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Abstract

Extreme heat events are one of the most dangerous climate hazards and they are projected to increase in frequency, intensity and

duration as this century progresses. Change in future exposure to extreme heat events depends not only on climate change, but

also on changes to future population size and the areas this population inhabits. This study explores exposure to the heat event

known as a tropical night. Using a CMIP6 multi-model ensemble, coupled with population projections, this study projects

exposure for the four alternative futures described by SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. Exposure is quantified

annually at both the global and regional scale, relative to a preindustrial baseline. By the end of the twenty-first century

global annual exposure to tropical nights will total 1338-2674 billion person-days depending on the pathway followed. Of the

four pathways, globally change in exposure from the pre-industrial is avoided most under SSP1-2.6, which, when compared to

SSP3-7.0 which projects the greatest change, is a reduction of 1336 billion person-days annually. Exposure reduction varies

at the regional level, yet in the majority of cases, SSP1-2.6 remains the more desirable future in terms of minimising future

exposure. Moreover, this study finds that changes in climate versus changes in population do not equally influence changes in

exposure, and their contributions vary regionally. Irrespective of the future pathway followed, human exposure is set to increase

at the global scale and for the vast majority of regions.
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Abstract12

Extreme heat events are one of the most dangerous climate hazards and they are pro-13

jected to increase in frequency, intensity and duration as this century progresses. Change14

in future exposure to extreme heat events depends not only on climate change, but also15

on changes to future population size and the areas this population inhabits. This study16

explores exposure to the heat event known as a tropical night. Using a CMIP6 multi-17

model ensemble, coupled with population projections, this study projects exposure for18

the four alternative futures described by SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5.19

Exposure is quantified annually at both the global and regional scale, relative to a prein-20

dustrial baseline. By the end of the twenty-first century global annual exposure to trop-21

ical nights will total 1338-2674 billion person-days depending on the pathway followed.22

Of the four pathways, globally change in exposure from the pre-industrial is avoided most23

under SSP1-2.6, which, when compared to SSP3-7.0 which projects the greatest change,24

is a reduction of 1336 billion person-days annually. Exposure reduction varies at the re-25

gional level, yet in the majority of cases, SSP1-2.6 remains the more desirable future in26

terms of minimising future exposure. Moreover, this study finds that changes in climate27

versus changes in population do not equally influence changes in exposure, and their con-28

tributions vary regionally. Irrespective of the future pathway followed, human exposure29

is set to increase at the global scale and for the vast majority of regions.30

Plain Language Summary31

Extreme heat is a substantial health risk, and the amount of people exposed to it32

is expected to increase with climate change. One measure of extreme heat is when the33

temperature at night does not fall below 20°C, because this prevents the body recover-34

ing from heat stress suffered during the day. Using a collection of new model projections,35

we look at the impact of climate change on this measure. Unsurprisingly more places ex-36

perience extreme heat, and more often, as the climate warms. We combine this with sce-37

narios of future population to look at where and when people are exposed to these dan-38

gerous night-time conditions. We show that much of this risk could be avoided by keep-39

ing global warming in check.40

1 Introduction41

The profound socioeconomic implications of extreme climate events cannot fail to42

grab humanity’s attention. These calamities affect the health of both our physiology and43

economies, often decimating agricultural yields and labour productivity, disrupt our so-44

cial structures, at times forcing migration, as well as aggravating many other areas in45

a myriad of complex ways (Carleton & Hsiang, 2016). Extreme climate events are rare,46

with characteristics defined by the tails of probability distributions (Visser & Petersen,47

2012), yet increasing media coverage of the devastation they inflict has prompted a surge48

in societal interest (Karl & Easterling, 1999; Boudet et al., 2020; Hopke, 2020). It has49

long since been reported that a changing climate will alter the intensity, frequency, du-50

ration, and geographic extent of these events (Mearns et al., 1984; Wigley, 1985, 2009),51

yet quantifying such change is difficult, primarily due to their rarity (Nicholls, 1995; Frei52

& Schar, 2001). Increasing acceptance that anthropogenic climate change is a reality has53

generated a great deal of attention towards its effect on extreme events and there now54

exists ever-growing evidence that human activity is modifying them, especially those of55

extreme heat (Peterson et al., 2012, 2013; Stott et al., 2014; Herring et al., 2015, 2016,56

2018, 2019, 2020). To advance this effort, this study will explore humanity’s exposure57

to extreme heat during the pre-industrial, present day, and end of the twenty-first cen-58

tury using state-of-the-art climate and population projections.59

An extreme heat event, often termed a heat wave, is a prolonged period of high tem-60

peratures exceeding the local average at a given time. The beginning of the twenty-first61
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century saw numerous extreme heat events causing a significant impact upon ecosystems,62

societies, and economies. For example, communities across Europe in 2003 and Russia63

in 2010 suffered 70,000 and 55,000 heat-related deaths respectively, revealing the infa-64

mous relationship between extreme heat and mortality (Robine et al., 2008; Barriope-65

dro et al., 2011). Furthermore, a 2013 heat event across eastern China saw fierce eco-66

nomic consequences due to its impact on agriculture and infrastructure, culminating in67

an estimated direct loss of 59 billion RMB (Sun et al., 2014). Similarly, extreme heat68

events place considerable strain on utility services. For instance, in 2015, a two-day heat69

event across England led to emergency speed restrictions across the national rail network70

resulting in 220,000 minutes of delays (Ferranti et al., 2018). In like manner, between71

