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Abstract

During the early to mid-Holocene vegetation expanded to cover much of the present-day Sahara. Although driven by a well-

understood difference in the orbital configuration, general circulation models have generally failed to simulate the required

rainfall increase. One possible explanation is the presence of systematic biases in the representations of atmospheric convection

which might also impact future projections. We employ a Bayesian method to learn from an ensemble of present day and mid-

Holocene simulations that vary parameters in the convection, boundary layer and cloud schemes. The model can reproduce the

‘Green Sahara’ rainfall if mixing between convective plumes and the environment is increased in the upper troposphere relative

to lower down. This does not appreciably impact the present day simulation, meaning that the palaeoclimate reconstructions

are able to narrow constraints on suitable parameter ranges. This suggests that other uncertain components of climate models

could be targeted in this way.
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Key Points:9

• A wide range of proxy data agree in showing a mid-Holocene ”green Sahara”.10

• General circulation models (GCMs) struggle to simulate this.11

• Bayesian tuning of a GCM succeeds for the mid-Holocene, finding the improve-12

ment has little impact on the present-day simulation.dual13
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Abstract14

During the early to mid-Holocene vegetation expanded to cover much of the present-15

day Sahara. Although driven by a well-understood difference in the orbital configura-16

tion, general circulation models have generally failed to simulate the required rainfall in-17

crease. One possible explanation is the presence of systematic biases in the representa-18

tions of atmospheric convection which might also impact future projections. We employ19

a Bayesian method to learn from an ensemble of present day and mid-Holocene simu-20

lations that vary parameters in the convection, boundary layer and cloud schemes. The21

model can reproduce the ’Green Sahara’ rainfall if mixing between convective plumes22

and the environment is increased in the upper troposphere relative to lower down. This23

does not appreciably impact the present day simulation, meaning that the palaeoclimate24

reconstructions are able to narrow constraints on suitable parameter ranges. This sug-25

gests that other uncertain components of climate models could be targeted in this way.26

Plain Language Summary27

General circulation models are complex computational representations of the Earth’s28

climate system. Run on supercomputers, these can be used to predict future climate change.29

Past climate changes can also be used to test climate models. One example of this is the30

greening of the Sahara around 11,000 to 4,000 years ago. Almost all models fail to cap-31

ture the amplitude of the so-called ’Green’ Sahara. One possible reason for this is that32

small scale features such as clouds and storms in the atmosphere must be approximated33

using parametrizations. These parametrizations are poorly constrained by available cli-34

mate observations and they thus potentially introduce errors in predictions of past or35

future climate changes. In this work we show that the greening can be simulated accu-36

rately when the parametrizations are tuned not only with present day observed climate37

fields, but additionally with the past green Sahara state. This suggests that climate model38

parametrizations may be significantly improved and uncertainties reduced if climate states39

from the past are used in developing climate models.40

1 Introduction41

The hydrological cycle response in a warming climate will be a major driver of fu-42

ture socio-economic impacts (Hoegh-Guldberg et al., 2013). Projections from general cir-43

culation models (GCMs: the most detailed and physically-based models of the global cli-44

mate system) consistently predict a warmer future almost everywhere, but precipitation45

projections are much more divergent, especially in the tropics (Chadwick et al., 2016;46

Allen & Ingram, 2002; Kent et al., 2015; Rowell et al., 2016).47

Much of the uncertainty in future precipitation change is related to processes as-48

sociated with clouds and convection. In reality these physical processes occur over spa-49

tial scales up to 10s of km. In contrast, most GCMs have a resolution of around 150-200 km.50

Processes such as convection must therefore be parametrized, but all parametrizations51

are approximations, and the structure of many parametrizations is unavoidably far sim-52

pler than reality, leaving no way to choose a parameter value a priori or directly from53

observations (e.g. Stensrud, 2007)54

Palaeoclimate changes can provide valuable ’out-of-sample’ tests for modelling the55

climate system (Valdes, 2011; Schmidt et al., 2014; Harrison et al., 2015). This is because56

past climate states provide examples of both fast and gradual changes that are larger57

in amplitude than historical climate changes and are therefore more comparable in am-58

plitude to expected future climate change. To be useful in this way, a palaeoclimate state59

or transition must be associated with a good understanding of both the underlying forc-60
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ings (e.g. a change in greenhouse gas levels or a change in orbit) and the resultant im-61

