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Abstract

Extreme heat events are one of the most dangerous climate hazards and they are projected to increase in frequency, intensity and
duration as this century progresses. Change in future exposure to extreme heat events depends not only on climate change, but
also on changes to future population size and the areas this population inhabits. This study explores exposure to the heat event
known as a tropical night. Using a CMIP6 multi-model ensemble, coupled with population projections, this study projects
exposure for the four alternative futures described by SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. Exposure is quantified
annually at both the global and regional scale, relative to a preindustrial baseline. By the end of the twenty-first century
global annual exposure to tropical nights will total 1338-2674 billion person-days depending on the pathway followed. Of the
four pathways, globally change in exposure from the pre-industrial is avoided most under SSP1-2.6, which, when compared to
SSP3-7.0 which projects the greatest change, is a reduction of 1336 billion person-days annually. Exposure reduction varies
at the regional level, yet in the majority of cases, SSP1-2.6 remains the more desirable future in terms of minimising future
exposure. Moreover, this study finds that changes in climate versus changes in population do not equally influence changes in
exposure, and their contributions vary regionally. Irrespective of the future pathway followed, human exposure is set to increase

at the global scale and for the vast majority of regions.
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e Tropical nights increase in all future scenarios for all regions of the globe, as does
the population exposed to them.

e Much of this increased extreme heat exposure could be avoided by stringent cli-
mate mitigation measures.
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Abstract

Extreme heat events are one of the most dangerous climate hazards and they are pro-
jected to increase in frequency, intensity and duration as this century progresses. Change
in future exposure to extreme heat events depends not only on climate change, but also
on changes to future population size and the areas this population inhabits. This study
explores exposure to the heat event known as a tropical night. Using a CMIP6 multi-
model ensemble, coupled with population projections, this study projects exposure for
the four alternative futures described by SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5.
Exposure is quantified annually at both the global and regional scale, relative to a prein-
dustrial baseline. By the end of the twenty-first century global annual exposure to trop-
ical nights will total 1338-2674 billion person-days depending on the pathway followed.
Of the four pathways, globally change in exposure from the pre-industrial is avoided most
under SSP1-2.6, which, when compared to SSP3-7.0 which projects the greatest change,
is a reduction of 1336 billion person-days annually. Exposure reduction varies at the re-
gional level, yet in the majority of cases, SSP1-2.6 remains the more desirable future in
terms of minimising future exposure. Moreover, this study finds that changes in climate
versus changes in population do not equally influence changes in exposure, and their con-
tributions vary regionally. Irrespective of the future pathway followed, human exposure
is set to increase at the global scale and for the vast majority of regions.

Plain Language Summary

Extreme heat is a substantial health risk, and the amount of people exposed to it
is expected to increase with climate change. One measure of extreme heat is when the
temperature at night does not fall below 20°C, because this prevents the body recover-
ing from heat stress suffered during the day. Using a collection of new model projections,
we look at the impact of climate change on this measure. Unsurprisingly more places ex-
perience extreme heat, and more often, as the climate warms. We combine this with sce-
narios of future population to look at where and when people are exposed to these dan-
gerous night-time conditions. We show that much of this risk could be avoided by keep-
ing global warming in check.

1 Introduction

The profound socioeconomic implications of extreme climate events cannot fail to
grab humanity’s attention. These calamities affect the health of both our physiology and
economies, often decimating agricultural yields and labour productivity, disrupt our so-
cial structures, at times forcing migration, as well as aggravating many other areas in
a myriad of complex ways (Carleton & Hsiang, 2016). Extreme climate events are rare,
with characteristics defined by the tails of probability distributions (Visser & Petersen,
2012), yet increasing media coverage of the devastation they inflict has prompted a surge
in societal interest (Karl & Easterling, 1999; Boudet et al., 2020; Hopke, 2020). It has
long since been reported that a changing climate will alter the intensity, frequency, du-
ration, and geographic extent of these events (Mearns et al., 1984; Wigley, 1985, 2009),
yet quantifying such change is difficult, primarily due to their rarity (Nicholls, 1995; Frei
& Schar, 2001). Increasing acceptance that anthropogenic climate change is a reality has
generated a great deal of attention towards its effect on extreme events and there now
exists ever-growing evidence that human activity is modifying them, especially those of
extreme heat (Peterson et al., 2012, 2013; Stott et al., 2014; Herring et al., 2015, 2016,
2018, 2019, 2020). To advance this effort, this study will explore humanity’s exposure
to extreme heat during the pre-industrial, present day, and end of the twenty-first cen-
tury using state-of-the-art climate and population projections.

An extreme heat event, often termed a heat wave, is a prolonged period of high tem-
peratures exceeding the local average at a given time. The beginning of the twenty-first
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century saw numerous extreme heat events causing a significant impact upon ecosystems,
societies, and economies. For example, communities across Europe in 2003 and Russia

in 2010 suffered 70,000 and 55,000 heat-related deaths respectively, revealing the infa-
mous relationship between extreme heat and mortality (Robine et al., 2008; Barriope-
dro et al., 2011). Furthermore, a 2013 heat event across eastern China saw fierce eco-
nomic consequences due to its impact on agriculture and infrastructure, culminating in
an estimated direct loss of 59 billion RMB (Sun et al., 2014). Similarly, extreme heat
events place considerable strain on utility services. For instance, in 2015, a two-day heat
event across England led to emergency speed restrictions across the national rail network
resulting in 220,000 minutes of delays (Ferranti et al., 2018). In like manner, between
2006-2013, Buenos Aires experienced 20 extreme heat-related power blackouts leaving
millions without electricity (Santagata et al., 2017). Also of significance are the impacts
on ecosystems caused by extreme heat. For example, in 2011 the Australian west coast
experienced a marine heat event which catalysed a local bio-diversity shift towards warm
water fish species permanently changing this ecosystem and the services it provides (Wernberg
et al., 2013). These examples are noted here to provide a glimpse of the range of con-
sequences extreme heat can cause with more detailed views provided by Perkins (2015),
Carleton and Hsiang (2016), and Horton et al. (2016). Clearly extreme heat events have
severe ramifications making this study’s contribution in understanding them imperative.

