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Abstract

Although higher-mode surface wave dispersion curves can provide additional constraints on the subsurface velocity structure,

their extraction from ambient noise data remains more intractable than the extraction of fundamental-mode dispersion curves.

Recently, the frequency-Bessel transform (F-J) method was developed to extract multimodal dispersion curves from ambient

noise. Here, we propose an alternative compressed sensing (CS) method for extracting multimodes from ambient noise. We

solve the CS inverse problem by using two methods: an l1-based optimization algorithm and a Bayesian method. Synthetic

and field data examples are conducted to validate our method. The dispersion curves extracted by our method are consistent

with those extracted by the F-J method, but our method is more efficient and can extract higher-resolution dispersion energy

images than the F-J method. Our method can quickly and reliably extract multimodes from ambient noise, thereby facilitating

studies of ambient noise tomography.
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Abstract12

Although higher-mode surface wave dispersion curves can provide additional constraints13

on the subsurface velocity structure, their extraction from ambient noise data remains14

more intractable than the extraction of fundamental-mode dispersion curves. Recently,15

the frequency-Bessel transform (F-J) method was developed to extract multimodal dis-16

persion curves from ambient noise. Here, we propose an alternative compressed sensing17

(CS) method for extracting multimodes from ambient noise. We solve the CS inverse prob-18

lem by using two methods: an l1-based optimization algorithm and a Bayesian method.19

Synthetic and field data examples are conducted to validate our method. The disper-20

sion curves extracted by our method are consistent with those extracted by the F-J method,21

but our method is more efficient and can extract higher-resolution dispersion energy im-22

ages than the F-J method. Our method can quickly and reliably extract multimodes from23

ambient noise, thereby facilitating studies of ambient noise tomography.24

1 Introduction25

In the mid-1900s, Aki (Aki, 1957, 1965) presented the spatial autocorrelation (SPAC)26

method for the extraction of dispersion curves from microtremors. More recently, stud-27

ies have shown that the Green’s function between two stations can be obtained from the28

cross-correlation function (CCF) between the ambient noise recorded by the two stations29

(Shapiro & Campillo, 2004; Sabra et al., 2005a, 2005b; Roux et al., 2005). Owing to this30

discovery, ambient noise tomography has been extensively used to measure the Earth’s31

structure in both engineering and seismic tomography (Shapiro et al., 2005; Y. Yang et32

al., 2007; Gouédard et al., 2008; Yao et al., 2008; Nunziata et al., 2009). Compared with33

traditional surface wave tomography, ambient noise tomography has a superior resolu-34

tion for imaging the shallow crustal structure due to the retrieval of shorter-period mea-35

surements and the availability of more interstation paths (Shapiro & Campillo, 2004; Shapiro36

et al., 2005; Yao et al., 2006). However, previous works mostly used the fundamental mode37

to tomographically image the subsurface, and thus, the inversion suffered from nonunique-38

ness and low accuracy. This problem can be alleviated by the inclusion of overtones; that39

is, the addition of higher modes to the inversion can improve the resolution of the in-40

version model, strengthen the inversion stability, and obtain information about the deeper41

subsurface (Xia et al., 2000; Wu et al., 2020). Moreover, for shallow seismic surface waves,42

due to large contrasts in material properties, higher modes dominate in some frequency43
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ranges or the dispersion curves exhibit osculation points (Forbriger, 2003b). Consequently,44

higher modes may easily be mistaken for the fundamental mode; in this case, a subse-45

quent inversion would lead to an unrealistic subsurface model (Forbriger, 2003a). There-46

fore, it is important to develop a high-resolution method to extract multimodes from seis-47

mic data.48

However, the extraction of multimodal dispersion curves from seismic data in the49

multimodal inversion of surface waves has always constituted a challenge. Over the past50

few decades, many methods using array data, such as the SPAC method (Aki, 1957, 1965),51

the phase-shift method (Park et al., 1998), the τ−p transform (McMechan & Yedlin,52

1981), the frequency-wavenumber (F-K) transform (Capon, 1969; Lacoss et al., 1969),53

the high-resolution linear Radon transform (Luo et al., 2008) and the frequency-Bessel54

transform (F-J) method (Wang et al., 2019), have been developed to extract multimodes.55

All these methods except the SPAC technique and F-J transform use an exponential base56

function to transform the wavefield, implying the assumption of plane wave propagation57

(Wang et al., 2019). In contrast, the SPAC and F-J methods use the Bessel function as58

the base function and can represent 3-D wave propagation in real-world problems (Wang59

et al., 2019). However, while the F-J method can effectively extract multimodal disper-60

sion curves from ambient noise and seismic waveform data (Wang et al., 2019; Z. Yang61

et al., 2019; Li & Chen, 2020), the F-J method is time-consuming since the frequency-62

