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1Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay
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Abstract

Clumped-isotope measurements in CO2 and carbonates (Δ47) present a number of technical challenges and require correcting

for various sources of analytical non-linearity. For now we lack a formal description of the analytical errors associated with

these correction steps, which are not accounted for in most data processing methods currently in use. Here we formulate a

quantitative description of Δ47 error propagation, fully taking into account standardization errors and their properties. We

find that standardization errors are highly sensitive to the isotopic compositions (δ47, Δ47) of unknown samples relative to

the standards used for analytical corrections, and in many cases constitute a non-negligible source of uncertainty, causing true

measurements errors to exceed traditionally reported error estimates by a factor of 1.5 (typically) to 3.5 (in extreme cases).

Using Monte Carlo simulations based on the full InterCarb data set, we find that this model yields accurate error estimates

in spite of small non-Gaussian effects which remain entirely negligible in practice. We also describe various standardization

strategies, along with the assumptions they rely on, in the context of this model, and propose a new, “pooled” standardization

approach designed to yield more robust/accurate corrections. Among other uses, the mathematical framework described here

may be helpful to improve standardization protocols (e.g., anchor/unknown ratios) and inform future efforts to define community

reference materials. What’s more, these models imply that the inter-laboratory scatter (N = 5329) observed in the InterCarb

exercise [Bernasconi et al., 2021] can be entirely explained as the effects of current standardization procedures. Based on these

findings, we recommend that future studies systematically report full analytical uncertainties taking standardization errors

into account. In line with this recommendation, we provide user-friendly online resources and an open-source Python library

designed to facilitate the use of these error models.
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Abstract1

Clumped-isotopemeasurements in CO2 and carbonates (Δ47) present a number of technical challenges and require2

correcting for various sources of analytical non-linearity. For now we lack a formal description of the analytical3

errors associated with these correction steps, which are not accounted for in most data processing methods cur-4

rently in use. Here we formulate a quantitative description of Δ47 error propagation, fully taking into account5

standardization errors and their properties. We find that standardization errors are highly sensitive to the iso-6

topic compositions (δ47, Δ47) of unknown samples relative to the standards used for analytical corrections, and7

in many cases constitute a non-negligible source of uncertainty, causing true measurements errors to exceed8

traditionally reported error estimates by a factor of 1.5 (typically) to 3.5 (in extreme cases). Using Monte Carlo sim-9

ulations based on the full InterCarb data set, we find that this model yields accurate error estimates in spite of10

small non-Gaussian effects which remain entirely negligible in practice. We also describe various standardization11

strategies, along with the assumptions they rely on, in the context of this model, and propose a new, “pooled”12

standardization approach designed to yield more robust/accurate corrections. Among other uses, the mathemat-13

ical framework described here may be helpful to improve standardization protocols (e.g., anchor/unknown ratios)14

and inform future efforts to define community reference materials. What’s more, these models imply that the15

inter-laboratory scatter (N = 5329) observed in the InterCarb exercise [Bernasconi et al., 2021] can be entirely ex-16

plained as the effects of current standardization procedures. Based on these findings, we recommend that future17

studies systematically report full analytical uncertainties taking standardization errors into account. In line with18

this recommendation, we provide user-friendly online resources and an open-source Python library designed to19

facilitate the use of these error models.20

Key Points21

• We formulate a quantitative description of Δ47 error propagation, fully taking into account standardiza-22
tion errors and their properties.23

• These standardization errors constitute a non-negligible source of uncertainty affecting samples ana-24
lyzed together in a correlated manner.25

• Wepresent a new standardization approach yieldingmore robust/accurate corrections, and open-source26
implementations of these error models.27
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1 Introduction28

Clumped-isotope geochemistry is the study of statistical anomalies in the abundance of multiply29

substituted isotopologues in natural materials [Eiler & Schauble, 2004; Eiler, 2013]. Mass spectro-30

metric measurements of Δ47, quantifying the excess abundance of 13C –18O bonds in CO2 and, by31

extension, in carbonate minerals [Ghosh et al., 2006; Schauble et al., 2006], constitute the most32

widely used branch of this relatively young but rapidly evolving field of research. The appeal of33

carbonate Δ47 measurements is largely based on the fact that the clumped-isotope compositions of34

natural carbonates directly or indirectly constrain their crystallization temperatures and/or thermal35

histories, with a broad range of Earth science applications. Establishing a robust calibration of the36

carbonate Δ47 thermometer, however, has long remained a vexing challenge, with inter-laboratory37

discrepancies equivalent to large uncertainties in reconstructed temperatures, sometimes exceeding38

10 °C [e.g., Bonifacie et al., 2017; Petersen et al., 2019].39

Keeping in mind that “true” calibration differences between certain types of carbonates are not40

to be excluded a priori, various potential causes for these discrepancies have been put forward, such41

as (a) inconsistent or inaccurate 17O correction parameters [Daëron et al., 2016; Schauer et al., 2016;42

Olack & Colman, 2019], (b) systematic effects arising from different data processing methods, and43

(c) poorly-corrected analytical biases resulting from instrumental and/ormethodological differences44

between laboratories. Petersen et al. [2019] tested the first two of these hypotheses and found that45

using unified methods for 17O correction and subsequent data processing reduced inter-laboratory46

discrepancies without eliminating them. Testing the third hypothesis is one of the goals of the re-47

cently completed inter-laboratory comparison exercise “InterCarb”, whose results are reported in a48

companion study [Bernasconi et al., 2021].49

How to accurately estimate the analytical uncertainties affecting Δ47measurements constitutes a50

distinct but related issue. Compared to most other isotopic or elemental tracers, carbonate clumped51

isotopes stand out in that analytical uncertainties remain large relative to the range of Δ47 values52

typical of natural samples. Although Fernandez et al. [2017] pointed out that non-robust statistics53

based on small numbers of observations frequently yield underestimated uncertainties, there is no54

consensus today as to whether this is the primary cause of inter-laboratory discrepancies. He et al.55

[2012], Daë̈ron& Blamart [2016] and Kocken et al. [2019] all called attention to the uncertainties as-56

sociated with Δ47 standardization (i.e. conversion of “raw Δ47” measurements to “absolute” values),57

but for now we lack an explicit, formal description of this source of analytical error, which most58

data processing methods do not currently account for. This issue is critical in the context of the In-59

terCarb exercise, which aims to test whether different laboratories, when analyzing a common set60

of four unknown and three reference carbonate samples, obtain analytically consistent results, i.e.61

results displaying no more inter-laboratory scatter than expected based on intra-laboratory analyti-62

cal errors. The present work aims to formulate a comprehensive model of analytical errors in Δ4763

measurements, including those arising from standardization using carbonate and/or carbon diox-64

ide standards; to describe various standardization strategies along with the assumptions they rely65

on; and to provide user-friendly data processing tools implementing these error models.66
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2 Methods67