pacts in the climate system.62

The early to mid-Holocene (around 11,000-4,000 years before present) is frequently63

highlighted as such a period (Braconnot et al., 2012; Harrison et al., 2015; Biasutti et64

al., 2018). This is because the ultimate forcing during this time was a very well-understood65

change in the configuration of Earth’s orbit (Berger & Loutre, 1991). The resulting in-66

crease in northern hemisphere summer insolation drove enhanced monsoon circulation67

and precipitation (Kutzbach & Street-Perrott, 1985). This led to a so-called ’Greening’68

of the Sahara (e.g. Claussen et al., 2017). This is evidenced by the development of sa-69

vanna or steppe-like vegetation (Hély et al., 2014), expansion of lakes and rivers (Ko-70

hfeld & Harrison, 2000; Skonieczny et al., 2015), a reduction in dust deposited over the71

Atlantic (de Menocal et al., 2000; Williams et al., 2016) and the presence of neolithic set-72

tlements and domesticated animals (Manning & Timpson, 2014).73

Pollen and macro-fossil evidence suggests that annual mean precipitation increased74

by 1.1 mm day−1±0.1 (Bartlein et al., 2011) relative to the present day (mean±standard75

error for 15-30◦N). There is some uncertainty on the spatial pattern of change, with ear-76

lier compilations of pollen suggesting a relatively uniform vegetation change (Hoelzmann77

et al., 1998), while more recent datasets suggest greater changes in vegetation in the South78

compared with further North (Hély et al., 2014). The pollen samples have been integrated79

with a vegetation model to infer climate, showing the same overall precipitation increase80

(Wu et al., 2007). A larger rainfall increase of around 1.5 (0.9-2.8) mm day−1 has been81

inferred from marine core leaf-wax hydrogen isotope ratios (Tierney et al., 2017). De-82

spite these uncertainties, all lines of evidence agree on a minimum increase in precipi-83

tation of at least 0.7 mm day−1(Joussaume et al., 1999) that enabled vegetation to grow84

across much of the present-day Sahara (Ritchie & Haynes, 1987; Street-Perrott et al.,85

1990; Pachur & Holzmann, 1991; Jolly et al., 1998; Peyron et al., 2006).86

All GCM simulations driven with the orbital configuration for 6,000 years before87

present (6ka BP), simulate an increase in precipitation, but almost always much smaller88

than these pollen observations imply over the Sahara itself (Joussaume et al., 1999; Bra-89

connot et al., 2007, 2012; Brierley et al., 2020). This is also true when dynamic vegeta-90

tion and/or dynamic dust processes are enabled (Perez-Sanz et al., 2014; Harrison et al.,91

2015; Hopcroft & Valdes, 2019). In contrast, when significant changes in the land sur-92

face albedo and/or significant reductions in dust aerosols are specified, sufficient rain-93

fall can be simulated (e.g. Levis et al., 2004; Skinner & Poulsen, 2016; Pausata et al.,94

2016).95

Saharan dust particles are less absorbing than is prescribed in most climate mod-96

els which tend to use outdated radiative properties (Hopcroft & Valdes, 2019; Albani &97

Mahowald, 2019). A significant dust reduction during the mid-Holocene probably did98

not appreciably enhance convective precipitation (Hopcroft & Valdes, 2019). Moreover,99

the reduction in dust loading would have altered cloud formation through dust-cloud in-100

teractions, and this has been shown to reduce stratiform precipitation (Thompson et al.,101

2019). Land-surface feedbacks can efficiently drive the monsoon northwards (Texier et102

al., 2000; Levis et al., 2004; Skinner & Poulsen, 2016) but there is little agreement about103

how the ’greening’ of the Sahara should be configured in models (Street-Perrott et al.,104

