min
+,max

= ∓

(
H − 1

A
+

√
B

AE

)
, F−,min

+,max
= F

(
v−,min

+,max

)
= ±

[
E

(
H − 1

A

)
+ 2

√
BE

A

]
,

(12)

and for the “global” extremities (watch carefully our figure 1):121

vmax
min

= ∓
√
α

3
, Fmax

min
= F

(
vmax

min

)
= f

(
vmax

min

)
= ±2

√(α
3

)3
. (13)

A look at the fig. 11 of the analyzed article, leads us to the following speculation around122

the error that we observed in the fig.13 ibid. If on our fig.1 we carry out a horizontal com-123

pression eliminating thus the velocity interval presented by the fold catastrophe, we will124

obtain the following graph (see fig.2):

Figure 2. The borderline case of our fig.1 (the argument here is unimportant).

125

The one that explains the not elegant appearance of the vertical in v = 0 segment126

between fmax and F−,lim (as well as the one between F+,lim and fmin) in other authors.127

So in the diploid form of the graph (fig.13) the maximal value (at low speeds) is B (the128
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error) and not B+EH; in all probability, it is (implicitly) admitted by the authors that129

our fmax (they do not introduce it but, there must be one like this) coincide with B+130

EH of the fig.11 and for some reason must be removed.131

Here is the place to find out what happens in the bifurcation values surroundings132

α = 0. The point is that, because the catastrophe function behaviour is local, the branches133

F− and F+ are not always presented by the formulae (2) and (3). Actually, the eq.(11)134

indicates the region of its validity. Anyway, the respective curve of the total resistance135

“distributes” itself along the abscissa.136

4 Conclusions137

The advantage of our approach consists of the possibility to consider the real be-138

havior of the seismic viscosity around the critical points without resorting to any kind139

of (particular) modeling. It is very significant that, if we do a velocity (the last one is140

relative) inversion in the freehand graphs of the Karnopp, D. (1985) article, namely a)141

and b), we will see exactly a caricature of our graphs, 2 and 1 respectively, obtained based142

on a rigorous theory.143

In this order of ideas, we dare to say that maybe the time has come to redo Bur-144

ridge and Knopoff’s experiment, but this time using the latest in 21st-century technol-145

ogy: multichannel NATIONAL INSTRUMENTS interfaces with the powerful software146

LabVIEW RT. This would allows to carry out an appropriate acquisition of data in real-147

time which could later be “delayed in time” and through a computer to compare our graph148

with the experiment in the low speeds domain.149

However, we think the best benefit that could be obtained through this approach150

consists of the real possibility of predicting earthquakes based on the real time - behav-151

ior - analysis of the friction between v−,min and vmax as well as between vmin and v+,max.152
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