2.1 A brief summary of mass spectrometric measurements of Δ47 in carbonates68

Clumped-isotope analyses of carbonates are typically performed using dual-inlet gas-source isotope-69

ratio mass spectrometry. In each analysis, a certain amount of carbonate mineral reacts with pure70

phosphoric acid at a fixed temperature (usually 25, 70 or 90 °C). Each such reaction typically pro-71

duces between 1 and 100 μmol of CO2, which is collected in a series of cryogenic traps and carefully72

purified to eliminate isobaric contaminants (i.e. species with a molecular mass of 47 Da, or com-73

pounds liable to produce such species through fragmentation/recombination reactions). Although74

our primary focus is onmeasurements of Δ47 in carbonateminerals,most aspects of the present study75

apply just as well to Δ47 in CO2 samples which were not produced by acid digestion of carbonates.76

The purified CO2 is then introduced to the “sample” side of a dual-inlet system and, from there,77

into a Nier-type ion source. Inmost systems currently in use, analyte CO2 is compared with a “work-78

ing gas” reference CO2 through the frequent, regular toggling of a change-over valve. The bulk79

isotopic composition (δ13C, δ18O) andmass-47 to mass-44 abundance ratio of each analyte are deter-80

mined by comparing ion currents for the analyte and theworking gas, averaged over long integration81

times, typically tens of minutes or longer. These integration times are necessary because counting82

statistics are one of the primary factors limiting precision when observing rare isotopologues such83

as 16O13C18O, which makes up only 46 ppm of natural CO2 [Huntington et al., 2009].84

For the past decade Δ47 measurements have been standardized by comparison with specially85

prepared CO2 standards with known clumped-isotope compositions and variable bulk isotope com-86

positions [Dennis et al., 2011]. Carbonate reference materials have increasingly been also used for87

standardization, either in addition to or as a replacement for CO2 standards [Schmid & Bernasconi,88

2010;Meckler et al., 2014; Bernasconi et al., 2018]. Although here we primarily consider standardiza-89

tion using carbonate reference materials, the mathematical framework presented below generally90

applies as well to CO2 standards.91

2.2 Terminology92

We define below, in the context of this work, a number of terms. A sample is an amount of pre-93

sumably homogeneous carbonate material subjected to one or more analyses (otherwise known94

as replicate measurements/observations). Each analysis corresponds to a single acid reaction fol-95

lowed by purification of the evolved CO2 and by a series of dual-inlet IRMSmeasurements, yielding96

working-gas delta values (δ45 to δ49). These working-gas deltas are then converted to “raw” (non-97

standardized) values of δ13C, δ18O, and Δ47raw. The specifics of this conversion have been extensively98

covered elsewhere [e.g.,Huntington et al., 2009; Daëron et al., 2016], and are not directly relevant to99

the topics discussed here. Analyses are generally grouped into sessions, each of them usually cor-100

responding to a given time span over which analytical conditions are presumed to have remained101

stable. One key assumption is that the various analytical/instrumental non-linearities which affect102

Δ47raw observations remain constant over the duration of each session. These non-linearities include103

a scrambling effect likely reflecting recombination of isotopologues in the ion source or elsewhere104

in the sample preparation apparatus [Dennis et al., 2011]; a compositional slope reflecting small105
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biases in the electrical background of the ion beammeasurements [He et al., 2012; Bernasconi et al.,106

2013]; and a working gas offset resulting from the (knowlingly inaccurate) assumption that the107

dual-inlet working gas is stochastic. Within each session, the samples/analyses are divided into two108

groups: anchors, whose Δ47 values are assigned a priori, and unknowns, whose Δ47 values are to109

be determined. Here we define a standardization model as any mathematical procedure aiming110

to estimate these unknown Δ47 values by comparing the anchor and unknown analyses, explicitly111

or implicitly constraining analytical non-linearities within each session.112

2.3 Objectives and strategy113

Our aim is to model how random, zero-centered, presumably Gaussian measurement errors on δ47114

or Δ47raw propagate into final, “absolute” Δ47 values averaged over a number of analyses/sessions. We115

do not attempt to account for non-random biases such as those potentially arising, for instance, from116

errors in the isotopic composition of the working gas, or from assigning inaccurate Δ47 values to one117

or more anchors. The models described here will hopefully provide a framework to report more118

accurate estimates of the uncertainty associated with clumped-isotope measurements, and inform119

the choices we make in the laboratory.120

We start by describing a general formulation of the standardization function used to compute121

the “absolute” Δ47 value of each analysis. Quantifying the parameters defining this function within122

a given session is equivalent to constraining the analytical/instrumental non-linearities mentioned123

above, and may be treated as a classical least-squares minimization problem.124

We follow up by estimating the analytical precision of “raw” measurements (before standard-125

ization) based, following oft-repeated recommendations, on the pooled external repeatability of a126

group of standards and/or unknown samples. The general formulation used here then makes it127

straightforward to propagate the raw measurement errors into the “autogenic” uncertainty of each128

analysis (that directly arising from the raw errors of this particular analysis) and an independent129

component of “allogenic” uncertainties arising from the least-squares model errors, i.e. from the130

standardization itself.131

We finish by describing the general properties of these two components of error, and briefly132

discuss several practical standardization approaches applicable to real-world data sets. With non-133

specialist readers in mind, we attempted, as much as possible, to leave mathematical details out of134

themain text, but three appendices provide detailed, explicit examples of the calculations underlying135

our models.136

2.4 Standardization to an “absolute” Δ47 reference frame within a single session137

Computing “absolute” Δ47 values traditionally involves two chained affine transformations designed138

to correct for known instrumental non-linearities (eqs. 5-6 of Dennis et al. [2011], using the original139

notation):140

Δ47-[SGvsWG]0 = Δ47-[SGvsWG] − δ47[SGvsWG] × SlopeEGL (1)

Δ47-RF = Δ47-[SGvsWG]0 × SlopeETF + InterceptETF (2)

4
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This is mathematically equivalent to the following formulation:141

Δ47raw = a Δ47 + b δ47 + c (3)

In this equation, the parameters (a, b, c) respectively account for scrambling effects, the compo-142

sitional slope, and the working gas offset. To estimate these parameters, a natural approach is to use143

classical least-squares minimizationmethods, treating Δ47raw as the response/dependent variable and144

(Δ47, δ47) as explanatory variables. Despite uncertainties on δ47 usually being as large as those on145

Δ47raw, the former may safely be treated as an explanatory variable because b is typically small enough146

(10–2 or less) for errors on δ47 to have a negligible impact. As an aside, even in cases where ||b|| is147

so small as to be indistinguishable from zero, it remains important, as argued below, to quantify148

the precision of this estimate. The models discussed here are thus fully consistent with background149

correction procedures such as the “pressure baseline correction” of He et al. [2012], and neither150

approach should preclude the other.151

Without compelling reasons to do otherwise, we assign equal weights to all measurements be-152

longing to the same session. The best-fit standardization parameters (a, b, c) for any given session153

are thus those minimizing the following χ2 statistic, summed over all anchor analyses within that154

session (unknown analyses are not considered here because their Δ47 values are not known a priori):155