1990; Texier et al., 2000; Hopcroft et al., 2017; Lu et al., 2018; Chen et al., 2020). It is105

thus not trivial to judge whether or not a sufficient precipitation enhancement is achieved106

for the right reasons in model simulations of the mid-Holocene. The model-data dispar-107

ity over North Africa has persisted for several decades across multiple GCMs (Biasutti108

et al., 2018). This suggests systematic biases that either require more detailed physical109

representations or a different approach to parameter choices.110

In this work we use the atmospheric component of the coupled GCM HadCM3 (Pope111

et al., 2000; Gordon et al., 2000; Valdes et al., 2017) which also does not simulate a ’green-112
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ing’ of the Sahara under mid-Holocene boundary conditions (Braconnot et al., 2007). We113

use this GCM to evaluate what the model failure may reveal about the representation114

of precipitation in GCMs and to compare the parametric constraints from present-day115

and mid-Holocene climatic conditions.116

2 Methods117

2.1 General circulation model and boundary conditions118

We use the Met Office Hadley Centre atmosphere model 3 (HadAM3) with the MOSES119

2.1 land surface scheme and prescribed vegetation cover (Pope et al., 2000; Essery et al.,120

2003; Valdes et al., 2017), specifically HadAM3B-M2.1aN. This GCM has horizontal res-121

olution of 3.75×2.5◦ (longitude-latitude) with 19 vertical levels. HadAM3 uses the mass-122

flux convection scheme by Gregory & Rowntree (1990) which is comparable in complex-123

ity to schemes used in several other GCMs (Stensrud, 2007; Maraun & Widmann, 2018).124

Relative to the published configuration of the model (here labelled ORIG), a revised (REV)125

model version was developed here that includes a humidity-dependence of the mixing126

and forced detrainment from convection following (Derbyshire et al., 2011) as implemented127

in more recent Hadley Centre models.128

The pre-industrial setup follows that of Valdes et al. (2017) with prescribed observed129

present-day vegetation coverage (Loveland et al., 2000) and pre-industrial levels of green-130

house gases (CO2, CH4 and N2O). We use 1981-2010 climatological sea-surface temper-131

atures (SSTs) and sea-ice from HadISST (Rayner et al., 2003, updated to 2010). For the132

mid-Holocene, the orbital parameters are modified for the conditions of 6ka before present133

(BP) (Berger & Loutre, 1991). Sea surface temperatures (SST) and sea-ice are modi-134

fied by adding the 6 ka - pre-industrial difference, as simulated with the coupled model135

HadCM3B-M2.1aD, to the pre-industrial HadISST climatology. The simulations setup136

is summarised in table S1.137

Today the Sahara has a surface albedo of 0.35 (Loeb et al., 2012). A reduction in138

albedo would strengthen the monsoon (Charney, 1975; Street-Perrott et al., 1990; Tex-139

ier et al., 2000; Boos & Storelvmo, 2016). The mid-Holocene ’greening’ involved the north-140

wards expansion of grasses and shrubs (Jolly et al., 1998; Hély et al., 2014). Satellite ob-141

servations show that these biomes have an albedo of 0.17 - 0.3 when precipitation is in142

the range reconstructed for the ’greening’ (i.e. 1.1 mm day−1 Bartlein et al., 2011), see143

Supporting Information S1 and figure S1. The Sahel which is at the periphery of the present-144

day West African monsoon is in the upper part of this range (0.2-0.3). This may present145

the best analogue for the mid-Holocene ’greening’. This higher end is also consistent with146

mid-Holocene simulations with dynamic vegetation and soils (e.g. Claussen & Gayler,147

1997; Vamborg et al., 2011). Many model studies have prescribed a value at the very lower148

end of 0.15 (Levis et al., 2004; Pausata et al., 2016; Skinner & Poulsen, 2016; Chandan149

& Peltier, 2020) which is typically seen in regions of higher rainfall of 2.5-3.0 mm day−1.150

We do not use the HadCM3B-M2.1aD dynamic vegetation scheme as it is overly151

sensitive to arid conditions (Hopcroft et al., 2017). Instead bare soil in the Sahara re-152

gion (from 10-35◦N, 30◦W-50◦E) is replaced with grasses and shrubs with a total frac-153

tional coverage of 50%. This produces a surface albedo of 0.27 relative to 0.31 in the pre-154

industrial simulation. This a relatively conservative change for the period since it is at155

the upper end of the range discussed above.156

2.2 Perturbed parameter ensemble157

We introduce a new variable E into HadAM3, which controls the vertical depen-158

dence of entrainment and mixing detrainment - the mixing of environmental air into the159

convecting air, and of convecting air into its environment. By default, the entrainment160
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rate decays with altitude in proportion to pressure. This was intended as an ad-hoc rep-161