Bessel spectrogram is calculated by a discrete summation of the interstation distances63

for each given frequency. In addition, the resolution of the spectrogram obtained by the64

F-J method is not sufficient, especially in the low-frequency domain. These shortcom-65

ings motivate us to find a new high-resolution method to effectively extract multimodal66

dispersion curves from ambient noise data.67

Compressed sensing (CS) provides a novel sampling paradigm to recover sparse sig-68

nals and thus has been widely used in diverse fields, such as signal processing and imag-69

ing problems (Candes et al., 2006; D. Donoho, 2006; Candes & Wakin, 2008). The key70

idea of CS is that sparse signals can be exactly recovered from far fewer measurements71

than required by the classic Shannon theorem (Candes et al., 2006; D. Donoho, 2006;72

Candes & Wakin, 2008). The extraction of dispersion curves, which represents a sparse73

signal recovery problem, is solvable within the CS framework. Consequently, CS has been74

used to effectively extract the dispersion curves of acoustic waves in underwater envi-75

ronments (Dremeau et al., 2017; Le Courtois & Bonnel, 2015), of Rayleigh waves in en-76
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gineering applications (Z. Chen et al., 2018), and of ultrasonic guided waves in structural77

health monitoring (Harley & Moura, 2013; Harley, 2016).78

In this work we present a new method to extract the multimodal dispersion curves79

of Rayleigh waves from ambient noise based on CS theory. In our method, the Bessel80

function as the base function represents 3-D wave propagation in a horizontal layered81

medium, which is in accordance with the practical situation. Multimodal dispersion curves82

are recovered from only a small number of CCFs by two CS methods: an l1-based al-83

gorithm and a Bayesian method. We then compare these two CS methods with the F-84

J method in terms of the noise level, efficiency and resolution by leveraging synthetic and85

real-world examples.86

2 Method87

Considering an elastic layered half-space, the Green’s function corresponding to an

isotropic source can be expressed as (Luco & Apsel, 1983; Hisada, 1994; X. Chen, 1999;

Wang et al., 2019)

Gzz(r, ω) =

∫ +∞

0

gz(k, ω)J0(kr)kdk (1)

where gz(k, ω) is a kernel function, J0(kr) is the zeroth-order Bessel function of the first

kind, r is the distance between two stations, ω is the angular frequency, and k is the wavenum-

ber. In addition, we know that the relationship between the CCF of ambient noise recorded

at two stations and the Green’s function between these two stations can be represented

as (Sanchez-Sesma & Campillo, 2006; Snieder et al., 2007),

Czz(r, ω) = a · Im{Gzz(r, ω)} (2)

where a is a constant and Czz(r, ω) is the Fourier transform of the CCF of ambient noise

between the two stations separated by an interstation distance r. Substituting k =
ω

c

(c is the phase velocity) into equation (1) and combining the result with equation (2),

we have

Czz(r, ω) = a

∫ +∞

0

gzi

(ω
c
, ω
)
J0

(ωr
c

) ω2

c3
dc (3)

where gzi
(
ω
c , ω

)
represents the imaginary part of the kernel function. Replacing the in-

tegration in equation (3) by a discrete summation, we obtain

Czz(r, ω) = a

n∑
j=1

gzi(
ω

cj
, ω)J0(

ωr

cj
)
ω2

c3j
∆cj (4)
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where ∆cj is the sampling interval and n is the number of discretized points in the phase

velocity domain. Here, we adopt a constant sampling interval ∆c = (cn− c1)/(n− 1).

The selection of the minimum phase velocity c1 and the maximum phase velocity cn de-

pends on the scale of the study area and should contain all the modes of dispersion curves

of Rayleigh waves. Note that since dispersion points are singular points of the kernel func-

tion (Wang et al., 2019), only at the actual phase velocities with which Rayleigh waves

propagate does the kernel function gzi(
ω0

c , ω0) tend toward a limited large value, while

at other phase velocities, the values of the kernel function are very small and nearly zero

for a certain frequency ω0. In other words, the kernel function gzi(
ω0

c , ω0) is sparse in

the phase velocity domain: gzi(
ω0

c , ω0) has only s nonzero entries, and s� n. This prop-

erty of gzi(
ω0

c , ω0) satisfies the first prerequisite of CS theory, i.e., sparsity (Candes et

al., 2006; D. Donoho, 2006). The second prerequisite of CS theory is the restricted isom-

etry property (RIP), and this condition can be met by a randomly selected measurement

matrix (Candes & Tao, 2005; Candes & Wakin, 2008; R. Baraniuk et al., 2008). There-

fore, considering the CCFs for m randomly selected station pairs among all the station

pairs in the study area, we have

Czz(r1, ω)

Czz(r2, ω)

...

