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Abstract

A large number of General Circulation Models (GCMs) are currently available for modelling the atmospheric conditions over

the Earth. However, there is a large variability in the future climate predicted by the available set of climate models. Hence, the

climate data introduces the most amount of uncertainty in the climate change impact assessment. Regional-scale climate change

impact studies based on these models may produce a wide range of possible impacts that becomes unusable for policymakers. A

robust GCM selection procedure is introduced in the current study to bring the uncertainty to a realistic range. The proposed

approach takes into account the process representation in the climate models by checking teleconnections in data along with

their ability to predict the regional climate in spatial and temporal scale. The interdependence between the climate models

are also accounted for in the proposed approach to avoid underestimation of uncertainty. The procedure is validated in the

Bharathapuzha River Basin, Kerala, India. The study considers 22 GCMs that participated in the Coupled Model Inter-

comparison Project-5 and 6 Regional Climate Models (RCMs) that are recommended for the Indian subcontinent. The climate

models BNU-ESM, CMCC-CM, GFDL-ESM2G, GFDL-ESM2M and MPI-ESM-MR are found to be performing well for the

prediction of both precipitation and temperature. The proposed climate model selection procedure can bring down the band

width of uncertainty from 376 mm to 162 mm in monthly rainfall prediction with a containing ratio of 44%. The downscaling

of the climate predictions can further increase the containing ratio by removing the systematic error. The bandwidth of

uncertainty has reduced from 10.82 K to 3.83 K in the prediction of minimum temperature and from 8.35 K to 4.52 K for

maximum temperature. The proposed GCM selection procedure provides more confidence in the predicted future climate since

regionally significant correlations between climate variables are preserved in the selected models. The model selection procedure

is validated for the period 2006-2018 with the observed climatic variables, and the selected models are found to be performing

well.
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MOTIVATION

Figure 1: Uncertainty in historical of simulation of monthly rainfall - Simulations from 22 climate models for the Bharathapuzha
basin in India

Large uncertainties exist in climate modelling - Lack of a complete understanding of processes that influence climate
and drive climate change, computational limitations, data availability

Earth’s climate has always been changing -Anthropogenic activities are accelerating the changes [1]

Climate Change - Seriously affects human life by changing water balance

Uncertainties in predicted impacts can lead to improper planning which can end up in catastrophic failures of the
designed system

Water Resources projects are usually long term projects and requires large capital - Mismanagement can
result in huge loss of time, capital and life

Important to quantify and reduce uncertainties in assessment of impacts of climate change on water balance - For better
adaptation plans [2]

Climate modelling contributes the largest amount of uncertainty in climate change impact modelling [3] [4]

Proper sub selection of a set of climate models can significantly reduce the uncertainty in the future climate used to
predict the impacts [5]

Climate models perform differently at different locations [6] - Different set of models will perform well for different
locations and therefore regional scale selection is significant

METHODOLOGY

Figure 2: Methodology proposed for selecting climate models for regional scale climate change impact studies

A climate model selection methodology is developed to reduce the uncertainty from climate modelling stage
in regional scale climate change impact studies. The methodology involves three stages:

1. Identification and removal of climate models with poor representation of regional climatic processes

Historically good performing models may not perform similarly in future if regionally relevant climate processes are not
properly represented in the model [7]

Global circulations in atmosphere and ocean links different locations across the globe [8]

Better representation of climate processes improves the ability of the models to perform in situations that it has not
encountered in the historical scenario [9]

Global scale teleconnections used are identified as an indicator for process representation. Teleconnections in GCM
simulated variables compared with obsetved teleconnections to identify poor models

On a regional scale, significant correlations exist between rainfall and temperature [10]. Lack of correlations between
predicted rainfall and temperature induces large uncertainties in predicted impacts [11] 

Regional scale process representation studied by comparing correlations between regional variables

Models that vary significantly from observed patterns are removed

2. Identification of models that can simulate the historical climate of the study area well

Performance based selection -  Dependant on performance index used [12]

Three performance indices suggested: NRMSE, RAE and PBIAS

Combine ranking from multiple performance indices using non weighted rank score [13]

Combine ranking for different variables using rank score, weighted for each variable using inverse of average coefficient
of variation for the simulation of that variable by multiple the total set of GCMs

Combine performance at different locations using group decision making approach [14]

3. Identification and removal of interdependent models

Multiple GCMs show dependence and this dependence results in addition of errors in the multi model
ensemble [15]

Mutual Information between model simulated variables is used to measure interdependence between climate
models [16] 

RESULTS - CASE STUDY

Figure 3: The Bharathapuzha river basin in India where the proposed methodology is applied 

The model selection methodology is applied for the Bharathapuzha river
basin and BNU-ESM, CMCC-CM, GFDL-ESM2G, GFDL-ESM2M and
MPI-ESM-MR are found to be the best performing models for the region

The Bharathapuzha river is the second largest river in Kerala, India and is the major source of water for the Palakkad,
Thrissur and Malappuram districts of Kerala [17].

The river is highly regulated with 13 major reservoirs along its span and provides irrigation water for large area [18].

Recent decades have seen the river run dry mainly in summer season [19] leading to lack of water in the region.

There is large variability in rainfall across the catchment with high rainfall towards the western regions of the catchment
and comparitivel lower rainfall towards the mountainous eastern region of the catchment.