2006-2013, Buenos Aires experienced 20 extreme heat-related power blackouts leaving72

millions without electricity (Santagata et al., 2017). Also of significance are the impacts73

on ecosystems caused by extreme heat. For example, in 2011 the Australian west coast74

experienced a marine heat event which catalysed a local bio-diversity shift towards warm75

water fish species permanently changing this ecosystem and the services it provides (Wernberg76

et al., 2013). These examples are noted here to provide a glimpse of the range of con-77

sequences extreme heat can cause with more detailed views provided by Perkins (2015),78

Carleton and Hsiang (2016), and Horton et al. (2016). Clearly extreme heat events have79

severe ramifications making this study’s contribution in understanding them imperative.80

1.1 Historical Trends81

Since the turn of the century, extreme heat event research has increased consid-82

erably, focusing mainly on their intensity, frequency, and duration. The Fifth Assessment83

Report of the Intergovernmental Panel on Climate Change (AR5 IPCC) concluded that84

since the mid-twentieth century it is likely (≥ 66% probability) that the frequency of85

heat events has increased in large parts of Europe, Asia, and Australia (IPCC, 2013).86

Since then, more studies of these regions have emerged supporting, not only increases87

in heat event frequency, yet also increases in their intensity and duration (Rahmstorf &88

Coumou, 2011; Donat et al., 2014; Mishra et al., 2015; Luo & Lau, 2017; Founda et al.,89

2019; Luo et al., 2020). For example, a study using daily temperature observations be-90

tween 1950-2011 by Perkins et al. (2012), concluded that, for a given year, the maximum91

temperature of its most intense heat event grew on average by 2.0°C, 0.8-1.0°C, and 0.4-92

0.8°C per decade across East Asia, Europe, and Australia respectively. Furthermore, such93

trends are not limited to these regions. For instance, Ceccherini et al. (2017) state that94

the average annual number of African extreme heat events between 2006-2015 was 24.5,95

double that of its value between 1981-2005. This study also reports increases, albeit of96

smaller magnitude, in the duration and intensity of heat events, as found in other African97

studies (Fontaine et al., 2013; Moron et al., 2016). Indeed, these trends are also reported98

in North America. For example, DeGaetano and Allen (2002) found that between 1960-99

1996 the number of times that daily maximum temperature exceeded the 95th percentile100

increased, and consequently infer an increase in heat event frequency and intensity across101

this period. Conversely, a separate North America study using a different heat event def-102

inition, concludes that southeastern North America does not exhibit these trends (Alexander103

et al., 2006). Additionally, in South America, Ceccherini et al. (2016) reported that heat104

event intensity and frequency has increased since 1980, with the greatest increases oc-105

curring post 2000. However, other studies suggests that these increases are true only for106

heat events defined using daily minimum temperatures, and that, for instance, in south-107

ern South America there are no significant trends across 1980-2010 (Alexander et al., 2006;108

Rusticucci, 2012; Mishra et al., 2015). In summary, globally most land areas have ex-109

perienced more intense, frequent, and longer heat events since the mid-twentieth cen-110

tury, with only a few regions, such as southern South America and southeastern North111

America, failing to exhibit such trends. Where discrepancies do exist in select regions,112

the studies often employ differing heat event definitions. Hence, this study will be ex-113
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plicit in defining a heat event and cautious with comparison to literature employing al-114

ternative definitions.115

1.2 Future Projections116

Coupled atmosphere-ocean general circulation models (GCMs) and Earth system117

models (ESMs) are frequently used in future extreme heat event research. The projec-118

tions used are predominately those made for the Coupled Model Intercomparison Project119

(CMIP, (Meehl et al., 2005, 2007; Taylor et al., 2012)). As each CMIP phase uses dif-120

fering emissions scenarios, this summary will reference a scenario as high, medium, or121

low relative to others of the same phase. The latest IPCC assessment found that it is122

very likely (90-100% probability) that future heat events will occur with greater frequency123

and duration (IPCC, 2013), and global studies since, despite their scarcity, further sup-124

port this (Coumou & Robinson, 2013; Russo et al., 2014; Dosio et al., 2018). For exam-125

ple, Fischer and Knutti (2015) found that, under future 2°C warming, by 2050 the prob-126

ability of an extreme heat event, defined as exceeding the 99th percentile, is over five times127

higher that of the pre-industrial. Equally, Sillmann, Kharin, Zwiers, et al. (2013) found128

that by the end of the twenty-first century, the global annual number of heat days on129

land, defined as those exceeding the 90th percentile of 1961-1900, will increase by 167130

days under a high emissions scenario. In regard to the far greater quantity of regional131

studies, those focused on the Mediterranean present striking projections (Amengual et132

al., 2014; Lelieveld et al., 2014; Viceto et al., 2019). For example, Seneviratne et al. (2016)133

project that under present day warming of 2°C, the magnitude of the most extreme Mediter-134

ranean heat events will still rise by 3°C. Indeed, Cardoso et al. (2019) concluded that,135

under a high emissions scenario, half of the end of the twenty-first century Portuguese136

heat events will be stronger than the notorious European 2003 heat event and will last137

17 days longer than those of 1971-2000. Additionally, Asian heat events are projected138

to be more intense, frequent, and longer. For instance, by 2050 under a high emissions139

scenario, South Korea is projected a 131% increase in heat events above 30°C and a 50%140

reduction in their inter-annual variability relative to 1981-2005 (Lee et al., 2014). Sim-141

ilarly, in India, only under a low emissions scenario will changes in heat events, defined142

as consecutive days exceeding 45°C, be avoided in the populous southern regions (Murari143

et al., 2014). Finally, increases in frequency, intensity, and duration are projected for Aus-144

tralian (Cowan et al., 2014) and South American (Feron et al., 2019) heat events, with145

greatest change occurring in their respective northern regions. In short, the literature146

projects more intense, common, and longer heat events, with increases more substan-147

tial under higher emissions scenarios. In order to benefit from the latest CMIP6 phase148