χ2 = ∑(Δ47raw − a Δ47 − b δ47 − c)2 (4)

This computation, whose underlying mathematical steps and details are summarized in ap-156

pendix A, yields a triplet of best-fit values for (a, b, c), thus defining the standardization function157

of eq. (3) for this session. It also yields a covariance matrix V0 for the best-fit values of (a, b, c).158

At this stage, the covariance matrix is unscaled, meaning that it only constrains the relative scaling159

between model standard errors and covariances in (a, b, c). The additional piece of information160

needed to scale these model errors is the uncertainty assigned to each observation, i.e. the analytical161

precision of individual Δ47raw measurements.162

2.5 Estimating the analytical precision of raw measurements163

The uncertainty assigned to individual Δ47rawmeasurements, noted σ47raw, may be quantified in various164

ways, but always keeping inmind that over-reliance on the statistics of small numbers is problematic165

[Fernandez et al., 2017]. We propose that in most cases a robust estimate of σ47raw can be obtained166

by considering carbonate samples deemed free of contaminants and isotopically homogeneous, be167

them anchors, unknown samples, or carbonate standards treated as unknowns, and computing the168

pooled Δ47 repeatability of analyses within this group:169

σ247 =
1

Na − NS
∑(Δ47 − Δ47)

2
(5)

where Δ47 is the average Δ47 value for the sample considered, Na the total number of analyses170

considered, and NS the number of different samples considered. The Δ47raw repeatability of analyses171

is then:172

5
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(σ47raw)
2 = (a σ47)

2 = 1
Na − NS

∑(Δ47raw − a Δ47 − b δ47 − c)
2

(6)

It bears noting that if the group of samples used to estimate σ47raw within a single session only173

comprises three anchors, then (σ47raw)
2 is equal to the reduced chi-squared statistic χ2/(Na − 3) for174

that session. In such case, scaling the standardization errors by σ47raw is equivalent to the common175

practice of estimating least-square model errors based on the scatter/variance of residuals. Taking176

additional samples into account increases confidence in our estimate by virtue of increasing the sta-177

tistical degrees of freedom (Nf = Na−NS), on the condition that the replicability of these additional178

samples is equal to (or indistinguishable from) that of carbonate standards. In our experience this179

condition is frequently met when samples are well-mixed, finely ground, relatively pure carbonate180

powders.181

2.6 Propagation of standardization errors within a single session182

Regardless of its estimation method, σ47raw may now be used to quantify the standard model errors183

(σa, σb, σc) on the best-fit standardization parameters and their covariances (cab, cbc, cbc):184

⎡
⎢
⎢
⎣

σ2a cab cac
cab σ2b cbc
cac cbc σ2c

⎤
⎥
⎥
⎦
= (σ47raw)

2 V0 (7)

Here, the σ values quantify the precision of the constraints obtained on each of the best-fit model185

parameters considered independently, while the covariances indicate the statistical correlation be-186

tween these model errors (e.g., cab is the product of σaσb and the dimensionless correlation coeffi-187

cient between best-fit values of a and b). These model errors and covariances fully describe the188

standardization uncertainty associated with anchor measurement errors, and can now be propa-189

gated explicitlyusing classic propagation methods [e.g., Tellinghuisen, 2001] to the session average190

Δ47 value of a given unknown sample, noted Δ47:191

Δ47 = (Δ47raw − b δ47 − c)/a ⇒ σ(Δ47)
2
= J × C × JT (8)

with Δ47raw and δ47 being the session average values of Δ47raw and δ47, respectively; J the Jacobian192

matrix of Δ47 (i.e. the matrix of all partial derivatives of Δ47); JT the transpose of J; and C the covari-193

ance matrix of (Δ47raw, a, b, c):194

J = [ ∂Δ47
∂Δ47raw

, ∂Δ47∂a , ∂Δ47∂b , ∂Δ47∂c ] = 1
a[ 1 , − Δ47 , − δ47 , − 1 ] (9)

C =

⎡⎢⎢⎢⎢⎢
⎣

σ(Δ47raw)
2

0 0 0
0 σ2a cab cac
0 cab σ2b cbc
0 cac cbc σ2c

⎤⎥⎥⎥⎥⎥
⎦

=
⎡
⎢
⎢
⎢
⎢
⎣

(σ47raw)
2
/Na 0 0 0

0 σ2a cab cac
0 cab σ2b cbc
0 cac cbc σ2c

⎤
⎥
⎥
⎥
⎥
⎦

(10)
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The structure of the above covariancematrix makes it clear that σ(Δ47)
2
for an unknown sample195

is the sum of two statistically independent sources of error: an “autogenic” component σu reflecting196

uncertainties in Δ47raw measurements for that sample, and an “allogenic” component σs reflecting197

uncertainties in the standardization model used to convert Δ47raw to final Δ47 values:198

σ(Δ47)
2
= σ2u + σ2s (11)

σ2u = σ247/Na (12)

σ2s =
1
a2
(Δ47

2
σ2a + δ47

2
σ2b + σ2c + 2(Δ47 δ47 cab + Δ47 cac + δ47 cbc)) (13)

2.7 Combining data from several independent sessions199

As long as the standardization of each session only takes into accounts analyses from that session, the200

values of Δ47 computed as above within each session are statistically independent from each other.201

The final Δ47 value for a given unknown sample may thus be simply computed as the weighted202

average of Δ47 from different sessions (with weights noted ω). Using a weighted average for this last203

step is necessary to account for inter-session differences in the number of analyses of that sample,204

and also potentially in raw analytical repeatability (unless, for instance, a deliberate choice is made205

to use a single estimate of σ47raw constrained by all sessions):206

Δ47final = ∑
i
ωi (Δ47)i with sessions noted as i (14)

ωi = σ(Δ47)
−2

i /∑
i
σ(Δ47)

−2

i
(15)

σ(Δ47final)
2
= ∑

i
ω2i σ(Δ47)

2

i
= 1/∑

i
σ(Δ47)

−2

i
(16)

3 Discussion207

3.1 Properties of standardization errors208

The standardization model of section 2.4 is mathematically equivalent to the least-squares fitting of209

a two-dimensional plane described by eq. (3) in a three-dimensional space (δ47, Δ47raw, Δ47). Most210

properties described below arise naturally from this geometry.211

Standardization uncertainties depend greatly on the bulk (δ47) and clumped-isotope (Δ47) com-212

position of unknown samples relative to the anchor samples [Daë̈ron& Blamart, 2016; Kocken et al.,213