Czz(rm, ω)


= aω2∆c



J0(ωr1
c1

) 1
c31

J0(ωr1
c2

) 1
c32

. . . J0(ωr1
cn

) 1
c3n

J0(ωr2
c1

) 1
c31

J0(ωr2
c2

) 1
c32

. . . J0(ωr2
cn

) 1
c3n

...
...

. . .
...

J0(ωrm
c1

) 1
c31

J0(ωrm
c2

) 1
c32

. . . J0(ωrm
cn

) 1
c3n





gzi(
ω
c1
, ω)

gzi(
ω
c2
, ω)

...

gzi(
ω
cn
, ω)


(5)

Writing equation (5) in matrix form and noting that a is unknown in the real world, we

obtain

Czz = AIz (6)

where the ijth element of A is ω2∆cJ0(ωri
cj

) 1
c3j

and Iz is the so-called F-J spectrogram

of Wang et al. (2019) with the jth element equal to a gzi(
ω
cj
, ω). The number of selected

CCFs is less than the number of candidate phase velocities, that is, m < n. The re-

covery of the sparse F-J spectrogram Iz is an underdetermined inverse problem and can

be solved using the following formula:

Îz = arg min
Iz

(‖Czz −AIz‖2 + λ‖Iz‖0) (7)

where λ is the damping parameter that makes a tradeoff between the data fitting term

and the sparsity constraint. However, solving (7) is nonconvex and NP-hard (Candes &

Tao, 2005; R. G. Baraniuk, 2007). Many other methods are used to solve the CS inverse
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problem and are divided into three main classes: 1) greedy algorithms that find an el-

ement or a set of elements of the measurement matrix that best match the residual be-

tween the original signal and the current approximation to the signal in each iteration

until a stopping condition is met (Tropp & Gilbert, 2007; D. L. Donoho et al., 2012), 2)

algorithms that replace the l0 norm in the sparsity constraint with the l1 norm to ob-

tain a convex optimization problem that can be solved by many standard procedures (S. S. Chen

et al., 1998; D. Donoho et al., 2006), and 3) Bayesian algorithms that consider the re-

covery of a sparse signal as a Bayesian inference problem assuming a sparsity-inducing

prior (Wipf & Rao, 2004; Ji et al., 2008; Z. Zhang & Rao, 2011). In this work, we use

the latter two methods to solve the CS reconstruction problem. One method is the l1-

based optimization algorithm. That is, the recovery problem of equation (7) becomes

Îz = arg min
Iz

(‖Czz −AIz‖2 + λ‖Iz‖1) (8)

This can be efficiently solved by linear programming algorithms; we utilize CVX, a MATLAB-88

based package for convex optimization (Grant & Boyd, 2014). The other method is the89

Bayesian CS (BCS) algorithm of Ji et al. (2008), who used a fast relevance vector ma-90

chine (RVM) algorithm for the Bayesian CS inversion. In our work, the F-J spectrogram91

Iz is recovered by the l1 or BCS methods for each given frequency, and the results at each92

frequency are assembled into the whole F-J spectrogram. The amplitude peaks of the93

F-J spectrogram correspond to the locations of the sought Rayleigh wave dispersion curves.94

3 Tests with synthetic data95

We first design two synthetic tests to validate the above proposed CS methods for96

extracting multimodal dispersion curves from ambient seismic noise. Similar to the F-97

J method, our method is independent of the scale of the study region, and thus, we choose98

two small-scale models for the synthetic tests. First, we synthesize ambient noise data99

for a given 1-D velocity model. Then, we use the F-J method, l1-based method and BCS100

method to construct the dispersion curves from the synthetic ambient noise and com-101

pare the results of these three methods.102

3.1 Model with a low-velocity layer103

The first synthetic test model (Model 1) is the same as that utilized by previous104

studies (Ikeda et al., 2012; Wang et al., 2019; Hu et al., 2020) and is composed of four105
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Figure 1. (a) Model 1 and (b) Model 2 used in the synthetic tests. (c) Distributions of the

sources (blue dots) and stations (red dots). (d) Synthetic ambient noise records of some stations.
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layers with a low-velocity layer (Figure 1a, Table 1). We first follow the same procedure106

as that of Wang et al. (2019) to synthesize the ambient noise. The distributions of the107

stations and sources are shown in Figure 1c. As shown in Figure 1c, 100 stations are ran-108

domly located in a circle with a radius of 0.1 km, and all 1000 sources are on the free109

surface and randomly distributed within a ring with an inner radius of 0.5 km and an110

outer radius of 1.5 km. We use a vertical point single force source with the Ricker wavelet111

as the source time function. The center frequency of each source is randomly chosen in112

the range of 6-10 Hz, the source amplitude is randomly set in the range of 0-1, and the113

source shift time is randomly distributed in the range of 0-65 s. The generalized reflection-114

transmission coefficient method (GRTM) (X. Chen, 1993, 1999; H.-M. Zhang et al., 2003)115

is used to compute the theoretical seismograms for a given 1-D velocity model. Then,116

we synthesize ambient seismic noise data by stacking the theoretical seismograms excited117

by all the sources for each station. Finally, we obtain 60 s-long vertical component records118

of ambient noise with an effective frequency range of 2.5-25 Hz. The synthetic ambient119

noise records of some stations are shown in Figure 1d.120

We then separately apply the F-J method, l1-based method and BCS method to121

image the dispersion curves from the synthetic ambient noise of Model 1. For the F-J122

method, we use the CCFs of all the station pairs to calculate the F-J spectrogram. For123

the l1-based method, we randomly select the CCFs of 500 station pairs from among the124