(Eyring et al., 2016) and address the need for global scale analysis, this study will ex-149

plore heat events both globally and regionally under the new emissions pathways.150

2 Data and Methods151

This study uses daily minimum surface temperatures output from 15 climate mod-152

els developed by various institutes around the world. The CMIP6 historical simulations153

provide data for the pre-industrial and present day (Eyring et al., 2016), whereas the SSP1-154

2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios from the Scenario Model Intercompar-155

ison Project (ScenarioMIP) provide end of the twenty-first century data (O’Neill et al.,156

2016). Although some models have multiple members, this study uses a single member157

for each model, typically r1i1p1f1, as the influence of internal model variability on ex-158

treme heat event metrics is relatively low compared to that of physically different mod-159

els (Perkins-Kirkpatrick & Gibson, 2017). Each model in Table 1 is chosen based on hav-160

ing at least one member with daily minimum surface temperature data available for both161

the CMIP6 historical simulations and ScenarioMIP as of June 2020 (the start of this work).162

Monthly (‘tas’) and daily minimum temperatures (‘tasmin’) are used to generate aver-163

age annual temperatures and average annual extreme heat metrics respectively. Anoma-164
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Model
Institution

Initials
Country

Atmospheric

Resolution

(Lat. x Lon.)

Reference

ACCESS-CM2a
CSIRO-

ARCCSS
Australia 1.25°x 1.88° Law et al. (2017)*

ACCESS-ESM1-5b CSIRO Australia 1.25°x 1.88° Law et al. (2017)*

AWI-CM-1-1-MRa AWI Germany 0.93°x 0.94° Semmler et al. (2020)

BCC-CSM2-MRa BCC China 1.13°x 1.13° Wu et al. (2019)

CanESM5b CCCma Canada 2.81°x 2.81° Swart et al. (2019)

CNRM-CM6-1a
CNRM-

CERFACS
France 1.41°x 1.41° Voldoire et al. (2019)

GFDL-ESM4b
NOAA-

GFDL
USA 1.00°x 1.25° Dunne et al. (2020)

INM-CM4-8a INM Russia 1.50°x 2.00° Volodin et al. (2018)

INM-CM5-0a INM Russia 1.50°x 2.00° Volodin et al. (2017)

IPSL-CM6A-LRa IPSL France 1.26°x 2.50° Boucher et al. (2020)

MIROC6b MIROC Japan 1.41°x 1.41° Tatebe et al. (2019)

MPI-ESM1-2-HRb MPI-M Germany 0.94°x 0.94° Muller et al. (2018)

MRI-ESM2-0b MRI Japan 1.13°x1.13° Yukimoto et al. (2019)

NorESM2-MMb NCC Norway 0.94°x 1.25° Seland et al. (2020)

UKESM1-0-LLb MOHC UK 1.25°x 1.88° Sellar et al. (2019)

Table 1: Model names, modelling institutions and countries, and atmospheric resolutions
of 15 CMIP6 climate models. Model names denoted with a and b are GCMs and ESMs
respectively. *Previous model version reference.

lies represent deviations from their corresponding 50-year pre-industrial baselines. Pro-165

cessing these average variables involve time averaging in a model’s native grid before us-166

ing bilinear interpolation to a common 1.0◦ x 1.0◦ latitude-longitude grid for use with167

population projections and model evaluation. This study primarily focuses on multi-model168

ensemble output as they have been shown to outperform individual models (Tebaldi &169

Knutti, 2007). All models will be weighted equally when forming a multi-model ensem-170

ble as, although some models will outperform others when compared to observations, this171

is not necessarily a precursor for success in simulating climates absent of observations172

(Knutti et al., 2007). Regional analysis, including determining the mean, median, and173

various percentiles, is performed on the common grid for IPCC AR6 scientific land re-174

gions, excluding those covering Antarctica (Iturbide et al., 2020).175
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2.1 Heat Event and Exposure Definitions176

As a universal heat event definition remains an open research question, this study177

employs one it deems most appropriate. For a given day, a heat event will be said to oc-178

cur if the daily minimum temperatures exceeds 20◦C. This is commonly referred to as179

a tropical night (TR). The use of an absolute threshold, specifically a minimum one, en-180

sures only heat events genuinely dangerously warm are considered by guaranteeing a min-181

imum intensity. This study acknowledges that relative threshold definitions can account182

for local heat acclimatisation yet does not deem it suitable for use with future scenar-183

ios where the underlying socioeconomic factors, and subsequently the ability to adapt184

to heat, for a given region can differ. The number tropical nights per year is averaged185

over the relevant climatological period (1851-1900 for the pre-industrial, 1981-2010 for186

the ‘present day’, and 2071-2100 for the end of the twenty-first century). As the aver-187

age annual count of tropical nights (TRĀ) has fixed maximum and minimum values, us-188

ing bilinear interpolation during processing is appropriate as it is monotonic.189

To determine human exposure to TRs for a given period, climate projections are190

combined with population projections on a common 1.0◦ x 1.0◦ latitude-longitude grid.191