1.1 Historical Trends

Since the turn of the century, extreme heat event research has increased consid-
erably, focusing mainly on their intensity, frequency, and duration. The Fifth Assessment
Report of the Intergovernmental Panel on Climate Change (AR5 IPCC) concluded that
since the mid-twentieth century it is likely (> 66% probability) that the frequency of
heat events has increased in large parts of Europe, Asia, and Australia (IPCC, 2013).
Since then, more studies of these regions have emerged supporting, not only increases
in heat event frequency, yet also increases in their intensity and duration (Rahmstorf &
Coumou, 2011; Donat et al., 2014; Mishra et al., 2015; Luo & Lau, 2017; Founda et al.,
2019; Luo et al., 2020). For example, a study using daily temperature observations be-
tween 1950-2011 by Perkins et al. (2012), concluded that, for a given year, the maximum
temperature of its most intense heat event grew on average by 2.0°C, 0.8-1.0°C, and 0.4-
0.8°C per decade across East Asia, Europe, and Australia respectively. Furthermore, such
trends are not limited to these regions. For instance, Ceccherini et al. (2017) state that
the average annual number of African extreme heat events between 2006-2015 was 24.5,
double that of its value between 1981-2005. This study also reports increases, albeit of
smaller magnitude, in the duration and intensity of heat events, as found in other African
studies (Fontaine et al., 2013; Moron et al., 2016). Indeed, these trends are also reported
in North America. For example, DeGaetano and Allen (2002) found that between 1960-
1996 the number of times that daily maximum temperature exceeded the 95th percentile
increased, and consequently infer an increase in heat event frequency and intensity across
this period. Conversely, a separate North America study using a different heat event def-
inition, concludes that southeastern North America does not exhibit these trends (Alexander
et al., 2006). Additionally, in South America, Ceccherini et al. (2016) reported that heat
event intensity and frequency has increased since 1980, with the greatest increases oc-
curring post 2000. However, other studies suggests that these increases are true only for
heat events defined using daily minimum temperatures, and that, for instance, in south-
ern South America there are no significant trends across 1980-2010 (Alexander et al., 2006;
Rusticucci, 2012; Mishra et al., 2015). In summary, globally most land areas have ex-
perienced more intense, frequent, and longer heat events since the mid-twentieth cen-
tury, with only a few regions, such as southern South America and southeastern North
America, failing to exhibit such trends. Where discrepancies do exist in select regions,
the studies often employ differing heat event definitions. Hence, this study will be ex-
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plicit in defining a heat event and cautious with comparison to literature employing al-
ternative definitions.

1.2 Future Projections

Coupled atmosphere-ocean general circulation models (GCMs) and Earth system
models (ESMs) are frequently used in future extreme heat event research. The projec-
tions used are predominately those made for the Coupled Model Intercomparison Project
(CMIP, (Meehl et al., 2005, 2007; Taylor et al., 2012)). As each CMIP phase uses dif-
fering emissions scenarios, this summary will reference a scenario as high, medium, or
low relative to others of the same phase. The latest IPCC assessment found that it is
very likely (90-100% probability) that future heat events will occur with greater frequency
and duration (IPCC, 2013), and global studies since, despite their scarcity, further sup-
port this (Coumou & Robinson, 2013; Russo et al., 2014; Dosio et al., 2018). For exam-
ple, Fischer and Knutti (2015) found that, under future 2°C warming, by 2050 the prob-
ability of an extreme heat event, defined as exceeding the 99th percentile, is over five times
higher that of the pre-industrial. Equally, Sillmann, Kharin, Zwiers, et al. (2013) found
that by the end of the twenty-first century, the global annual number of heat days on
land, defined as those exceeding the 90th percentile of 1961-1900, will increase by 167
days under a high emissions scenario. In regard to the far greater quantity of regional
studies, those focused on the Mediterranean present striking projections (Amengual et
al., 2014; Lelieveld et al., 2014; Viceto et al., 2019). For example, Seneviratne et al. (2016)
project that under present day warming of 2°C, the magnitude of the most extreme Mediter-
ranean heat events will still rise by 3°C. Indeed, Cardoso et al. (2019) concluded that,
under a high emissions scenario, half of the end of the twenty-first century Portuguese
heat events will be stronger than the notorious European 2003 heat event and will last
17 days longer than those of 1971-2000. Additionally, Asian heat events are projected
to be more intense, frequent, and longer. For instance, by 2050 under a high emissions
scenario, South Korea is projected a 131% increase in heat events above 30°C and a 50%
reduction in their inter-annual variability relative to 1981-2005 (Lee et al., 2014). Sim-
ilarly, in India, only under a low emissions scenario will changes in heat events, defined
as consecutive days exceeding 45°C, be avoided in the populous southern regions (Murari
et al., 2014). Finally, increases in frequency, intensity, and duration are projected for Aus-
tralian (Cowan et al., 2014) and South American (Feron et al., 2019) heat events, with
greatest change occurring in their respective northern regions. In short, the literature
projects more intense, common, and longer heat events, with increases more substan-
tial under higher emissions scenarios. In order to benefit from the latest CMIP6 phase
(Eyring et al., 2016) and address the need for global scale analysis, this study will ex-
plore heat events both globally and regionally under the new emissions pathways.