resentation of larger clouds, which proportionally mix less with their surrounding, reach-162

ing higher (Gregory & Rowntree, 1990). With the new parameter E we relax this as-163

sumption. Increasing E increases the upper troposphere entrainment values and reduces164

those near to the land surface. A value of zero returns the default proportional depen-165

dence on pressure (see Supporting Information S2).166

We configured a 150-member perturbed parameter ensemble using the REV con-167

figuration of HadAM3. Eleven GCM parameters within the convection, boundary layer168

or large-scale cloud schemes, including three new parameters. These are E which con-169

trols the vertical profile of entrainment and detrainment, rdet which sets the sensitivity170

of forced detrainment to the buoyancy gradient (Derbyshire et al., 2011), and αdet which171

sets the sensitivity of detrainment to relative humidity (Derbyshire et al., 2011). The172

11 model parameters are assigned different values globally leading to 150 paired ensem-173

ble members of pre-industrial and mid-Holocene simulations. The parameter definitions174

and ranges used are given in table S2 and illustrated schematically in figure S2. The eval-175

uations are selected using a Latin hypercube method (McKay et al., 1979), which dis-176

tributes the parameter samples optimally across the 11-dimensional state space.177

2.3 Statistical modelling and parameter tuning178

We used a Gaussian process emulator (e.g. Kennedy & O’Hagan, 2001) to construct179

a statistical representation of the perturbed parameter ensemble of GCM simulations.180

Emulators have been extensively used in analysing complex numerical models like GCMs181

(Rougier et al., 2009; Sexton et al., 2012; McNeall et al., 2016; Edwards et al., 2019). The182

emulator represents some output as a linear function of the input parameter values com-183

bined with a Gaussian process (Roustant et al., 2012). In this way the emulator inter-184

polates in multi-dimensional parameter space to predict the GCM response at any com-185

bination of input parameter values. Further details are given in Supporting Information186

text S3.187

We use a Bayesian method (see Supporting Information text S3.2) to update the188

model parameters based on the mid-Holocene palaeoclimate reconstructions. In a Bayesian189

method we compute a posterior probability distribution function (PDF) on the model190

parameters based on the prior PDF and the likelihood (e.g. Rougier, 2007). The prior191

is taken as the current model version and the likelihood quantifies the performance of192

the GCM for selected climate outputs such as simulated precipitation. Thus we condi-193

tion the model parameters with the present-day observed climate variables and option-194

ally the mid-Holocene rainfall increase.195

The posterior PDF must be approximated using a Markov chain Monte Carlo method196

(Gilks et al., 1995) and since the MCMC algorithm requires many thousands of itera-197

tions, we use the emulator in place of the full GCM. We perform this process twice. Firstly198

including four observational targets for the present day (table S3) and secondly adding199

to this the mid-Holocene absolute precipitation over North Africa inferred from pollen200

data (Bartlein et al., 2011). Thus we derive a new parameter set suitable for both present201

and mid-Holocene conditions, which is different to Su & Neelin (2005) who used differ-202

ent parameter sets for the two time periods.203

3 Results204

3.1 Sampling convection, clouds and boundary layer within a global model205

The resultant precipitation anomalies for the 112 simulations that completed 50206

model years are averaged over North Africa (20◦W-30◦E by 15-30◦N) in figure 1. This207

region of North Africa includes many of the fossil pollen sites. All model simulations over-208
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estimate present-day precipitation in Africa and in North Africa in particular. This is209

a systematic bias in HadAM3 (Valdes et al., 2017). Part of which is due to an under-210

estimation of the soil albedo in the Sahara region in the model. The simulated differ-211

ence mid-Holocene minus pre-industrial in precipitation in this region ranges from 0.7 mm day−1
212

to 2.6 mm day−1 for JJAS, when most precipitation falls. Many ensemble members with213

the pre-industrial precipitation similar to the original (around 0.5 mm day−1), have much214

higher increases of about 2.0 mm day−1 for the mid-Holocene. The weak correlation be-215

tween the two axes in figure 1 shows that different factors influence precipitation in the216

pre-industrial compared with the precipitation difference between the two time periods.217