For each cell, the annual TR count is multiplied by the projected population returning192

a gridded exposure distribution of annual heat exposure measured in person-days. As193

exposure is calculated at the grid cell level, for this study’s global and regional analy-194

sis, exposure is aggregated accordingly.195

2.2 Model Evaluation196

Following previous CMIP studies of climate extreme indices, this study uses root197

mean square error (RMSE) metrics to assess model performance against observations198

for the present day (Gleckler et al., 2008; Sillmann, Kharin, Zhang, et al., 2013). Using199

a set of model RMSEs, the relative RMSE of model i, RMSER
ij , for observational dataset200

j is given by201

RMSER
ij =

RMSEij −RMSEM
j

RMSEM
j

(1)

where RMSEM
j is the median RMSE of the set of models compared with observation202

dataset j. This median RMSE is not equivalent to the multi-model ensemble RMSE which203

this study also computes. The observational dataset used for average annual tempera-204

ture RMSEs is the 5.0° x 5.0° latitude-longitude CRUTEM4 land-surface air tempera-205

ture dataset (Osborn & Jones, 2014), whereas the 2.5° x 3.75° latitude-longitude HadEX2206

extreme indices dataset is used for TRĀ RMSEs (Donat et al., 2013). Bilinear interpo-207

lation is used to translate both model outputs to the coarser native resolutions of the208

observational datasets. Both sets of observations lack full spatial coverage due to station-209

data scarcity, particularly across Africa, South America and the polar regions. Conse-210

quently, the global RMSEs of this study only consider the land regions present in each211

observational dataset.212

2.3 Historical Population Projections213

HYDE 3.2 population projections cover a period from 10,000 BC to 2015, with data214

for 1700-2000 and 2000-2015 available at decadal and annual intervals respectively. The215

projections include counts of total, urban, and rural populations, and are frequently utilised216

in other climate research (e.g. Newbold et al. (2015); Searchinger et al. (2018); Pugh et217

al. (2019)). To obtain spatial distributions, HYDE 3.2 uses various population time se-218

ries of areas defined by current country boundaries and subjects them to a weighting al-219

gorithm centred on habitat suitability. In doing so, population estimates are distributed220
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across a 0.083◦ x 0.083◦ latitude-longitude grid based on the likelihood a given gird cell221

is inhabited (Goldewijk et al., 2010). This study computes equally weighted time-averages222

of these distributions using the decadal projections across 1850-1900 and 1980-2010 for223

the pre-industrial and current period respectively. Doing so potentially undervalues the224

exponential population changes seen between 1980-2010, yet is necessary as to keep with225

the conventional 30-year window used in climate studies. A pre-industrial anomaly for226

the present day is computed where each anomaly represents the deviation from the 50-227

year mean pre-industrial population at a particular grid cell. All time-averaged projec-228

tions are translated to a common 1.0◦ x 1.0◦ latitude-longitude grid for use with climate229

projections by summing the population counts that fall within each 1.0◦ grid cell. Re-230

gional projections for the IPCC AR6 scientific land regions (Iturbide et al., 2020) are com-231

puted similarly.232

2.4 Future Population Projections233

The NCAR-CIDR projections provide population distributions for each SSP which234

are consistent with their underlying demographic assumptions and exhibit the popula-235

tion dynamics inferred within their narratives. The population projections cover the pe-236

riod 2010-2100 in decadal time steps at a 0.125◦ x 0.125◦ latitude-longitude resolution237

and are increasingly used in current climate research (e.g. Zhang et al. (2017); Dottori238

et al. (2018); W. Liu et al. (2018)). Each projection consists of total, urban, and rural239

population counts. Quantitatively each projection is consistent at the national level as240

the total, urban, and rural population counts are constrained to equal those of the SSP241

for every nation. Also, the projections are qualitatively consistent as the demographic242

characteristics of each narrative are translated into model parameters related to urban243

and rural population development (Jones & O’Neill, 2013, 2016). This study computes244

equally weighted time-averages of the 2070-2100 decadal NCAR-CIDR projections for245

SSP1, SSP2, SSP3, and SSP5, as well as anomalies relative to the pre-industrial base-246

line from HYDE 3.2 projections. Due to differing resolutions, the latter is computed on247

a common 1.0◦ x 1.0◦ latitude-longitude grid. The methods used for the translation to248

this common grid and computing regional values are the same as that of the historical249

projections.250

3 Results251

3.1 Model Performance252

The individual model and multi-model ensemble performances in projecting present253

day TRĀ versus HadEX2 observations are displayed in Figure 1 and 2. Generally the254

individual models tend to overestimate TRĀ in regions of South America, Africa, Aus-255

tralia, and western North America by over 45 days, whereas most underestimate TRĀ256

in the Northern Hemisphere by 1-5 days. Nevertheless, some models outperform others257

as evident through the RMSE metrics, with IPSL-CM6A-LR and INM-CM4-8 perform-258

ing best, and MIROC6, AWI-CM-1-1-MR, and MPI-ESM1-2-HR, the worst. Interest-259

ingly two of the worst performers, AWI-CM-1-1-MR, and MPI-ESM1-2-HR, have the finest260

resolutions, suggesting that a finer resolution does not necessarily equal better TRĀ pro-261

jections. Lastly, the multi-model ensemble largely outperforms the individual models with262

its relative RMSE only surpassed by IPSL-CM6A-LR and INM-CM4-8. In short, indi-263

vidual model performance in projecting TRĀ is varied, whereas the multi-model ensem-264

ble consistently outperforms most.265

3.2 Tropical Nights266

Clear global patterns in annual mean surface temperature change exist across pro-267

jections (Figure 3). As well as projecting the greatest warming at the global scale, SSP5-268
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Figure 1: Present day (1981-2010) average annual number of tropical nights derived from
[A] HadEX2 observations and [B] CMIP6 multi-model ensemble simulations, along with
[C] the multi-model ensemble observational anomaly. Hatched areas lack observational
data. Ocean areas are masked for clarity. [D-E] RMSE performance metrics for both the
multi-model ensemble and its individual members.