2 Data and Methods

This study uses daily minimum surface temperatures output from 15 climate mod-
els developed by various institutes around the world. The CMIPG6 historical simulations
provide data for the pre-industrial and present day (Eyring et al., 2016), whereas the SSP1-
2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios from the Scenario Model Intercompar-
ison Project (ScenarioMIP) provide end of the twenty-first century data (O’Neill et al.,
2016). Although some models have multiple members, this study uses a single member
for each model, typically rlilplfl, as the influence of internal model variability on ex-
treme heat event metrics is relatively low compared to that of physically different mod-
els (Perkins-Kirkpatrick & Gibson, 2017). Each model in Table 1 is chosen based on hav-
ing at least one member with daily minimum surface temperature data available for both
the CMIPG6 historical simulations and ScenarioMIP as of June 2020 (the start of this work).
Monthly (‘tas’) and daily minimum temperatures (‘tasmin’) are used to generate aver-
age annual temperatures and average annual extreme heat metrics respectively. Anoma-
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Institution

Atmospheric

Model . Country Resolution Reference
Initials
(Lat. x Lon.)
CSIRO- .
ACCESS-CM2* Australia 1.25°x 1.88° Law et al. (2017)*
ARCCSS
ACCESS-ESM1-5° CSIRO Australia 1.25°x 1.88° Law et al. (2017)*
AWI-CM-1-1-MR* AWI Germany 0.93°x 0.94° Semmler et al. (2020)
BCC-CSM2-MR* BCC China 1.13°x 1.13° Wu et al. (2019)
CanESM5P CCCma Canada 2.81°x 2.81° Swart et al. (2019)
CNRM-
CNRM-CM6-1* France 1.41°x 1.41° Voldoire et al. (2019)
CERFACS
b NOAA-
GFDL-ESM4 USA 1.00°x 1.25° Dunne et al. (2020)
GFDL
INM-CM4-8* INM Russia 1.50°x 2.00° Volodin et al. (2018)
INM-CM5-0* INM Russia 1.50°x 2.00° Volodin et al. (2017)
IPSL-CM6A-LR?* IPSL France 1.26°x 2.50° Boucher et al. (2020)
MIROC6" MIROC Japan 1.41°x 1.41° Tatebe et al. (2019)
MPI-ESM1-2-HR" MPI-M Germany 0.94°x 0.94° Muller et al. (2018)
MRI-ESM2-0P MRI Japan 1.13°x1.13° Yukimoto et al. (2019)
NorESM2-MMP NCC Norway 0.94°x 1.25° Seland et al. (2020)
UKESM1-0-LL" MOHC UK 1.25°x 1.88° Sellar et al. (2019)

Table 1: Model names, modelling institutions and countries, and atmospheric resolutions
of 15 CMIP6 climate models. Model names denoted with a and b are GCMs and ESMs

respectively. *Previous model version reference.

lies represent deviations from their corresponding 50-year pre-industrial baselines. Pro-
cessing these average variables involve time averaging in a model’s native grid before us-
ing bilinear interpolation to a common 1.0° x 1.0° latitude-longitude grid for use with

population projections and model evaluation. This study primarily focuses on multi-model

ensemble output as they have been shown to outperform individual models (Tebaldi &
Knutti, 2007). All models will be weighted equally when forming a multi-model ensem-
ble as, although some models will outperform others when compared to observations, this
is not necessarily a precursor for success in simulating climates absent of observations
(Knutti et al., 2007). Regional analysis, including determining the mean, median, and
various percentiles, is performed on the common grid for IPCC ARG scientific land re-

gions, excluding those covering Antarctica (Iturbide et al., 2020).



176 2.1 Heat Event and Exposure Definitions

177 As a universal heat event definition remains an open research question, this study
178 employs one it deems most appropriate. For a given day, a heat event will be said to oc-
179 cur if the daily minimum temperatures exceeds 20°C. This is commonly referred to as

180 a tropical night (TR). The use of an absolute threshold, specifically a minimum one, en-
181 sures only heat events genuinely dangerously warm are considered by guaranteeing a min-
182 imum intensity. This study acknowledges that relative threshold definitions can account
183 for local heat acclimatisation yet does not deem it suitable for use with future scenar-

184 ios where the underlying socioeconomic factors, and subsequently the ability to adapt

185 to heat, for a given region can differ. The number tropical nights per year is averaged

186 over the relevant climatological period (1851-1900 for the pre-industrial, 1981-2010 for
187 the ‘present day’, and 2071-2100 for the end of the twenty-first century). As the aver-

188 age annual count of tropical nights (TR z) has fixed maximum and minimum values, us-
189 ing bilinear interpolation during processing is appropriate as it is monotonic.