2019]. It is thus useful to describe this uncertainty in terms of an “error field” which can be mapped214

in (δ47, Δ47) space, as shown in fig. 1. The minimum standardization error coincides, in (δ47, Δ47)215

space, with the barycenter of the anchor analyses, and its value is equal to σ47/N1/2, with N being216

the total number of anchor analyses.217

Outside of a polygon defined by the anchor samples, standardization errors increase steeply. As218

illustrated in fig. 1, this increase is comparatively slower if analyses are evenly distributed between219

anchor samples, which tightens constraints on parameters a and b.220
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Fig. 1 also illustrates the benefits of using anchors with extreme isotopic compositions, which221

increase the area of the anchor polygon. One potential drawback of relying on isotopically extreme222

anchors, however, is that our “planar” model approximation might then break down. For instance,223

a small quadratic component to the compositional nonlinearity (term b δ47 in eq. 3), whose effect224

would be negigible over a δ47 range of 30 ‰, might introduce a significant bias over a range of 60 or225

100 ‰ (e.g., fig. 7 from He et al. [2012]).226

The properties outlined above are fully consistent with the Monte Carlo simulations of Kocken227

et al. [2019]. In particular, they explain all of the main patterns displayed in their fig. 5. The primary228

difference between our approach and that of Kocken et al., beyond the difference in mathematical229

methods, is that their simulations focus on the empirical transfer function (eq. 2), which corresponds230

to parameters a and c. Here we show that the uncertainty from compositional non-linearities (eq. 1)231

behaves in a similar way, and that all of these corrections can be propagated explicitly in a unified232

manner, side-stepping the need for Monte Carlo simulations.233

3.2 Impact of standardization errors234

Because the relative contributions of the autogenic and allogenic error components defined above235

(eqs. 11–13) are sensitive to the distribution of analyses among anchor and unknown samples and236

on the isotopic composition of unknowns relative to the anchor polygon, they are expected to vary237

greatly between laboratories and/or sessions. The InterCarb dataset, comprising over five thousand238

analyses from 22 different laboratories [Bernasconi et al., 2021], offers an excellent opportunity to239

quantify these two components in a wide range of realistic settings.240

A compilation of σs versus σu for the average Δ47 value of unknown samples obtained in each241

of the 77 InterCarb sessions is shown in fig. 2. As expected, standardization errors for IAEA-C1, a242

marble sample which plots within the anchor polygon defined in (δ47, Δ47) space by ETH-1/2/3, are243

generally slightly smaller than autogenic errors, resulting in a modest increase of the total Δ47 error244

(σ47) relative to the autogenic error. Samples IAEA-C2 (natural travertine) and ETH-4 (synthetic245

calcite), both of them located outside of the anchor polygon, display larger standardization errors,246

thereby increasing σ47 by an average factor of 1.5 and up to a factor of 2. Finally, in the case of the247

MERCK sample, a synthetic carbonate with extremely depleted δ13C and δ18O values, standardiza-248

tion errors generally dominate. As a result, propagating them into the total Δ47 error increases σ47249

by an average factor of 2.5 and up to a factor of 4.250

3.3 Correlations between samples251

Standardization errors contribute a sizable portion of analytical uncertainties, but it is notable that252

they do so in a way that is strongly correlated between samples, as illustrated by the joint 95 % con-253

fidence ellipses for the average Δ47 values of unknown samples shown in fig. 3. As a result, Δ47254

measurements of samples analyzed in one or more common sessions are not independent measure-255

ments. In many cases this precludes using simple statistics such as the widely-used formula for cal-256

culating the standard error of the average of replicate measurements, which assumes independent257

measurement errors.258

8
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Appendix B provides full computational details for the covariance between the session-averaged259

Δ47 values of two unknowns samples (B.1); the uncertainties characterizing Δ47 differences between260

samples (B.2); and weighted mean Δ47 values averaged over several samples (B.3). The key point to261

keep in mind is that full analytical errors are not independent between samples of the same session,262

with the following consequences: (1) when averaging many Δ47 measurements within a single ses-263

sion, analytical errors will not tend to zero but to the standardization error for this sample; (2) the264

error on Δ47 differences between samples of similar compositions (as is often the case in paleocli-265

mate records) is largely unaffected by standardization errors, but only if they are analyzed within266

the same session.267

3.4 Gaussian approximation of standardization errors268

The error propagation formula of eq. (8) is a first-order Taylor approximation. Because Δ47 is not a269

linear combination of (Δ47raw, δ47, a, b, c), propagated errors in Δ47 are not strictly Gaussian. However,270

after quantifying the non-Gaussian effects of these approximations using Monte Carlo simulations271

of the full InterCarb dataset (Appendix C), we find that these deviations from normality remain en-272

tirely negligible in practice, with Gaussian estimates of mean Δ47 values and their corresponding273

standard errors being typically off, respectively, by only 0.02 σ and 0.01 σ (with σ denoting the cor-274

responding Gaussian estimate of standard error), considering all sessions and all unknown samples275

in the InterCarb dataset..276

As an extreme example, fig. 4 shows the Monte Carlo distribution offull analytical errors for the277

average Δ47 value of IAEA-C2 in one of the InterCarb sessions, chosen because it is the “least Gaus-278

sian” distribution of the whole dataset, i.e. the least likely to be Gaussian based on a Kolmogorov-279

Smirnov test (p= 0.0003). Even in this worst-case example, differences between the Monte Carlo280

cumulative distribution function (CDF) and the Gaussian CDF computed from eq. (8) remain mi-281

nuscule: theMonte Carlo average of Δ47 for this sample in this session is 0.6734‰ (versus 0.6713‰282

for the Gaussian estimate), and the corresponding Monte Carlo standard error is 0.0357 ‰ (versus283

0.0348 ‰ for the Gaussian approximation, noted σ), off by −0.06 σ and −0.03 σ respectively.284

3.5 Statistical weighting options285

For the sake of simplicity, the error model described above rests on simple assumptions, for example286

by assigning equal statistical weights to all analyses. In the following sections we briefly discuss vari-287

ous ways in which this error model could be modified to better reflect real-life analytical conditions.288

3.5.1 Equal session weights289

In the general case where all sessions are considered equal, we recommend that each session should290

first be standardized using eqs. (21) and (23). The overallΔ47raw repeatability should then be computed291

using a slightly modified version of eq. (6), with NA being the number of anchor samples, NU the292

number of unknown samples, and Na the total number of analyses:293

(σ47raw)
2 = 1

Na − NA − NU
∑(Δ47raw − a Δ47 − b δ47 − c)

2
(17)

9



Submitted to Geochemistry, Geophysics, Geosystems on 2020-12-10; revised on 2021-03-03

This overall repeatability should then be used to scale the covariance matrix of each session294

according to eq. (7).295

3.5.2 Different session weights296

It may be justified in some cases to assign different statistical weights to analyses from different297

sessions. We would not generally recommend doing so based only on observed differences in σ47298