The parameter dependence of the mid-Holocene precipitation anomaly is shown218

in figure S3. The most obvious relationship is with E, for which higher values result in219

larger changes. E controls the vertical profile of entrainment and detrainment, which is220

the rate of mixing of convective clouds with the surrounding air masses. In many mod-221

els entrainment decays with altitude. High values of E increase the upper level entrain-222

ment and reduces it near the land surface. This produces a wetter mid-Holocene in North223

Africa.224

The Gaussian process emulator is used to calculate influence of varying each pa-225

rameter value individually on the simulated precipitation change over North Africa for226

the mid-Holocene. The result of this is shown in figure 2 and the emulator skill is eval-227

uated in figure S4. We find that E is the dominant parameter. We examined the param-228

eter dependence of the West African monsoon in the pre-industrial ensemble members229

(over 5-15◦N) (figure S5). This shows that the parameters which exert the strongest con-230

trol on precipitation in this monsoon region (qini, ct and αdet) are not the same as for231

the mid-Holocene anomaly relative to the pre-industrial simulation (E, F, Tini and qini).232

3.2 Mechanisms of enhanced mid-Holocene precipitation233

Given the profound effect of changing E on the mid-Holocene North African pre-234

cipitation, we ran a simulation with only one change from REV: increasing E from its235

default value of 0 to 0.25. Figure 3a shows the percentage difference in the mid-Holocene236

minus pre-industrial (6kaGS-0ka) precipitation anomalies for the pair of simulations with237

E=0.25 compared to the pair with E=0. With E=0.25 the precipitation anomaly is gen-238

erally larger across North Africa and is nearly twice as large in the North West (figure239

3a). The latitude of the precipitation maximum moves northwards by around 2.5-5◦ com-240

pared to the E=0 simulation (not shown). It produces a more diffuse precipitation band241

during JJAS which pushes the periphery of the monsoon further into the dry interior.242

A key diagnostic of the convection scheme is the updraught mass-flux. The sim-243

ulated mean convective updraught over North Africa decreases fractionally much more244

with height than the mean over the wet regions of the tropics as a whole. This is pre-245

sumably because of dilution by the extremely dry environment in North Africa, which246

makes it harder for moist convective plumes to persist. In all model versions the increase247

in rainfall over North Africa at 6 ka BP is accompanied by the updraught mass flux weak-248

ening lower down and strengthening aloft (figure 3b), becoming more like tropical moist249

convection elsewhere in the tropics. The mid-Holocene boundary conditions lead to less250

dilution of convective plumes low down, so that those that reach their lifting condensa-251

tion level (LCL: indicated by vertical lines in figure 3b) are more vigorous and end up252

penetrating higher overall.253

The direct effect of increasing the parameter E, i.e. decreasing the entrainment rate254

near the surface and increasing entrainment rate higher up, is to amplify these mass flux255

changes for the mid-Holocene relative to the pre-industrial (figure 3b), so that the REV(E=0.25)256

case has a lower mass-flux near the surface than the REV model version, and a stronger257

updraught mass flux above the lifting condensation level (LCL: indicated by vertical lines258

in figure 3b). Interactions between convection and its environment mean the net effect259
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can be very different in other regions (figure 3a), but over North Africa these changes260

reinforce each other to produce larger amplitude massflux changes, and a stronger rain-261

fall increase at 6 ka BP (figure 3d).262

In tandem with this, the circulation (zonal wind) and humidity anomalies associ-263

ated with heavier downpours in the Sahara are different when E is given a higher value264

(figure 3c and 3d). For E=0, wetter days north of 15◦N are associated with a strength-265

ened tropical easterly jet (TEJ) and a slightly weakened Africa easterly jet (AEJ), as266

observed (Nicholson, 2009). African Easterly Waves (AEWs) move along the jet and con-267

tribute precipitation to the North (Claussen et al., 2017) and this is well represented in268