100 To determine human exposure to TRs for a given period, climate projections are
101 combined with population projections on a common 1.0° x 1.0° latitude-longitude grid.
192 For each cell, the annual TR count is multiplied by the projected population returning
103 a gridded exposure distribution of annual heat exposure measured in person-days. As
104 exposure is calculated at the grid cell level, for this study’s global and regional analy-
105 sis, exposure is aggregated accordingly.

196 2.2 Model Evaluation

107 Following previous CMIP studies of climate extreme indices, this study uses root
108 mean square error (RMSE) metrics to assess model performance against observations

199 for the present day (Gleckler et al., 2008; Sillmann, Kharin, Zhang, et al., 2013). Using
200 a set of model RMSEs, the relative RMSE of model i, RM SEZ-I}, for observational dataset
201 j is given by

RMSE,; — RMSEM

RMSEFE =
K RMSEM

(1)

202 where RM SEJM is the median RMSE of the set of models compared with observation

203 dataset j. This median RMSE is not equivalent to the multi-model ensemble RMSE which
204 this study also computes. The observational dataset used for average annual tempera-

20 ture RMSEs is the 5.0° x 5.0° latitude-longitude CRUTEM4 land-surface air tempera-

206 ture dataset (Osborn & Jones, 2014), whereas the 2.5° x 3.75° latitude-longitude HadEX2
207 extreme indices dataset is used for TR ; RMSEs (Donat et al., 2013). Bilinear interpo-

208 lation is used to translate both model outputs to the coarser native resolutions of the
200 observational datasets. Both sets of observations lack full spatial coverage due to station-
210 data scarcity, particularly across Africa, South America and the polar regions. Conse-

a1 quently, the global RMSEs of this study only consider the land regions present in each
212 observational dataset.

213 2.3 Historical Population Projections

214 HYDE 3.2 population projections cover a period from 10,000 BC to 2015, with data
215 for 1700-2000 and 2000-2015 available at decadal and annual intervals respectively. The

216 projections include counts of total, urban, and rural populations, and are frequently utilised

217 in other climate research (e.g. Newbold et al. (2015); Searchinger et al. (2018); Pugh et
218 al. (2019)). To obtain spatial distributions, HYDE 3.2 uses various population time se-

219 ries of areas defined by current country boundaries and subjects them to a weighting al-
220 gorithm centred on habitat suitability. In doing so, population estimates are distributed
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across a 0.083° x 0.083° latitude-longitude grid based on the likelihood a given gird cell

is inhabited (Goldewijk et al., 2010). This study computes equally weighted time-averages
of these distributions using the decadal projections across 1850-1900 and 1980-2010 for
the pre-industrial and current period respectively. Doing so potentially undervalues the
exponential population changes seen between 1980-2010, yet is necessary as to keep with
the conventional 30-year window used in climate studies. A pre-industrial anomaly for
the present day is computed where each anomaly represents the deviation from the 50-
year mean pre-industrial population at a particular grid cell. All time-averaged projec-
tions are translated to a common 1.0° x 1.0° latitude-longitude grid for use with climate
projections by summing the population counts that fall within each 1.0° grid cell. Re-
gional projections for the IPCC ARG scientific land regions (Iturbide et al., 2020) are com-
puted similarly.

2.4 Future Population Projections

The NCAR-CIDR projections provide population distributions for each SSP which
are consistent with their underlying demographic assumptions and exhibit the popula-
tion dynamics inferred within their narratives. The population projections cover the pe-
riod 2010-2100 in decadal time steps at a 0.125° x 0.125° latitude-longitude resolution
and are increasingly used in current climate research (e.g. Zhang et al. (2017); Dottori
et al. (2018); W. Liu et al. (2018)). Each projection consists of total, urban, and rural
population counts. Quantitatively each projection is consistent at the national level as
the total, urban, and rural population counts are constrained to equal those of the SSP
for every nation. Also, the projections are qualitatively consistent as the demographic
characteristics of each narrative are translated into model parameters related to urban
and rural population development (Jones & O’Neill, 2013, 2016). This study computes
equally weighted time-averages of the 2070-2100 decadal NCAR-CIDR projections for
SSP1, SSP2, SSP3, and SSP5, as well as anomalies relative to the pre-industrial base-
line from HYDE 3.2 projections. Due to differing resolutions, the latter is computed on
a common 1.0° x 1.0° latitude-longitude grid. The methods used for the translation to
this common grid and computing regional values are the same as that of the historical
projections.

3 Results
3.1 Model Performance

The individual model and multi-model ensemble performances in projecting present
day TR g versus HadEX2 observations are displayed in Figure 1 and 2. Generally the
individual models tend to overestimate TR z in regions of South America, Africa, Aus-
tralia, and western North America by over 45 days, whereas most underestimate TR z
in the Northern Hemisphere by 1-5 days. Nevertheless, some models outperform others
as evident through the RMSE metrics, with IPSL-CM6A-LR and INM-CM4-8 perform-
ing best, and MIROC6, AWI-CM-1-1-MR,, and MPI-ESM1-2-HR, the worst. Interest-
ingly two of the worst performers, AWI-CM-1-1-MR, and MPI-ESM1-2-HR, have the finest
resolutions, suggesting that a finer resolution does not necessarily equal better TR ;7 pro-
jections. Lastly, the multi-model ensemble largely outperforms the individual models with
its relative RMSE only surpassed by IPSL-CM6A-LR and INM-CM4-8. In short, indi-
vidual model performance in projecting TR j is varied, whereas the multi-model ensem-
ble consistently outperforms most.