(which will inevitably vary slightly between sessions), unless these differences are statistically sig-299

nificant with a high level of confidence. On the other hand, data produced under different analytical300

conditions may in some cases reasonably be expected to be more or less precise: for example, mea-301

surements obtained using greater ion currents should be more precise due to counting statistics302

alone.303

In such cases, we may first divide sessions into groups expected to share similar analytical preci-304

sion levels. Pooled Δ47raw repeatabilities for each group may then be computed according to eq. (17),305

and subsequently applied to covariance matrix scaling according to eq. (7).306

3.6 Pooled standardization model taking unknown samples into account307

3.6.1 Principle308

By only considering anchor samples to constrain the standardization parameters (a, b, c) of each309

session, the models described so far neglect some useful information. As a matter of fact, even310

without prior knowledge of the Δ47 values of unknown samples, we expect the relative mapping of311

anchors and unknowns in (δ47, Δ47) space to be preserved between sessions. This approach is only312

useful when some of the sessions have unknown samples in common, but in that case it is likely to313

substantially increase the number of observations constraining the standardization model, making314

it more robust (less sensitive to outliers in the anchor analyses) and slightly more precise (by virtue315

of increasing the model’s degrees of freedom).316

In practice, instead of treating each session as a separate least-squares problem, we now aim to317

minimize a “pooled” version of the χ2 statistic defined in eq. (4), this time summed over all analyses318

(including both anchors and unknowns) in all sessions considered:319

χ2 = ∑(Δ47raw − ai Δ47 − bi δ47 − ci)
2 (18)

where Δ47raw and δ47 are the observations from each analysis, (ai, bi, ci) are the standardization320

parameters for session (i), and Δ47 is either a nominal value assigned a priori (for anchor analyses)321

or an additional, free model parameter equal to the Δ47 value of the relevant unknown sample. The322

pooled regressionmodel now rests on a number of observations equal to the total number of analyses,323

with a number of model parameters equal to the number of unknown samples plus three times the324

number of sessions.325

Because some of the χ2 terms include the product of two model parameters, this is not a linear326

least-squares problem and the direct solution of Appendix A no longer applies. One may, however,327

call upon well-established numerical approaches designed to optimize non-linear problems. In our328

10



Submitted to Geochemistry, Geophysics, Geosystems on 2020-12-10; revised on 2021-03-03

experience, the classical Levenberg-Marquardt method [Levenberg, 1944; Marquardt, 1963], as im-329

plemented by the LMFIT Python package [Newville et al., 2014], is well suited to this task. Even for330

large datasets of several thousand analyses, it is able to quickly and reliably output a vector of best-331

fit values for all model parameters (including Δ47 values for all unknown samples) along with the332

corresponding covariance matrix, thus directly providing standard errors and covariances between333

unknown sample Δ47 values.334

3.6.2 Benefits335

The benefits of a pooled standardization model may not be immediately obvious, but this approach336

should yield systematic improvements in the robustness and accuracy of the standardization proce-337

dure. For instance, considering the samples shown in fig. 1, it may be clear that forcing the Δ47 value338

of MERCK to remain consistent between sessions should greatly contribute to constrain variations339

in the compositional slope (b) between sessions, even without knowing MERCK’s true composition.340

The same argument could be made if one were to analyze heated and equilibrated gases along with341

carbonate standards, treating them as entirely unknown samples: even without any knowledge of342

CO2 equilibrium values nor of acid fractionation effects, the large spread of Δ47 between heated and343

equilibrated gases would strongly constrain variations of the scrambling factor (a) between sessions,344

thereby reducing standardization errors for all samples.345

Fig. 5 illustrates this reduction in standardization errors by showing (δ47, Δ47) plots for the four346

sessions from Lab #12 in the InterCarb dataset, comparing the error fields resulting either from347

the pooled standardization approach (one model with 153 degrees of freedom) or from the earlier348

approach ignoring unknown samples (four independent models with 20, 16, 24, and 16 degrees of349

freedom, respectively). These statistical improvements are not a result of over-fitting, despite the350

increase from 12 to 16 model parameters, because the number of observations used to compute the351

χ2 statistic increases even more, from 88 to 169. Although the locations and values of the error352

field minima remain largely unaffected by the choice of standardization method, in this case the353

pooled model strongly reduces standardization errors for analyses plotting outside of the anchor354

polygon (from10–11 ppmdown to 6 ppm forMERCK), despite the fact that no assumptionwasmade355

regarding the true Δ47 values of unknown samples. It should be noted, however, that uncertainties356

on final, average Δ47 values tend not to be as greatly reduced as those on (a, b, c), reflecting the fact357

that the pooled regression approach is primarily designed to improve accuracy rather than precision.358
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3.6.3 Caveat359

The pooled approach depends critically on our earlier assumption that samples are homogeneous,360

which we acknowledge to be generally but not universally true. It is however simple enough, in361

the presence of samples suspected to be heterogeneous (i.e. whose Δ47 repeatability is demonstrably362

worse than for carbonate standards with a statistically high level of confidence), to treat each of the363

corresponding analyses as belonging to separate samples.364

4 ClumpyCrunch and D47crunch365

The calculations discussed above may be tedious to implement from scratch. The simplest way to366

take advantage of these errormodels is to use the latest version of the open-source ClumpyCrunchweb367

application (https://clumpycrunch.pythonanywhere.com), which implements both the independent-368

sessions method of section 2.6 and the pooled standardization approach of section 3.6. Those wish-369

ing to experiment at a deeper lever may install the underlying, open-source D47crunch library for370

Python (https://doi.org/10.5281/zenodo.4314550), which also supports computing different repeata-371

bilities for different groups of sessions (section 3.5.2); explictly treating some samples as potentially372

inhomogeneous (section 3.6); modeling temporal drifts in parameters a, b, c (appendix A.2); comput-373

ing standard errors for Δ47 differences and/or means accounting for analytical covariance between374

samples (appendix B.2-B.3); and assessing whether the Δ47 repeatabilities of two samples differ sig-375

nificantly. Both D47crunch and ClumpyCrunch also output robust 95 % confidence limits for final Δ47376

values based on the number of degrees of freedom in the standardizationmodels. Links to the source377

code and documentation for D47crunch and ClumpyCrunch are provided below (see “Data and Code”378

section).379

5 Recommendations380

Based on the findings above we may offer the following recommendations, several of which are381

reiterations or reformulations of oft-repeated best practices.382

Allocate anchors wisely. As illustrated by fig. 1, the standardization error field in (δ47, Δ47)383

space is primarily controlled by the Δ47 repeatability (σ47), by the compositional distribution of an-384

chor samples and by the number of analyses performed for each anchor. The predicted properties385

of this error field are entirely consistent consistent with the Monte Carlo simulations of Kocken386

et al. [2019], who called attention to the importance of optimizing the distribution of anchor repli-387

cates. When unknown samples of interest are close, in (δ47, Δ47) space, to one of the anchors, we388

again recommend analyzing many replicates of that anchor and just enough replicates of other an-389

chors to constrain the standardization parameters. “Just enough replicates” is not entirely subjec-390

tive, because we are now able tomodel quantitatively, as in fig. 1, how the standardization error field391

responds to different allocations of replicates among the anchor samples. In other cases, where un-392

known samples plot outside of the anchor polygon in (δ47, Δ47) space, the optimal choice of anchor393

analyses is less obvious, making this simulation approach even more useful (see below for a practi-394
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cal method to perform such simulations). Finally, analyses of specific types of natural samples with395

exotic isotopic compositions (e.g., methane seep carbonates) should greatly benefit from defining396

new, bespoke carbonate standards expressly chosen for this purpose.397

When in doubt, simulate standardization uncertainties. As mentioned above, it may be398

useful to predict the error fields resulting from arbitrary combinations of anchor/unknown analyses.399