HadAM3 (Taylor et al., 2002). For E=0.25, the same precipitation increase is achieved269

with a 20% smaller increase in the TEJ. This suggests that convection is more effective270

in this model configuration and this partly explains the increased precipitation response271

for E=0.25. Some of these downpours are also associated with tropical plumes (Knip-272

pertz, 2003), especially in the months of August-October (Skinner & Poulsen, 2016; Dallmeyer273

et al., 2020). When E is increased to 0.25, plumes contribute more precipitation in the274

region from 20-35◦N despite relatively similar mean climatologies of large-scale circula-275

tion and humidity.276

3.3 Learning from the model-data mismatch277

The mid-Holocene pollen quantitative precipitation reconstruction over North Africa278

gives an annual-mean precipitation increase of 1.1 ± 0.1 mm day−1 (Bartlein et al., 2011)279

relative to the present day. We use the annual mean reconstruction and model outputs280

in a probabilistic formulation to optimise the GCM so that it is consistent with the pollen-281

based precipitation reconstructions and hence the widespread environmental evidence282

for an invigoration of the hydrological cycle.283

The posterior PDFs on the 11 parameters are shown in figure S6. Two cases are284

considered where the second only differs with the inclusion of the mid-Holocene precip-285

itation target. For the mid-Holocene the algorithm favours high E because as discussed286

above, it has an extremely strong impact on the response to the mid-Holocene insola-287

tion. The emulator predicted mid-Holocene precipitation increase is very different be-288

tween the two cases, showing sensitivity of the system to parameter combinations and289

also that the optimisation against present-day observations does not guarantee an im-290

provement for the mid-Holocene.291

3.4 New model version292

One optimised parameter set derived from the PDFs on the model parameters (fig-293

ure S6 and tables S4 and S5) was used in new pre-industrial and mid-Holocene GCM294

simulations and is denoted REVopt. In this we only changed parameters from their orig-295

inal GCM values where there is stronger preference posterior PDF. Whilst the choice of296

parameters which underline REVopt is based on the posterior PDF sampling, it would297

be more consistent with the Bayesian paradigm to think in terms of the probability dis-298

tribution on the parameters, rather than to focus on any single parameter set. However,299

given computational limitations and to simplify the presentation of the results we mostly300

focus on the REVopt parameter set.301

This simulation is compared with the ORIG and REV models in figure 4. The dif-302

ference between the two controls (ORIG and REV) is due to changes to the detrainment303

parametrization following Derbyshire et al. (2011). Figure 4(c) shows that in REVopt304

the precipitation anomaly over North Africa is approaching double that in the ORIG sim-305

ulations for JJAS, and the annual mean anomaly is also 67% larger. There is a large re-306

gion of precipitation increase across North Africa and Arabia and Northern India. This307

shows that the statistically-based parameter changes also work when re-introduced into308
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the GCM. Crucially, the present-day performance of REVopt is very similar to ORIG309

and REV for both temperature and precipitation (Supporting Information text S4 and310

figures S7 and S8). This means that the improvement for the mid-Holocene has not sig-311

nificantly altered the present-day simulation.312

4 Discussion313

The strong precipitation increase during the early- to mid-Holocene in North Africa314

presents a unique challenge to climate simulations of tropical precipitation. In this per-315

turbed parameter study, we find that parameters controlling the pre-industrial clima-316

tology of precipitation are different from those that determine the anomaly under a cli-317

mate change scenario. The Bayesian approach demonstrates that a modified vertical pro-318

file of convective entrainment can significantly improve the simulation of the mid-Holocene319

North Africa despite having little impact the simulation of the present day.320

Like any model, HadCM3 has biases and simplifications. For example, HadCM3321

suffers from having too little, too optically bright cloud cover (Massey et al., 2015), a322

common problem in CMIP5 models (Nam et al., 2012). It also has too much precipita-323

tion over Africa and too little over South America, but does not suffer from a double ITCZ324

bias or weak ENSO variability, which are common problems in many GCMs. Overall its325

performance compared to observations is typical of GCMs used in recent intercompar-326

isons (Valdes et al., 2017).327

Structural limitations mean that many biases could be corrected by varying model328

parameters, and there are many more than the 11 we varied. Also, the existence of com-329

pensating errors means that tuning that improves one bias can actually exacerbate an-330

other. Despite this, in the REVopt case we significantly improved the mid-Holocene pre-331

cipitation in comparison with reconstructions, without affecting the simulation of the present332

day state. It is possible that with a more comprehensive list of parameters, e.g. of the333

order of 20-50, some of these other biases may be reduced.334

Tropical precipitation in GCMs has recently been improved through the use of adap-335

tive convective entrainment, whereby local entrainment rates reduce following convec-336

tive activity. On a local scale this could produce a similar effect as in our study, reduc-337

ing entrainment in the lower troposphere, following precursor convective plumes (Mapes338