3.2 Tropical Nights

Clear global patterns in annual mean surface temperature change exist across pro-
jections (Figure 3). As well as projecting the greatest warming at the global scale, SSP5-
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Figure 1: Present day (1981-2010) average annual number of tropical nights derived from
[A] HadEX2 observations and [B] CMIP6 multi-model ensemble simulations, along with
[C] the multi-model ensemble observational anomaly. Hatched areas lack observational
data. Ocean areas are masked for clarity. [D-E] RMSE performance metrics for both the
multi-model ensemble and its individual members.

8.5 does so for all 44 ARG regions, with the largest pre-industrial anomalies of 9.51°C

and 8.88°C found in RAR (Russian Arctic) and NEN (northeastern North America). In-
terestingly, the third largest anomaly of 8.01°C is for RAR under SSP3-7.0, a lower GHG
concentration scenario, highlighting the severity of warming projected for this region.
Conversely, for all 44 regions, SSP1-2.6 avoids the most future warming, with the low-

est pre-industrial change of 1.39°C projected for SSA (southern South America), followed
by 1.55°C and 1.69°C for NZ (New Zealand) and SAU (southern Australia) respectively.
Similarly, regions with annual mean temperatures > 30.0°C can be avoided entirely un-
der SSP1-2.6, whereas 5 exist under SSP5-8.5. Importantly, a decrease in annual mean
temperature from the present day is not projected for any region by the end of the twenty-
first century. Finally, the multi-model ensemble mean is greater than the median for most
regions, indicating a positively skewed distribution, with this skew more apparent un-

der SSP3-7.0 and SSP5-8.5, than SSP1-2.6, and SSP2-4.5. In short, the greatest avoid-
ance in future warming from the pre-industrial, both globally and regionally, is under
SSP1-2.6.
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Figure 2: Average annual number of tropical nights present day (1981-2010) projection
anomaly relative to those of HadEX2 observations for 15 CMIP6 models. Hatched areas
lack observational data. Ocean area are masked for clarity.
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Spatial projections of multi-model ensemble average annual number of tropical nights
(TR 4) for the present day, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, along with the
corresponding change from a pre-industrial baseline and inter-model variability, are pre-
sented in Figure 4. As annual average temperature, broad patterns are visible across pro-
jections. For example, TR z is greatest across equatorial regions, and least amongst po-
lar and high-altitude regions. Another pattern is apparent in the pre-industrial anoma-
lies, namely that the largest deviations of a given scenario are projected for northwest-
ern and western South America, and sub-Saharan Africa. It is worth noting that the mag-
nitude of increase in TR z, both absolute and relative to the pre-industrial, increases with
increasing GHG concentrations. For instance, under SSP1-2.6, northern mid-latitudes
are projected to endure 1-20 tropical nights, whereas under SSP5-8.5, this increases to
10-50. Similarly, the Tibetan Plateau region where TR ; = 0 contracts as GHG con-
centrations increase. Furthermore, the northern mid-latitudes and equatorial regions show
contrasting inter-model variability behaviour with increasing GHG concentrations, with
the former exhibiting greatest variability under the present day, and the latter under SSP5-
8.5. This is likely due to the threshold nature of TR z. Variability will be greatest when
daily minimum NST is close to the 20°C threshold as, for example, even if a region has
a temperature range of 25-40°C, the TRz variability would be low as this range lies above
the threshold.

A regional analysis of changes in TR ;1 from pre-industrial levels is presented in Fig-
ure 5 . Globally, excluding Antarctica, TR z is projected to increase by 10.6, 30.3, 43.7,
57.7, and 66.9 days from the pre-industrial for the present day, SSP1-2.6, SSP2-4.5, SSP3-
7.0, and SSP5-8.5 respectively. Moreover, the end of the twenty-first century change from
the pre-industrial is greatest under SSP5-8.5, and least under SSP1-2.6 for all 44 regions.
Additionally, SEAF (southern East Africa) ranks first within each future scenario for great-
est absolute pre-industrial increase in TR 4, with neighbouring regions of CAF (central
Africa), ESAF (east southern Africa), and WSAF (west southern Africa) often sharing
the second and third ranks. Naturally, in absolute terms, smallest increases are for re-
gions where historically a TR is rare, such as GIC (Greenland and Iceland). In addition,
the number of regions where TR 7 > 300 days is 3, 5, 9, and 10 under SSP1-2.6, SSP2-
4.5, SSP3-7.0, and SSP5-8.5 respectively, and so SSP1-2.6 has less regions with danger-
ously high TR 5. It is important to note that for regions projected to experience almost
daily tropical nights, such as CAR (Caribbean), the rate of increase in TR 5 appears to
halt with increasing GHG concentrations, yet this is because TR ; is already at its max-
imum. Subsequently, this is not evidence that, after a certain threshold, increasing GHGs
do not contribute to increasing TR 5. Lastly, variability across model members is great-
est under high GHG concentrations, and a positive skew is apparent. In short, TR 7 is
projected to increase regardless of scenario, yet is avoided most under SSP1-2.6.
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Figure 4: [A-E] Multi-model ensemble projections of average annual number of tropi-
cal nights, [F-J] the associated change from a pre-industrial baseline (1851-1900), [K-O]
and the inter-model variability for the present day (1981-2010), and four future scenarios
(2071-2100). Ocean areas are masked for clarity. Dotted regions represent zero values.
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3.3 Population and Heat Exposure