The catchment can be divided into three regions based on the rainfall characteristics [20].

1. Checking process representation

The prominant season in the region is the Indian Summer Monsson (ISM) [21].

Indian Summer Monsoon Rainfall (ISMR) is affected by global oscillations like
El-Nino Southern Oscillation [22],

North Atlantic Oscillations [23] and

Indian Ocean Dipole [24] 

Global scale teleconnections exist between ISMR and Sea Surface Temperature [25] Mean Sea level Pressure [26] and
Zonal Wind Speed [27]

The historical teleconnections in data simulated from GCMs are checked using correlations and compared to
teleconnections in observed historical data.

Models that show different nature of correlation are removed.

CanCM4, CSIRO MK 3.6.0, FGOALS-g2, GFDL-CM3, GISS-E2-R,INM-CM4,IPSL-CM5A-LR, IPSL-CM5A-MR and MIROC-
ESM found to have different nature of teleconnecions

Figure 4: Comparison of teleconnections between ISMR and Mean Sea Level Pressure - An example of comparison of global
scale teleconnections

Correlations between GCM simulated historical rainfall and temperature over the region are compared to correlations
between historical observed rainfall and temperature for the region.

Models with differnet nature of correlation from observed are removed.

ACCESS 1.3 CESM1-BGC, CMCC-CESM, CMCC-CMS found to have different nature of correlation compared to observed

Figure 5: Correlation between regional climate variables over the Bharathapuzha catchment

2. Historical performance analysis

Multiple performance indices are used to rank climate models based on how well they can simulate rainfall and temperature over
the Bharathapuzha catchment.  

BNU-ESM, CMCC-CM, GFDL-ESM2G, GFDL-ESM2M and MPI-ESM-MR found to be best performing

Table 1: Climate models ranked in decreasing order of performance in simulating historical climate over the Bharathapuzha basin

3. Identification of interdependence

Models with high mutual information are interdependent and the poorer ranking one has to be removed.

For a model, mutual information factor with another model is developed as ratio of mutual information between the two
models and the mutual information of the model with itself.

All models show highest mutual information with BNU-ESM, but the mutual information factor is less than 0.5 so no models
removed.

Table 2: Interdependance among the better performing models checked using Mutual Information 

VALIDATION FOR THE CASE STUDY
Table 3: Reduction in width of simulation band for the basin after selecting the best performing climate models using the
proposed methodology

Figure 6: Simulation band for historical monthly rainfall over the river basin

Figure 7: Simulation band for future simulation of monthly rainfall ; RCP 4.5 Scenario

Figure 8: Simulation band for 2026-2035 from the selected models - band width does not change significantly from historical
period

Table 4: Performance of the selected climate models for the period 2006 - 2018 for the RCP 4.5 Scenario

LIMITATIONS AND FUTURE WORK
Selection of models using a different set of performance indices may end up in identifying another set of
models as the best performing set. 

The selection of climate variables and performance indices to analyse the historical performance is
subjective and can depend on the need of the user.

The significant climatology and the factors affecting it can change from location to location and the first
stage of checking process representation is heavily dependent of understanding of the regional
climatology.

The selected models contain significant biases, which has to be removed using a downscaling approach.
The first stage is not used as a selection stage and nature of correlation is considered rather than
magnitude because of the presence of these biases.

The teleconnections identifiied in the study can be used to develop a process based statistical
downscaling technique for the region. This can lead to a further reduction in the uncertainty in climate
variables used for impact prediction.
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ABSTRACT
A large number of General Circulation Models (GCMs) are currently available for modelling the atmospheric conditions over
the Earth. However, there is a large variability in the future climate predicted by the available set of climate models. Hence,
the climate data introduces the most amount of uncertainty in the climate change impact assessment. Regional-scale climate
change impact studies based on these models may produce a wide range of possible impacts that becomes unusable for
policymakers. A robust GCM selection procedure is introduced in the current study to bring the uncertainty to a realistic
range. The proposed approach takes into account the process representation in the climate models by checking
teleconnections in data along with their ability to predict the regional climate in spatial and temporal scale. The
interdependence between the climate models are also accounted for in the proposed approach to avoid underestimation of
uncertainty. The procedure is validated in the Bharathapuzha River Basin, Kerala, India. The study considers 22 GCMs that
participated in the Coupled Model Inter-comparison Project-5 and 6 Regional Climate Models (RCMs) that are recommended
for the Indian subcontinent. The climate models BNU-ESM, CMCC-CM, GFDL-ESM2G, GFDL-ESM2M and MPI-ESM-
MR are found to be performing well for the prediction of both precipitation and temperature. The proposed climate model
selection procedure can bring down the band width of uncertainty from 376 mm to 162 mm in monthly rainfall prediction
with a containing ratio of 44%. The downscaling of the climate predictions will further increase the containing ratio by
removing the systematic error. The bandwidth of uncertainty has reduced from 10.82 C to 3.83 C  in the prediction of
minimum temperature and from 8.35 C to 4.52 C for maximum temperature. The proposed GCM selection procedure
provides more confidence in the predicted future climate since regionally significant correlations between climate variables
are preserved in the selected models. The model selection procedure is validated for the period 2006-2018 with the observed
climatic variables, and the selected models are found to be performing well.
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