8.5 does so for all 44 AR6 regions, with the largest pre-industrial anomalies of 9.51◦C269

and 8.88◦C found in RAR (Russian Arctic) and NEN (northeastern North America). In-270

terestingly, the third largest anomaly of 8.01◦C is for RAR under SSP3-7.0, a lower GHG271

concentration scenario, highlighting the severity of warming projected for this region.272

Conversely, for all 44 regions, SSP1-2.6 avoids the most future warming, with the low-273

est pre-industrial change of 1.39◦C projected for SSA (southern South America), followed274

by 1.55◦C and 1.69◦C for NZ (New Zealand) and SAU (southern Australia) respectively.275

Similarly, regions with annual mean temperatures > 30.0◦C can be avoided entirely un-276

der SSP1-2.6, whereas 5 exist under SSP5-8.5. Importantly, a decrease in annual mean277

temperature from the present day is not projected for any region by the end of the twenty-278

first century. Finally, the multi-model ensemble mean is greater than the median for most279

regions, indicating a positively skewed distribution, with this skew more apparent un-280

der SSP3-7.0 and SSP5-8.5, than SSP1-2.6, and SSP2-4.5. In short, the greatest avoid-281

ance in future warming from the pre-industrial, both globally and regionally, is under282

SSP1-2.6.283
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Figure 2: Average annual number of tropical nights present day (1981-2010) projection
anomaly relative to those of HadEX2 observations for 15 CMIP6 models. Hatched areas
lack observational data. Ocean area are masked for clarity.
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Spatial projections of multi-model ensemble average annual number of tropical nights284

(TRĀ) for the present day, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, along with the285

corresponding change from a pre-industrial baseline and inter-model variability, are pre-286

sented in Figure 4. As annual average temperature, broad patterns are visible across pro-287

jections. For example, TRĀ is greatest across equatorial regions, and least amongst po-288

lar and high-altitude regions. Another pattern is apparent in the pre-industrial anoma-289

lies, namely that the largest deviations of a given scenario are projected for northwest-290

ern and western South America, and sub-Saharan Africa. It is worth noting that the mag-291

nitude of increase in TRĀ, both absolute and relative to the pre-industrial, increases with292

increasing GHG concentrations. For instance, under SSP1-2.6, northern mid-latitudes293

are projected to endure 1-20 tropical nights, whereas under SSP5-8.5, this increases to294

10-50. Similarly, the Tibetan Plateau region where TRĀ = 0 contracts as GHG con-295

centrations increase. Furthermore, the northern mid-latitudes and equatorial regions show296

contrasting inter-model variability behaviour with increasing GHG concentrations, with297

the former exhibiting greatest variability under the present day, and the latter under SSP5-298

8.5. This is likely due to the threshold nature of TRĀ. Variability will be greatest when299

daily minimum NST is close to the 20°C threshold as, for example, even if a region has300

a temperature range of 25-40°C, the TRĀ variability would be low as this range lies above301

the threshold.302

A regional analysis of changes in TRĀ from pre-industrial levels is presented in Fig-303

ure 5 . Globally, excluding Antarctica, TRĀ is projected to increase by 10.6, 30.3, 43.7,304

57.7, and 66.9 days from the pre-industrial for the present day, SSP1-2.6, SSP2-4.5, SSP3-305

7.0, and SSP5-8.5 respectively. Moreover, the end of the twenty-first century change from306

the pre-industrial is greatest under SSP5-8.5, and least under SSP1-2.6 for all 44 regions.307

Additionally, SEAF (southern East Africa) ranks first within each future scenario for great-308

est absolute pre-industrial increase in TRĀ, with neighbouring regions of CAF (central309

Africa), ESAF (east southern Africa), and WSAF (west southern Africa) often sharing310

the second and third ranks. Naturally, in absolute terms, smallest increases are for re-311

gions where historically a TR is rare, such as GIC (Greenland and Iceland). In addition,312

the number of regions where TRĀ > 300 days is 3, 5, 9, and 10 under SSP1-2.6, SSP2-313

4.5, SSP3-7.0, and SSP5-8.5 respectively, and so SSP1-2.6 has less regions with danger-314

ously high TRĀ. It is important to note that for regions projected to experience almost315

daily tropical nights, such as CAR (Caribbean), the rate of increase in TRĀ appears to316

halt with increasing GHG concentrations, yet this is because TRĀ is already at its max-317

imum. Subsequently, this is not evidence that, after a certain threshold, increasing GHGs318

do not contribute to increasing TRĀ. Lastly, variability across model members is great-319

est under high GHG concentrations, and a positive skew is apparent. In short, TRĀ is320

projected to increase regardless of scenario, yet is avoided most under SSP1-2.6.321
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Figure 4: [A-E] Multi-model ensemble projections of average annual number of tropi-
cal nights, [F-J] the associated change from a pre-industrial baseline (1851-1900), [K-O]
and the inter-model variability for the present day (1981-2010), and four future scenarios
(2071-2100). Ocean areas are masked for clarity. Dotted regions represent zero values.
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3.3 Population and Heat Exposure322