The global population is projected to rise from the pre-industrial with increases
compared to the pre-industrial baseline of 301.0%, 438.2%, 555.1%, 740.2%, and 463.3%
projected for the present day, SSP1, SSP2, SSP3, and SSP5 respectively. Unsurprisingly,
the most populated region for the present day is EAS (eastern Asia) and SAS (south-
ern Asia) which, combined, hold 42.3% of the global population. Whereas regions least
populated are naturally those with harsh environments such as CAU (central Australia)
and GIC. These geographic patterns extend into future projections, yet there is clear vari-
ation between different pathways. For example, under SSP3, low population growth in
high income countries sees minor population increases from the present day in North Amer-
ica, and decreases in Europe, with some areas of the latter showing decreases from the
pre-industrial. Conversely, the same high income countries under SSP5 experience high
population growth, the greatest seen in WNA (western North America), CNA (central
North America), and NEU (northern Europe) where growth exceeding 100% is projected.
Similarly, variation between SSP3 and SSP5 is evident for high fertility countries. For
instance, under SSP3, high population growth in WAF (western Africa) and SAS sees
populations 3384.9% and 891.8% greater than the pre-industrial respectively. Whereas
under the low growth of SSP5, these values reduce to 1705.5% and 433.4% accordingly.
Lastly, it is worth noting that population loss from the present day is projected for EEU
(eastern Europe) and EAS regardless of the future pathway followed. In summary, global
future population increases are avoided most under SSP1 and SSP5, yet this is not con-
sistent regionally, as developing and developed countries exhibit varying behaviour for
a given pathway.

Present day and end of the twenty-first century multi-model ensemble projections
of average annual exposure to tropical nights, H 4, along with the corresponding change
from a pre-industrial baseline and inter-model variability, are presented in Figure 6. Clear
patterns are evident across the projections with H 7, and its change from the pre-industrial,
greatest for equatorial regions and the Indian subcontinent, and least, excluding unin-
habited areas, across northern mid-latitudes, southern South America, and some areas
within the Tibetan Plateau. The decrease in H ; from the pre-industrial seen in Australia
is likely a methodology discrepancy between the two different underlying population pro-
jections used as opposed to a true reduction in exposure. Furthermore, as population
projections without upper and lower estimates are used, the variability of H ;7 results en-
tirely from the climate model outputs. Nevertheless, the pattern will differ to that of TR z
as the population present will amplify the variability of some areas more than others.
In addition, H 4 is displayed alongside TR 5 and population projections in Figure 7, mak-
ing the underlying relationship apparent. For example, northeastern South America has
substantially greater TR 7 than western Europe. However, due to the former’s relatively
low population, H g is in fact lower in northeastern South America. Similarly, the high
population of the Indian subcontinent causes this area to have the greatest H 7 despite
lower TR 5 values than equatorial regions.

Regional and global aggregated changes in H ; from the pre-industrial are displayed
in Figure 8. Presently, the H 5 pre-industrial anomaly is 620 billion person-days, whereas
by the end of the twenty-first century this deviation increases to 1192, 1684, 2527, and
1544 billion person-days under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 respectively.
As well as having the greatest global exposure projection, SSP3-7.0 shows the greatest
variability in exposure across ensemble members, followed by SSP2-4.5, and then SSP1-
2.6 and SSP5-8.5. However, these global scale patterns are not consistent for all regions.
For instance, of the 44 regions, H 5 projections are greatest under SSP3-7.0 for 30 regions,
with the remainder greatest under SSP5-8.5. These 30 regions following global scale trends
are mainly developing regions from sub-Saharan Africa, whereas those deviating are largely
mid-latitude developed regions such as NZ, EAU (eastern Australia), WCE (western cen-
tral Europe), and ENA (eastern North America). Likewise, the pathway which minimises
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Figure 6: [A-E] Multi-model ensemble projections of average annual exposure to tropi-
cal nights, [F-J] the associated change from a pre-industrial baseline (1851-1900), [K-O]
and the inter-model variability for the present day (1981-2010), and four future scenarios
(2071-2100). Ocean areas are masked for clarity. Dotted regions represent zero values.

future H ;7 most varies across regions. For example, under SSP1-2.6, H 5 is lowest for 39
regions, of which both EAS and SSA exhibit a reduction in exposure from the present

day. Of the remaining regions, H 5 is lowest for EAU, CAU, CNA, and ENA (eastern North

America) under SSP3-7.0, and for CAR under SSP5-8.5 which, surprisingly, projects a
12.5% decrease in H 7 from the present day despite considerably higher GHG concen-
trations. In short, under SSP1-2.6 the increase in future exposure is minimised, whereas
its increase is greatest under SSP3-7.0 and SSP5-8.5 for developing and developed re-
gions respectively, yet exceptions do exist.
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Figure 7: A combination view of [A-F] projected total population distributions, [G-L]
multi-model ensemble projections of average annual number of tropical nights, [M-R] and
multi-model ensemble projections of average annual exposure to tropical nights for the
pre-industrial (1851-1900), present day (1981-2010), and four future scenarios (2071-2100).
Ocean areas are masked for clarity. Dotted regions represent zero values.
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383 4 Discussion

384 This study has used GCM and ESM simulations contributing to CMIP6 to project

385 future change in the number of tropical nights occurring annually relative to a pre-industrial
386 baseline. Although currently no studies of the same nature exist, comparison with those