& Neale, 2011; Willett & Whitall, 2017). Future work should consider how such dynamic339

entrainment parametrizations (e.g. Mapes & Neale, 2011; Hohenegger & Bretherton, 2011)340

could similarly improve modelling of the mid-Holocene and whether this is consistent with341

our statistically-derived model changes.342

Convection-permitting atmospheric model simulations, with high resolution and343

no convection parametrization, have highlighted further significant improvements when344

convection parametrizations are deactivated (Marsham et al., 2013; Birch et al., 2014;345

Kendon et al., 2019; Finney et al., 2019; Berthou et al., 2019; Pante & Knippertz, 2019).346

This includes a more realistic diurnal cycle of precipitation (Marsham et al., 2013), im-347

proved simulation of wet spells (Berthou et al., 2019; Kendon et al., 2019) and of cloud348

cover and humidity (Pante & Knippertz, 2019). Making this transition is not without349

drawbacks and substantial model errors can emerge (Pante & Knippertz, 2019) that are350

difficult to eliminate because of the high computational cost of test simulations. Future351

work could compare convection-permitting simulations and ensembles of GCM simula-352

tions like those studied here for both present day and palaeoclimate conditions to iden-353

tify further ways to improve GCM parametrization schemes.354
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5 Conclusions355

Most climate models are developed and calibrated against modern climate. We have356

shown that there are multiple parameter sets which allow for a good simulation of the357

present day conditions, but that only a subset of these are also able to satisfy past cri-358

teria. This example provides a new quantitative demonstration of how a palaeoclimate359

state may provide information of relevance to uncertainty in simulating future precip-360

itation change. Palaeoclimate may therefore be a significantly undervalued source of ad-361

ditional information for informing the parameter values and parametrization choices in362

GCMs as it has rarely been used in this way, see examples by Hopcroft & Valdes (2015)363

and DiNezio et al. (2016). Well documented climate states in the past thus may have364

the potential to be used in model development and this approach can include other im-365

portant palaeoclimate changes.366
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Figure 1. ORIG (red), REV (blue) and ensemble (grey) simulated JJAS precipitation in

North Africa (20◦W-30◦E, 15-30◦N) against the simulated mid-Holocene minus pre-industrial

precipitation (mm day−1) change. The observed precipitation in this region from CRU (Har-

ris et al., 2014) based on years 1961-1990, is indicated by the shaded grey bar. The impact of

using present-day versus pre-industrial precipitation observations is likely to be small and less

important than differences due to model biases and due to significant spatial gaps in the early

instrumental observations.
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Figure 2. Emulator prediction of JJAS mean precipitation change (mid-Holocene minus pre-

industrial) over 15-30◦N by 20◦W-30◦E. Dependence of the JJAS precipitation difference on each

individual model parameter. In each panel that parameter is varied across the range, whilst the

remaining 10 parameters are held at their default values. The uncertainty ranges (± 1 standard

deviation and the 95% intervals) are as reported by the emulator and collapse to zero at the

point in parameter space at which the climate model has been run before. These single parame-

ter sampling evaluations are from the emulator based on all members of the ensemble simulations

performed with the GCM. The error bars are a function of distance from points in state-space

that have already been evaluated with the GCM.
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Figure 3. a) relative difference in the mid-Holocene JJAS precipitation anomaly (6kaGS-0ka)

for REV model version E=0.25 minus E=0. (b) Mid-Holocene minus pre-industrial (6kaGS-0ka)

JJAS mean vertical profiles of updraught mass flux (hPa s−1). Horizontal lines show the lifting

condensation level for an undilute parcel of surface air for the mid-Holocene averaged over the

same domain. (c) and (d) The REV JJAS zonally averaged daily-mean anomalies of humidity

(shading: kgkg−1) and zonal wind (contour lines: ms−1) for wetdays (>4.0 mm day−1) for E=0

and E=0.25 respectively.
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Figure 4. Simulated Northern Hemisphere summer (JJAS) precipitation anomalies

(mm day−1): (a) ORIG (Valdes et al., 2017); (b) REV: the modified version used as a start-

ing configuration in this study; and (c) REVopt, the optimised version based on the probabilistic

approach. The mean simulated difference in JJAS precipitation (mm day−1) for North Africa in

the area of the box is given above each panel.
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