The global population is projected to rise from the pre-industrial with increases323

compared to the pre-industrial baseline of 301.0%, 438.2%, 555.1%, 740.2%, and 463.3%324

projected for the present day, SSP1, SSP2, SSP3, and SSP5 respectively. Unsurprisingly,325

the most populated region for the present day is EAS (eastern Asia) and SAS (south-326

ern Asia) which, combined, hold 42.3% of the global population. Whereas regions least327

populated are naturally those with harsh environments such as CAU (central Australia)328

and GIC. These geographic patterns extend into future projections, yet there is clear vari-329

ation between different pathways. For example, under SSP3, low population growth in330

high income countries sees minor population increases from the present day in North Amer-331

ica, and decreases in Europe, with some areas of the latter showing decreases from the332

pre-industrial. Conversely, the same high income countries under SSP5 experience high333

population growth, the greatest seen in WNA (western North America), CNA (central334

North America), and NEU (northern Europe) where growth exceeding 100% is projected.335

Similarly, variation between SSP3 and SSP5 is evident for high fertility countries. For336

instance, under SSP3, high population growth in WAF (western Africa) and SAS sees337

populations 3384.9% and 891.8% greater than the pre-industrial respectively. Whereas338

under the low growth of SSP5, these values reduce to 1705.5% and 433.4% accordingly.339

Lastly, it is worth noting that population loss from the present day is projected for EEU340

(eastern Europe) and EAS regardless of the future pathway followed. In summary, global341

future population increases are avoided most under SSP1 and SSP5, yet this is not con-342

sistent regionally, as developing and developed countries exhibit varying behaviour for343

a given pathway.344

Present day and end of the twenty-first century multi-model ensemble projections345

of average annual exposure to tropical nights, HĀ, along with the corresponding change346

from a pre-industrial baseline and inter-model variability, are presented in Figure 6. Clear347

patterns are evident across the projections with HĀ, and its change from the pre-industrial,348

greatest for equatorial regions and the Indian subcontinent, and least, excluding unin-349

habited areas, across northern mid-latitudes, southern South America, and some areas350

within the Tibetan Plateau. The decrease in HĀ from the pre-industrial seen in Australia351

is likely a methodology discrepancy between the two different underlying population pro-352

jections used as opposed to a true reduction in exposure. Furthermore, as population353

projections without upper and lower estimates are used, the variability of HĀ results en-354

tirely from the climate model outputs. Nevertheless, the pattern will differ to that of TRĀ355

as the population present will amplify the variability of some areas more than others.356

In addition, HĀ is displayed alongside TRĀ and population projections in Figure 7, mak-357

ing the underlying relationship apparent. For example, northeastern South America has358

substantially greater TRĀ than western Europe. However, due to the former’s relatively359

low population, HĀ is in fact lower in northeastern South America. Similarly, the high360

population of the Indian subcontinent causes this area to have the greatest HĀ despite361

lower TRĀ values than equatorial regions.362

Regional and global aggregated changes in HĀ from the pre-industrial are displayed363

in Figure 8. Presently, the HĀ pre-industrial anomaly is 620 billion person-days, whereas364

by the end of the twenty-first century this deviation increases to 1192, 1684, 2527, and365

1544 billion person-days under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 respectively.366

As well as having the greatest global exposure projection, SSP3-7.0 shows the greatest367

variability in exposure across ensemble members, followed by SSP2-4.5, and then SSP1-368

2.6 and SSP5-8.5. However, these global scale patterns are not consistent for all regions.369

For instance, of the 44 regions, HĀ projections are greatest under SSP3-7.0 for 30 regions,370

with the remainder greatest under SSP5-8.5. These 30 regions following global scale trends371

are mainly developing regions from sub-Saharan Africa, whereas those deviating are largely372

mid-latitude developed regions such as NZ, EAU (eastern Australia), WCE (western cen-373

tral Europe), and ENA (eastern North America). Likewise, the pathway which minimises374
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Figure 6: [A-E] Multi-model ensemble projections of average annual exposure to tropi-
cal nights, [F-J] the associated change from a pre-industrial baseline (1851-1900), [K-O]
and the inter-model variability for the present day (1981-2010), and four future scenarios
(2071-2100). Ocean areas are masked for clarity. Dotted regions represent zero values.

future HĀ most varies across regions. For example, under SSP1-2.6, HĀ is lowest for 39375

regions, of which both EAS and SSA exhibit a reduction in exposure from the present376

day. Of the remaining regions, HĀ is lowest for EAU, CAU, CNA, and ENA (eastern North377

America) under SSP3-7.0, and for CAR under SSP5-8.5 which, surprisingly, projects a378

12.5% decrease in HĀ from the present day despite considerably higher GHG concen-379

trations. In short, under SSP1-2.6 the increase in future exposure is minimised, whereas380

its increase is greatest under SSP3-7.0 and SSP5-8.5 for developing and developed re-381

gions respectively, yet exceptions do exist.382

–15–



manuscript submitted to Earth’s Future

Figure 7: A combination view of [A-F] projected total population distributions, [G-L]
multi-model ensemble projections of average annual number of tropical nights, [M-R] and
multi-model ensemble projections of average annual exposure to tropical nights for the
pre-industrial (1851-1900), present day (1981-2010), and four future scenarios (2071-2100).
Ocean areas are masked for clarity. Dotted regions represent zero values.
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4 Discussion383