387 using previous CMIP5 simulations can be made as both contain scenarios using the same

388 levels of radiative forcing. For example, future global and regional increase in the fre-

389 quency of tropical nights with increasing radiative forcing is a correlation which features

390 in both this study and similar studies using CMIP5 model simulations (e.g. Orlowsky
301 and Seneviratne (2012); IPCC (2013); Sillmann, Kharin, Zwiers, et al. (2013)). Indeed,

302 this correlation is also found in observational data (Morak et al., 2011) and historical
303 simulations (Sillmann, Kharin, Zhang, et al., 2013). Hence, this suggests, perhaps un-
304 surprisingly, that minimising the change in the frequency of tropical nights from the pre-
305 industrial is best achieved following pathways describing low radiative forcing futures,

396 such as SSP1-2.6. As an illustration, by following SSP1-2.6 over SSP5-8.5, an additional
307 36.6 tropical nights annually can be avoided at the global scale by the end of the twenty-

308 first century which equates to a reduction of 22.3%. Regionally this percentage reduc-

399 tion between SSP5-8.5 and SSP3-7.0 varies substantially, between 2.4-89.1%, with val-

400 ues smallest for equatorial regions and increasing as regions approach the poles, espe-

401 cially those of the Northern Hemisphere. As a result, in terms of avoiding increasing trop-
202 ical nights frequency, some communities will benefit more under SSP1-2.6 than others,

403 and so likely advocate worldwide adoption of the socioeconomic values described by this
204 pathway to a greater extent. This could potentially aggravate existing divisions within

405 environmental politics (Tranter, 2011; McCright et al., 2016). Moreover, these commu-

406 nities where increases can be avoided most are found in southern and southeastern Africa
a07 where the avoidance of up to 115 tropical nights annually is possible. However, as men-
a08 tioned previously, the alarming scarcity of extreme heat studies focusing on these regions
409 may cause such potential to go unrecognised by policy makers. In contrast, studies of

410 northern mid-latitudes are widely available facilitating greater comparison with the find-

a1 ings of this study. For example, under SSP5-8.5, this study projects the annual number
a1 of tropical nights to be 10-20 days greater than those simulated by CMIP5 models for
a13 the same level of radiative forcing (Viceto et al., 2019; Cardoso et al., 2019). Likewise,

a1a this deviation, albeit of smaller magnitude, is also present in other heavily studied ar-

a1s eas, such as eastern Australia and western North America under these high radiative forc-
a16 ing scenarios (Sillmann, Kharin, Zwiers, et al., 2013). Whereas, the CMIP6 and CMIP5
a17 simulations are more aligned when driven by lower radiative forcing. Consequently, this
a18 study finds that projected reductions in tropical nights frequency for these regions tend

a19 to be higher than those of CMIP5. However, due to slightly differing regional boundaries
20 employed between CMIPs, the robustness of this trend warrants further work. Lastly,

21 it is important to note that under no scenario are annual tropical nights projected to re-

a2 duce from either pre-industrial or present day levels. Hence, industries, infrastructure,

23 ecosystems, and other areas sensitive to nightly high temperatures, should be evaluated

o and, if required, prepared to handle these future increases.

s By coupling population distribution projections with climate simulations from CMIP6
26 models, this study is able to project future annual human exposure to tropical nights

a7 relative to a pre-industrial baseline. Globally the rise in future exposure from pre-industrial
28 levels is minimised under SSP1-2.6, which, when compared to SSP3-7.0, avoids 1336 bil-

29 lion person-days. In contrast with tropical nights, the pathway which avoids future ex-

230 posure most varies region by region, as has been found in previous studies, albeit of dif-

31 ferent heat events (Jones et al., 2018; Arnell et al., 2019; Wang et al., 2020). This vari-

32 ation is clear evidence that changes in population does influence exposure. This is be-

433 cause, if exposure was only dependent on changes in climate, all regional exposure would

434 be minimised under SSP1-2.6 as this is the pathway which minimises an increase in trop-
435 ical night frequency. Moreover, the relative influence of climate and population changes

436 differs across regions. For example, in the Caribbean and northern South America, as
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tropical nights are projected almost daily under all future pathways, future exposure is
primarily influenced by changes in population. In contrast, for regions where population
changes are fairly constant by the end of the twenty-first century, such as central Aus-
tralia, projected exposure is predominantly influenced by climatic changes. Similarly, de-
spite future tropical night frequency increasing across eastern Asia and southern South
America, under SSP1-2.6 exposure is projected to reduce from the present day, evidently
suggesting that the influence of population change is greater than that of climate for this
pathway. Such patterns in influence are reported for other heat events, albeit more quan-
titatively, in other studies (Z. Liu et al., 2017; Jones et al., 2018). Furthermore, this work
finds that for developed and developing countries the greatest exposure is projected un-
der SSP5-8.5 and SSP3-7.0 respectively. As developed countries historically have more
global influence, this divide could lead to the promotion of pathways not necessarily in
the best interest of developing countries. In addition, unsurprisingly, densely populated
regions lying close to the equator such as the Indian subcontinent, western Africa, and
southeastern Asia, have the highest change in exposure from the pre-industrial in ab-
solute terms. However, these areas also have the greatest reduction potential suggest-
ing these should be treated as key regions in global efforts to avoid future exposure. Lastly,
it is important to note that, although under SSP1-2.6 overall future exposure is avoided
most, there still exists regions with substantial exposure to tropical nights in this sce-
nario. This suggests that, for select regions, high levels of exposure will be inevitable.