D47crunch implements such simulations using the D47data.simulate() function, for any combination400

of user-defined samples, number of replicate analyses, and Δ47 repeatability (σ47).401

Analyze related samples together. As discussed above, Δ47 measurements of samples an-402

alyzed in one or more common sessions are not independent measurements (section 3.3). As a403

result, Δ47 differences between unknown samples which were analyzed together are oftenmore pre-404

cisely constrained than their absolute Δ47 values. Fig. 6A-B provides such an example, in which a405

simulated series of samples with identical bulk compositions but different Δ47 values are analyzed406

together. Similarly, when testing whether two samples with similar compositions in (δ47, Δ47) space407

have different Δ47 values (e.g., when testing different carbonate aliquots for homogeneity), stan-408

dardization errors largely cancel out and autogenic errors dominate. In such cases, we recommend409

the unorthodox approach of short sessions with many unknown analyses and few anchor analyses410

(fig. 6C).411

Report full uncertainties. Accurate comparisons of clumped-isotope data produced by differ-412

ent laboratories have long remained a challenge [Petersen et al., 2019, and references therein]. A413

striking result of the InterCarb comparison exercise [Bernasconi et al., 2021] is that despite datasets414

from different labs having extremely diverse analytical errors, the overall scatter between all labora-415

tories is accurately predicted (i.e. neither too large nor too small) by the error propagation models416

described here, implying that carbonate-standardized Δ47 measurements are free of unrecognized417

systematic inter-laboratory discrepancies. It is thus reasonable to expect that we are now capable of418

quantitative comparisons between results from different laboratories, but this requires that future419

studies report full analytical uncertainties. At present, two options for estimating these uncertain-420

ties are available. One is to use the software described in section 4 (ClumpyCrunch or D47crunch); the421

other is to implement Monte Carlo simulations similar to those described by Kocken et al. [2019].422

We recommend that existing, widely-used software such as Easotope [John & Bowen, 2016] should423

eventually report full analytical error estimates by default.424

Experiment with session length. There has been little discussion so far in the literature re-425

garding the choice of analytical session length. Shorter sessions may obviously suffer from less ro-426

bust statistics due to fewer observations. Conversely, longer sessions risk overestimating Δ47 repeata-427

bilities in case of slow, non-motononic instrumental drifts on the same order as σ47. Although this428

increase in apparent σ47 is counter-acted by a larger number of observations (Na in eq. 5), apparently429

keeping modeled standardization errors small, the overall accuracy of the error model may suffer430

because slow drifts are by definition not random and do not necessarily cancel out over time. We rec-431

ommend checking for such slow drifts by testing whether σ47 at short time scales (e.g. a few tens of432

analyses) is substantially smaller than at longer time scales (a few hundred analyses). This can easily433

be performed in post-processing by redefining session bounds (or session names in ClumpyCrunch).434
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Use pooled regression by default. Although the pooled approach described in section 3.6 is435

not without limitations, it has been tested on over a year’s worth of real-world data from several436

laboratories, and so far appears to offer greater statistical robustness at very little cost. Beyond rare437

pathological cases where some unknown samples are believed to have changed in composition over438

time, we recommend using this approach by default, or at least testing whether its output differs439

significantly from that of other methods.440

6 Conclusion441

The framework presented here provides a quantitative/predictive description of Δ47 error propaga-442

tion, fully taking into account standardization errors and their properties. It corroborates and ex-443

tends earlier investigations based onMonte Carlo simulations [Kocken et al., 2019]. This mathemat-444

ical formulation is found not to introduce large deviations from normality: in other words, if Δ47raw445

errors are Gaussian, the fully propagated Δ47 errors may also be treated as Gaussian for all practical446

purposes. What’s more, as reported by Bernasconi et al. [2021], using this framework yields a very447

reasonable (p= 0.19) prediction for the distribution of inter-laboratory scatter in Δ47 values within448

the InterCarb dataset.449

Based on this framework, we describe a new, “pooled” standardizationmethod designed tomake450

full use of the constraints available from both anchor and unknown analyses. This approach is ex-451

pected to yield substantially improved standardization models, in terms of both robustness and ac-452

curacy. We also provide new online resources and a Python library aiming to make the use of such453

error models as simple as possible. This library being open-source and fully documented, imple-454

menting the methods described here in existing software such as Easotope [John & Bowen, 2016]455

should be straightforward.456

Most published clumped-isotope studies so far have lacked a rigorous propagation of standard-457

ization errors. This, of course, is not a problem in itself, but the InterCarb results unambiguously458

demonstrate that these standardization uncertainties are both necessary and sufficient to explain the459

inter-laboratory scatter observed in this large dataset (N=5329). Going one step further, it could be460

argued that the ongoing persistance of inter-laboratory discrepancies in Δ47 calibrations [Petersen461

et al., 2019] is due, at least in part, to largely ignored standardization errors [Anderson et al., 2021].462

Whatever the case, it seems likely that future comparisons between results obtained in different463

laboratories would greatly benefit from more accurate error estimates.464

Finally, although all statistical models are interpretative approximations, their ultimate value465

depends less on their exactness than on their practical usefulness. At the very least, the frame-466

work described here should help improve the manner in which we report analytical data and/or467

compare them across laboratories, and may inform our choice of standardization protocols (e.g.,468

anchor/unknown ratios, compositional distribution of anchors, new reference materials).469
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Data and code470

The complete raw data and all associated code used in this work are available under a Modified BSD License471
at https://doi.org/10.5281/zenodo.4314593. The preferred way to comment on the code or to suggest improve-472
ments is to raise an issue at https://github.com/mdaeron/D47_error_propagation.473

D47crunch is easily installed through the Python Package Index ("pip install D47crunch"). To down-474
load the latest versions of the code source, contribute improvements, report bugs, or suggest new features, see475
https://github.com/mdaeron/D47crunch. Full documentation is available at https://mdaeron.github.io/D47crunch.476

The ClumpyCrunch source code is also available at https://github.com/mdaeron/clumpycrunch.477
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Notations484

a : scrambling factor, one of the standardization parameters, quantifying the amount of molecular recombination during485
the analytical procedure; its value should lie between 0 and 1.486

b : compositional slope, one of the standardization parameters, quantifying small systematic errors in the electrical back-487
ground of the ion collectors; it may be positive or negative and its absolute value should ideally remain small (10–2488
or less).489

c : working gas offset, one of the standardization parameters, accounting for the fact that the working gas is not neces-490
sarily stochastic; in settings where the working gas is equilibrated at room temperature, c ≈ −a491