This study has used GCM and ESM simulations contributing to CMIP6 to project384

future change in the number of tropical nights occurring annually relative to a pre-industrial385

baseline. Although currently no studies of the same nature exist, comparison with those386

using previous CMIP5 simulations can be made as both contain scenarios using the same387

levels of radiative forcing. For example, future global and regional increase in the fre-388

quency of tropical nights with increasing radiative forcing is a correlation which features389

in both this study and similar studies using CMIP5 model simulations (e.g. Orlowsky390

and Seneviratne (2012); IPCC (2013); Sillmann, Kharin, Zwiers, et al. (2013)). Indeed,391

this correlation is also found in observational data (Morak et al., 2011) and historical392

simulations (Sillmann, Kharin, Zhang, et al., 2013). Hence, this suggests, perhaps un-393

surprisingly, that minimising the change in the frequency of tropical nights from the pre-394

industrial is best achieved following pathways describing low radiative forcing futures,395

such as SSP1-2.6. As an illustration, by following SSP1-2.6 over SSP5-8.5, an additional396

36.6 tropical nights annually can be avoided at the global scale by the end of the twenty-397

first century which equates to a reduction of 22.3%. Regionally this percentage reduc-398

tion between SSP5-8.5 and SSP3-7.0 varies substantially, between 2.4-89.1%, with val-399

ues smallest for equatorial regions and increasing as regions approach the poles, espe-400

cially those of the Northern Hemisphere. As a result, in terms of avoiding increasing trop-401

ical nights frequency, some communities will benefit more under SSP1-2.6 than others,402

and so likely advocate worldwide adoption of the socioeconomic values described by this403

pathway to a greater extent. This could potentially aggravate existing divisions within404

environmental politics (Tranter, 2011; McCright et al., 2016). Moreover, these commu-405

nities where increases can be avoided most are found in southern and southeastern Africa406

where the avoidance of up to 115 tropical nights annually is possible. However, as men-407

tioned previously, the alarming scarcity of extreme heat studies focusing on these regions408

may cause such potential to go unrecognised by policy makers. In contrast, studies of409

northern mid-latitudes are widely available facilitating greater comparison with the find-410

ings of this study. For example, under SSP5-8.5, this study projects the annual number411

of tropical nights to be 10-20 days greater than those simulated by CMIP5 models for412

the same level of radiative forcing (Viceto et al., 2019; Cardoso et al., 2019). Likewise,413

this deviation, albeit of smaller magnitude, is also present in other heavily studied ar-414

eas, such as eastern Australia and western North America under these high radiative forc-415

ing scenarios (Sillmann, Kharin, Zwiers, et al., 2013). Whereas, the CMIP6 and CMIP5416

simulations are more aligned when driven by lower radiative forcing. Consequently, this417

study finds that projected reductions in tropical nights frequency for these regions tend418

to be higher than those of CMIP5. However, due to slightly differing regional boundaries419

employed between CMIPs, the robustness of this trend warrants further work. Lastly,420

it is important to note that under no scenario are annual tropical nights projected to re-421

duce from either pre-industrial or present day levels. Hence, industries, infrastructure,422

ecosystems, and other areas sensitive to nightly high temperatures, should be evaluated423

and, if required, prepared to handle these future increases.424

By coupling population distribution projections with climate simulations from CMIP6425

models, this study is able to project future annual human exposure to tropical nights426

relative to a pre-industrial baseline. Globally the rise in future exposure from pre-industrial427

levels is minimised under SSP1-2.6, which, when compared to SSP3-7.0, avoids 1336 bil-428

lion person-days. In contrast with tropical nights, the pathway which avoids future ex-429

posure most varies region by region, as has been found in previous studies, albeit of dif-430

ferent heat events (Jones et al., 2018; Arnell et al., 2019; Wang et al., 2020). This vari-431

ation is clear evidence that changes in population does influence exposure. This is be-432

cause, if exposure was only dependent on changes in climate, all regional exposure would433

be minimised under SSP1-2.6 as this is the pathway which minimises an increase in trop-434

ical night frequency. Moreover, the relative influence of climate and population changes435

differs across regions. For example, in the Caribbean and northern South America, as436
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tropical nights are projected almost daily under all future pathways, future exposure is437

primarily influenced by changes in population. In contrast, for regions where population438

changes are fairly constant by the end of the twenty-first century, such as central Aus-439

tralia, projected exposure is predominantly influenced by climatic changes. Similarly, de-440

spite future tropical night frequency increasing across eastern Asia and southern South441

America, under SSP1-2.6 exposure is projected to reduce from the present day, evidently442

suggesting that the influence of population change is greater than that of climate for this443

pathway. Such patterns in influence are reported for other heat events, albeit more quan-444

titatively, in other studies (Z. Liu et al., 2017; Jones et al., 2018). Furthermore, this work445

finds that for developed and developing countries the greatest exposure is projected un-446

der SSP5-8.5 and SSP3-7.0 respectively. As developed countries historically have more447

global influence, this divide could lead to the promotion of pathways not necessarily in448

the best interest of developing countries. In addition, unsurprisingly, densely populated449

regions lying close to the equator such as the Indian subcontinent, western Africa, and450

southeastern Asia, have the highest change in exposure from the pre-industrial in ab-451

solute terms. However, these areas also have the greatest reduction potential suggest-452

ing these should be treated as key regions in global efforts to avoid future exposure. Lastly,453

it is important to note that, although under SSP1-2.6 overall future exposure is avoided454

most, there still exists regions with substantial exposure to tropical nights in this sce-455

nario. This suggests that, for select regions, high levels of exposure will be inevitable.456