As such, it is imperative that adaptive measures are implemented for these areas.

One main caveat to this work is the use of population projections from two differ-
ent sources, and subsequently differing methodologies, to analyse population change. In
this study, pre-industrial and present day distributions are derived from HYDE 3.2, whereas
those of the end of the twenty-first century are from projections by NCAR-CDIR. Con-
sequently, this introduces added uncertainty to this study’s analysis as it is unclear as
to whether deviations from the pre-industrial are true projected changes, or whether they
arise due to the differing underlying methodologies. Nevertheless, the use of both sources
was a necessity to enable this study’s end of the twenty-first century comparison with
the pre-industrial as currently there exist no suitable population projections which cover
this temporal range entirely. As such, a future effort to enhance the temporal coverage
of population projections will be of great use to similar studies to follow. Furthermore,
population projections are incorporated into this work without uncertainty ranges mean-
ing variation in exposure to tropical nights arises solely from the climate ensemble mem-
bers which limits the confidence in the uncertainty ranges of exposure quoted in this study.
Future works should use population projections which include likely value ranges to avoid
similar limitations. Lastly, the population projections used do not account for intra-annual
migration and so the fact that a region’s population is a dynamic variable in perpetual
fluctuation is not accounted for. For example, if a region’s population is below the an-
nual average when tropical nights are likely to occur, the true annual exposure is less than
what this study quotes. It would be of interest to compare a future study focusing on
seasonal exposure to tropical nights to see how seasonal population variation impacts
the values quoted here.

At the time of this study, the required variables, monthly and daily minimum tem-
peratures, have only been simulated by 15 CMIP6 models under the necessary runs. Sub-
sequently, the multi-model ensemble used in this work is not fully populated meaning
the full uncertainty in climate outcomes may not have been explored adding uncertainty
to the findings derived. Nevertheless, this added uncertainty remains low relative to sim-
ilar studies which use single model output to derive their respective extreme event in-
dices meaning an improvement has been made. This improvement is evident in the greater
performance of the multi-model ensemble relative to its individual members. Further-
more, three pairs of models sharing the same atmospheric component are found to ex-
hibit strikingly similar spatial performance. This suggests a violation of the model in-
dependence assumption used in this study. Moreover, the performance of coarser reso-
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lution models is found to be greater than those of finer resolutions when simulating the
annual number of tropical nights. Consequently, it could benefit future works to devi-
ate from this study’s equal weighting of ensemble members in order to adjust for these
behaviours. Although, as conclusions of model performance may differ with alternative
measures of performance and observation datasets, future work should ensure these be-
haviours are robust before accounting for them.

This work does not account for urban areas often being warmer than surrounding
rural areas due to the added heat generated from the increase in human activity, a phe-
nomenon known as the urban heat island effect (Oke, 1982). Studies have noted that the
difference between urban and rural areas can be as much as 2-3°C (Stewart & Oke, 2012),
and this range is found to be even larger during a heat event (Li & Bou-Zeid, 2013). As
this study does not attempt to account for these temperature differences, such as using
climate simulations producing separate urban and rural outcomes, the urban heat island
effect is not represented. Hence, it is possible this work underestimates the number of
tropical nights experienced by urban populations. This underestimation will be great-
est under scenarios with greater levels of urbanisation, such as SSP1-2.6 and SSP5-8.5,
as opposed to those where future urban areas are less populated. This will effectively
reduce the exposure range seen across the future pathways as the lower bound, largely
under SSP1-2.6, will rise. Consequently, global and regional estimations of avoided ex-
posure made in this study are likely greater than their true values, yet, judging from the
magnitude of this difference found in other studies (Z. Liu et al., 2017; Jones et al., 2018),
not accounting for the urban heat island effect should not impact on this study’s main
conclusions on which pathways avoid greatest change.

5 Conclusions

This study is among initial research beginning to explore CMIP6 model simulations
in the context of exposure to extreme heat events. Projections of annual exposure to trop-
ical nights for the pre-industrial, present day, and four futures described by SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5, have been presented. These have been supplemented
with similar projections of tropical night frequency, total population, and near surface
temperature. A deliberate focus has been made to quantify future change relative to the
pre-industrial such that pathways which minimise detrimental change can be highlighted.
This study finds that global annual exposure to tropical nights is projected to increase
from pre-industrial levels by 814-1055% by the end of the twenty-first century depend-
ing on the pathway followed. Similarly, both underlying determinants of this exposure
are projected to increase substantially from the pre-industrial with the global average
annual number of tropical nights and total population projected to increase by 32-71%
and 438-740% respectively across the four alternative futures. Importantly, this study
finds that these global increases can be mitigated by adopting the socioeconomic values
central to the SSP1-2.6 narrative, yet under no scenario do they become decreases. This
finding largely holds at the regional scale in terms of exposure, although there are no-
table exceptions. Overall, this study acts as a first assessment of how tropical nights and
humanity’s exposure to them is set to change as this century progresses. This work looks
to encourage subsequent studies to provide more insights into the results that have been
discussed here. With tropical nights already impeding on humanity, the projected in-
creases that have been highlighted must act as an incentive to develop mitigation and
adaptive measures for the benefit of all, otherwise undesirable consequences loom.
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