Na : Number of analyses.492
Nf : Degrees of freedom in a regression model.493
NS : Number of samples.494
NA : Number of anchor samples.495
NU : Number of unknown samples.496
Δ47 : delta notation (in‰) for the clumped-isotope anomaly associatedwithmass-47 CO2; either denotes the “true” value497

for a given sample, or the “absolute” value computed from one or more IRMSmeasurements after standardization.498
Δ47

raw : “raw” Δ47 value from an IRMS measurement, before standardization.499
δ47 : delta notation (in ‰) for the mass-47 to mass-44 abundance ratio of an analyte CO2, generally defined relative to a500

working reference gas.501
σ47 : analytical error/uncertainty assigned to individual measurements of Δ47 (eq. 5).502
σ47raw : analytical error/uncertainty assigned to individual measurements of Δ47

raw (eq. 6).503
σs : allogenic error, i.e. the analytical error/uncertainty on a Δ47 measurement arising from the standardization function504

(eq. 13).505
σu : autogenic error, i.e. the analytical error/uncertainty on a Δ47measurement arising from the analyses of the unknown506

sample itself (eq. 12).507
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Appendix A : Least squares regression508

A.1 General linear case509

Consider a linear model f defined as:510

y = f (x, a1, a2 …ap) =
p
∑
i=1

ai fi(x) (19)

where x is a scalar or vectorial explanatory variable; y the response variable; ( f1 … fp) a series of functions511
of x; and (a1 … ap) a series of scalar factors which are the model parameters to be estimated.512

Given n observations ((x1, y1) … (xn, yn)) to fit, we construct the following matrices:513

A =
⎡⎢⎢⎢⎢
⎣

f1(x1) f2(x1) ⋯ fp(x1)
f1(x2) f2(x2) ⋯ fp(x2)
⋮ ⋮ ⋮

f1(xn) f2(xn) ⋯ fp(xn)

⎤⎥⎥⎥⎥
⎦

Y =
⎡⎢⎢⎢⎢
⎣

y1
y2
⋮
yn

⎤⎥⎥⎥⎥
⎦

(20)

The best-fit parameters (a1 … an) and their unscaled variance-covariance matrix V0 are then:514

⎡⎢⎢⎢⎢
⎣

a1
a2
⋮
ap

⎤⎥⎥⎥⎥
⎦

= V0 × AT × Y V0 = (AT × A)−1 (21)

A.2 Application to the standardization model515

The standardization model of eq. (3) is equivalent to the above formulation if:516

y = Δ47raw f1(x) = Δ47
x = (δ47, Δ47) f2(x) = δ47
(a1, a2, a3) = (a, b, c) f3(x) = 1

(22)

In this case:517

A =
⎡⎢⎢⎢⎢
⎣

Δ47 δ47 1
Δ47 δ47 1
⋮ ⋮ ⋮
Δ47 δ47 1

⎤⎥⎥⎥⎥
⎦

← analysis #1→
← analysis #2→

← analysis #n→

⎡⎢⎢⎢⎢
⎣

Δ47raw
Δ47raw
⋮

Δ47raw

⎤⎥⎥⎥⎥
⎦

= Y (23)

To take into account an uncertainty, noted σ, assigned to the observations, A and Y should both be divided518
by σ, which will leave the best-fit parameters unchanged and scale the variance-covariance matrix V0 by a519
factor of σ2 (as in eq. 7).520

Alternatively, to assign individual uncertainties, noted (σ1 … σn) to the n analyses, each line of A and each521
element of Y should be divided by the corresponding σ value:522

A =
⎡⎢⎢⎢⎢
⎣

Δ47/σ1 δ47/σ1 1/σ1
Δ47/σ2 δ47/σ2 1/σ2
⋮ ⋮ ⋮

Δ47/σn δ47/σn 1/σn

⎤⎥⎥⎥⎥
⎦

← analysis #1→
← analysis #2→

← analysis #n→

⎡⎢⎢⎢⎢
⎣

Δ47raw/σ1
Δ47raw/σ2

⋮
Δ47raw/σn

⎤⎥⎥⎥⎥
⎦

= Y (24)
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Extending this model with additional parameters should be rather straightforward. For instance, in order523
to account for a temporal drift in the compositional non-linearity, one could reformulate the model, with t524
denoting time and an additional standardization parameter d, as:525

Δ47raw = a Δ47 + (b + td) δ47 + c (25)

Which would correspond to:526

A =
⎡⎢⎢⎢⎢
⎣

Δ47 δ47 1 t δ47
Δ47 δ47 1 t δ47
⋮ ⋮ ⋮ ⋮
Δ47 δ47 1 t δ47

⎤⎥⎥⎥⎥
⎦

← analysis #1→
← analysis #2→

← analysis #n→

⎡⎢⎢⎢⎢
⎣

Δ47raw
Δ47raw
⋮

Δ47raw

⎤⎥⎥⎥⎥
⎦

= Y (26)

Appendix B : Δ47 covariance527

B.1 Covariance between unknown samples528

Consider two unknwon samples A and B, whose session-averages compositions (δ47, Δ47raw, and Δ47) are re-529
spectively noted δA, δB, ΔAraw, ΔBraw, ΔA, and ΔB. Defining X as the column vector [ΔA, ΔB], we can express its530
Jacobian JX relative to the system of variables (ΔAraw, ΔBraw, a, b, c) and the covariance C of this quintuplet as:531

JX =
1
a[

1 0 −ΔA −δA −1
0 1 −ΔB −δB −1 ] C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(σ47raw)
2
/NA 0 0 0 0

0 (σ47raw)
2
/NB 0 0 0

0 0 σ2a cab cac
0 0 cab σ2b cbc
0 0 cac cbc σ2c

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(27)

The covariance matrix of X is then:532

CX = JX × C × JTX (28)

Because of the structure of J and C, the non-zero terms of CX are equal to:533

cov(ΔA, ΔB) =
1
a2 [ ΔA δA 1 ] ×

⎡
⎢
⎢
⎣

σ2a cab cac
cab σ2b cbc
cac cbc σ2c

⎤
⎥
⎥
⎦
×
⎡
⎢
⎢
⎣

ΔB
δB
1

⎤
⎥
⎥
⎦

(29)

cov(ΔA, ΔB) =
1
a2 (ΔAΔBσ

2
a + δAδBσ2b + σ2c + (ΔAδB + δAΔB)cab + (ΔA + ΔB)cac + (δA + δB)cbc) (30)

The covariance between mean Δ47 values of two samples averaged over several sessions is zero if the534
samples were never analyzed in the same session. Otherwise, with ωAi and ωAi weights defined as in (15):535

ΔAfinal = ∑
i
ωAi ΔAi with i denoting all sessions including A (31)

ΔBfinal = ∑
j
ωBj ΔBj with j denoting all sessions including B (32)

cov(ΔAfinal, ΔBfinal) = ∑
k
ωAk ωBk cov(ΔAk, ΔBk) with k denoting all sessions including both A and B (33)
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B.2 Standard errors on Δ47 differences between samples536