As such, it is imperative that adaptive measures are implemented for these areas.457

One main caveat to this work is the use of population projections from two differ-458

ent sources, and subsequently differing methodologies, to analyse population change. In459

this study, pre-industrial and present day distributions are derived from HYDE 3.2, whereas460

those of the end of the twenty-first century are from projections by NCAR-CDIR. Con-461

sequently, this introduces added uncertainty to this study’s analysis as it is unclear as462

to whether deviations from the pre-industrial are true projected changes, or whether they463

arise due to the differing underlying methodologies. Nevertheless, the use of both sources464

was a necessity to enable this study’s end of the twenty-first century comparison with465

the pre-industrial as currently there exist no suitable population projections which cover466

this temporal range entirely. As such, a future effort to enhance the temporal coverage467

of population projections will be of great use to similar studies to follow. Furthermore,468

population projections are incorporated into this work without uncertainty ranges mean-469

ing variation in exposure to tropical nights arises solely from the climate ensemble mem-470

bers which limits the confidence in the uncertainty ranges of exposure quoted in this study.471

Future works should use population projections which include likely value ranges to avoid472

similar limitations. Lastly, the population projections used do not account for intra-annual473

migration and so the fact that a region’s population is a dynamic variable in perpetual474

fluctuation is not accounted for. For example, if a region’s population is below the an-475

nual average when tropical nights are likely to occur, the true annual exposure is less than476

what this study quotes. It would be of interest to compare a future study focusing on477

seasonal exposure to tropical nights to see how seasonal population variation impacts478

the values quoted here.479

At the time of this study, the required variables, monthly and daily minimum tem-480

peratures, have only been simulated by 15 CMIP6 models under the necessary runs. Sub-481

sequently, the multi-model ensemble used in this work is not fully populated meaning482

the full uncertainty in climate outcomes may not have been explored adding uncertainty483

to the findings derived. Nevertheless, this added uncertainty remains low relative to sim-484

ilar studies which use single model output to derive their respective extreme event in-485

dices meaning an improvement has been made. This improvement is evident in the greater486

performance of the multi-model ensemble relative to its individual members. Further-487

more, three pairs of models sharing the same atmospheric component are found to ex-488

hibit strikingly similar spatial performance. This suggests a violation of the model in-489

dependence assumption used in this study. Moreover, the performance of coarser reso-490
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lution models is found to be greater than those of finer resolutions when simulating the491

annual number of tropical nights. Consequently, it could benefit future works to devi-492

ate from this study’s equal weighting of ensemble members in order to adjust for these493

behaviours. Although, as conclusions of model performance may differ with alternative494

measures of performance and observation datasets, future work should ensure these be-495

haviours are robust before accounting for them.496

This work does not account for urban areas often being warmer than surrounding497

rural areas due to the added heat generated from the increase in human activity, a phe-498

nomenon known as the urban heat island effect (Oke, 1982). Studies have noted that the499

difference between urban and rural areas can be as much as 2-3°C (Stewart & Oke, 2012),500

and this range is found to be even larger during a heat event (Li & Bou-Zeid, 2013). As501

this study does not attempt to account for these temperature differences, such as using502

climate simulations producing separate urban and rural outcomes, the urban heat island503

effect is not represented. Hence, it is possible this work underestimates the number of504

tropical nights experienced by urban populations. This underestimation will be great-505

est under scenarios with greater levels of urbanisation, such as SSP1-2.6 and SSP5-8.5,506

as opposed to those where future urban areas are less populated. This will effectively507

reduce the exposure range seen across the future pathways as the lower bound, largely508

under SSP1-2.6, will rise. Consequently, global and regional estimations of avoided ex-509

posure made in this study are likely greater than their true values, yet, judging from the510

magnitude of this difference found in other studies (Z. Liu et al., 2017; Jones et al., 2018),511

not accounting for the urban heat island effect should not impact on this study’s main512

conclusions on which pathways avoid greatest change.513

5 Conclusions514

This study is among initial research beginning to explore CMIP6 model simulations515

in the context of exposure to extreme heat events. Projections of annual exposure to trop-516

ical nights for the pre-industrial, present day, and four futures described by SSP1-2.6,517

SSP2-4.5, SSP3-7.0, and SSP5-8.5, have been presented. These have been supplemented518

with similar projections of tropical night frequency, total population, and near surface519

temperature. A deliberate focus has been made to quantify future change relative to the520

pre-industrial such that pathways which minimise detrimental change can be highlighted.521

This study finds that global annual exposure to tropical nights is projected to increase522

from pre-industrial levels by 814-1055% by the end of the twenty-first century depend-523

ing on the pathway followed. Similarly, both underlying determinants of this exposure524

are projected to increase substantially from the pre-industrial with the global average525

annual number of tropical nights and total population projected to increase by 32-71%526

and 438-740% respectively across the four alternative futures. Importantly, this study527

finds that these global increases can be mitigated by adopting the socioeconomic values528

central to the SSP1-2.6 narrative, yet under no scenario do they become decreases. This529

finding largely holds at the regional scale in terms of exposure, although there are no-530

table exceptions. Overall, this study acts as a first assessment of how tropical nights and531

humanity’s exposure to them is set to change as this century progresses. This work looks532

to encourage subsequent studies to provide more insights into the results that have been533

discussed here. With tropical nights already impeding on humanity, the projected in-534

creases that have been highlighted must act as an incentive to develop mitigation and535

adaptive measures for the benefit of all, otherwise undesirable consequences loom.536
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