Consider two unknwon samples A and B, whose session-averages compositions (δ47, Δ47raw, and Δ47) are re-537
spectively noted δA, δB, ΔAraw, ΔBraw, ΔA, and ΔB. Defining x as the difference (ΔA − ΔB), we can express its538
Jacobian Jx relative to the system of variables (ΔAraw, ΔBraw, a, b, c) as:539

Jx =
1
a[1 , − 1 , ΔB − ΔA , δB − δA , 0] (34)

and compute the variance of x using the same covariance matrix C as above:540

σ2x = Jx × C × JTx (35)

σ2x = σ247 (
1
NA

+ 1
NB

) + (ΔB − ΔA)2σ2a + (δB − δA)2σ2b + 2(ΔB − ΔA)(δB − δA)cab
a2

(36)

B.3 Standard errors on mean Δ47 values averaged over several samples541

As an example, we treat here the problem of a weighted average of three samples. Consider three unknwon542
samples A, B, and C, whose session-averages compositions (δ47, Δ47raw, and Δ47) are respectively noted δA, δB,543
δC, ΔAraw, ΔCraw, ΔA, ΔB, and ΔC. Defining W as the weighted average (xAΔA + xBΔB + xCΔC) and w as the544
weighted average (xAδA + xBδB + xCδC), we can express the Jacobian ofW relative to the system of variables545
(ΔAraw, ΔBraw, ΔCraw, a, b, c) as:546

JW = 1
a [ xA xB xC −W −w −1 ] (37)

and compute the variance ofW using the same method as above:547

σ2W = JW ×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(σ47raw)
2
/NA 0 0 0 0 0

0 (σ47raw)
2
/NB 0 0 0 0

0 0 (σ47raw)
2
/NC 0 0 0

0 0 0 σ2a cab cac
0 0 0 cab σ2b cbc
0 0 0 cac cbc σ2c

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

× JTW (38)

σ2W = σ247 (
x2A
NA

+ x2B
NB

+ x2C
NC

) + W2σ2a + w2σ2b + σ2c + 2 (wWcab +Wcac + wcbc)
a2

(39)

Note that the second term above is equal to the value of the standardization error field at the weighted548
barycenter of the samples in (δ47, Δ47) space.549
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Appendix C : Monte Carlo assessment of the normality of Δ47 errors550

Because Δ47 is not a linear function of (Δ47raw, δ47, a, b, c), the propagation of standardization errors described in551
section 2.6 is an approximation. Here we used a Monte Carlo simulation based on the full InterCarb dataset552
to investigate how much autogenic and allogenic errors deviate from a Gaussian approximation. In each553
step of the simulation, we offset the original Δ47raw values observed in each of the 5329 analyses by random,554
independent, zero-centered Gaussian errors with a standard deviaton equal to the session’s σ47raw value. We555
then standardize all sessions of the modified dataset and record the final, session-averaged Δ47 values of each556
unknown sample (N = 226) for a total of 104 iterations. Each of these session averages is submitted to a557
Kolmogorov-Smirnov (KS) test of normality [Massey, 1951], comparing the distribution of these 104 values558
to a normal distribution centered on the original session-averaged value and whose width depends of the559
original propagated errors. Each of the 226 KS tests yields a p-value corresponding to the null hypothesis that560
the two distributions are identical. By design, if the Gaussian approximation of the propagated errors holds561
true, these p-values should be evenly distributed in the [0–1] interval. We may quantify how well they do so562
by performing a final KS test comparing the distribution of p-values to the uniform distribution, yielding a563
new, final p-value for the hypothesis that the errors in the InterCarb dataset follow Gaussian distributions.564

We run this simulation in three different configurations, considering only autogenic errors, only standard-565
ization errors, or both. Initially, the random errors introduced in each iteration are scaled according to the566
Δ47 repeatability of each session (fig. 7A). We then repeat the simulations twice, by scaling the random errors567
according to a constant Δ47 repeatabibilty of 50 ppm and 5 ppm, respectively (figs. 7B, 7C).568

Predictably, based on eqs. (12-13), we find that autogenic errors behave in a Gaussian manner (p = 0.81),569
but this is clearly not the case for standardization errors (p < 10−27). Because the error propagation formula of570
eq. (8) is equivalent to a first-order Taylor expansion, the non-normality of standardization errors is expected to571
worsen as Δ47 repeatability increases, as is the case in fig. 7B, and to become negligible when Δ47 repeatability572
is small enough (fig. 7C).573
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Figure 1: Properties of standardization errors. Upper left panel shows the unknown and anchor analyses (black
and red crosses, respectively) and contours of the standardization error field (red lines) for Session #2 of Lab #12
in the InterCarb dataset. Upper right and lower left panels modify the original data by changing the distribution
of anchor analyses between ETH-1, ETH-2, and ETH-3, keeping the total number of anchor analyses constant,
illustrating that the error minimum coincides in (δ47, Δ47) space with the barycenter of anchor analyses. The lower
right panel corresponds to the original data but treats ETH-2 as an unknown and MERCK as an anchor, illustrating

the benefits of using isotopically extreme anchors.
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the average Δ47 value of an unknown sample in each of the InterCarb sessions. Histograms characterize the ratios

of total analytical error (σ47) to autogenic errors (σu) for each of the unknown samples.
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Figure 6: (A-B) Simulated series of 20 samples with similar bulk compositions, analyzed within a single session
(4 replicates for each anchor and unknown sample, σ47 = 0.01 ‰). Because of shared standardization errors, the
uncertainties on the absolute Δ47 values of each sample (panel A, 95 % confidence limits) are much larger than the
uncertainties on the Δ47 differences (panel B, 95 % confidence limits) between each sample and the first one (black
marker). Note that panels A and B have identical vertical scales. (C) Simulated comparison of Δ47 values measured
for two samples with identical compositions in (δ47, Δ47) space. Precisely comparing two unknowns samples with
similar compositions only requires a few anchor analyses: increasing the number of replicate analyses per anchor
from 2 to 16 reduces the uncertainties on the absolute Δ47 values of each unknown sample but does not improve
constraints on the Δ47 difference between them. Both simulations were produced using the D47crunch library (cf

section 4).
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Figure 7: Monte Carlo simulation results All three panels display the cumulative distribution function of the p-
values obtained from 104 Mont Carlo simulations of the full InterCarb dataset (see Appendix C for computational
details). When the random offsets used by the simulation are scaled according to the original data (A), autogenic
errors behave in a Gaussian manner, but the standardization (“allogenic”) errors do not, due to the limits of the
first-order Taylor approximations used here for error propagation. As expected, greatly increasing (B) or decreas-
ing (C) the random offsets used by the simulation results modulates the non-Gaussianity of standardization errors,
while autogenic errors, despite being respectively increased or decreased (not shown here), remain Gaussian.
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