CCFs of all station pairs to extract the dispersion curves. Note that for the l1-based method,125

the value of the tradeoff parameter λ is important for finding a reasonable solution to126

equation (8). We select a proper λ value by using the L-curve criterion for each frequency127

in the range of 2.5-25 Hz. We select λ = 1e−6 for f < 5 Hz and λ = 5e−6 for f >=128

5 Hz based on the computation of L-curves at different frequencies. The L-curves for two129

frequencies are shown as examples in Figure 2. For the BCS method, we use the same130

CCF measurements employed in the l1-based method to compare the results of the two131

CS methods. The F-J spectrograms obtained by the three methods are shown in Fig-132

ure 3. The image of the Rayleigh wave dispersion energy obtained by the F-J method133

(Figure 3a) is generally consistent with the results of Wang et al. (2019) and Hu et al.134

(2020). In the image obtained by the F-J method (Figure 3a), we can identify the Rayleigh135

wave fundamental mode in the frequency range of 2.5-25 Hz, the first overtone in the fre-136

quency ranges of 4.5-7.5 and 19.5-25 Hz, the second overtone in the small frequency range137

of 18.3-19.5 Hz, and an osculation between the first and second overtones at 19.5 Hz. The138

–8–



manuscript submitted to JGR: Solid Earth

Table 1. Parameters of the two models in the synthetic tests

Thick (m) ρ (kg/m3) Vs (m/s) Vp (m/s) Q

Model 1

10 1,780 180 1,500 10000

10 1,850 350 1,700 10000

20 1,800 250 1,600 10000

∞ 1,940 600 2,000 10000

Model 2
25 1,900 200 1,350 10000

∞ 2,500 1,000 2,000 10000

frequency ranges of the dispersion curves obtained by the l1-based and BCS methods139

are almost the same as those obtained by the F-J method, and the dispersion curves ex-140

tracted by the three methods all agree well with the theoretical dispersion curves com-141

puted by the GRTM (Figure 3).142

It is worth noting that the resolution of the dispersion energy images obtained by143

the l1-based and BCS methods is much higher than that obtained by the F-J method,144

especially for the low-frequency part (Figure 3). This result may benefit from the pur-145

suit of a sparse solution in the l1-based and BCS methods. Another interesting thing146

is that the images of the dispersion curves obtained by the l1-based and BCS methods147

contain less noise than that obtained by the F-J method, and the spectrogram of the BCS148

method is the cleanest among the results of the three methods. Notably, sidelobes par-149

allel to the fundamental mode and having smaller amplitudes than the fundamental mode150

in the F-J image are not observed in the CS images (Figure 3), which may be due to the151

use of the sparse constraint in the latter. Finally, to compare the computation times of152

the three methods, we run the three methods on the same personal computer without153

using sophisticated parallel acceleration technology. For each method, we calculate the154

F-J spectrogram for the same numbers of phase velocities and frequencies. The compu-155

tation times of the three methods are shown in Table 2. The most time-consuming al-156

gorithm is the F-J method, followed by the l1-based method, while the BCS method takes157

the least time, which reflects the high efficiency of the CS methods.158
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Figure 2. L-curves between the residual misfit and the model l1 norm at (a) f = 4 Hz and
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200

300

400

500

600

P
h
a
s
e
 v

e
lo

c
it
y
 (

m
/s

)

5 10 15 20

Frequency (Hz)

a)

5 10 15 20

Frequency (Hz)

0.0 0.2 0.4 0.6 0.8 1.0

b)

5 10 15 20

Frequency (Hz)

c)

Figure 3. Reconstruction of the dispersion curves for Model 1 by (a) the F-J method; (b) the

l1-based method; and (c) the BCS method. Red dots are the theoretical dispersion curves.

3.2 Model with two layers159

The second synthetic test model (Model 2) contains two layers representing soil over-160

laying a half-space (Figure 1b, Table 1). The model is the same as that in Hu et al. (2020).161

Again, we use the above method to synthesize the ambient noise of Model 2. Similarly,162

we then apply the three methods to the synthetic ambient noise. The dispersion curve163

images reconstructed by the three methods are shown in Figure 4. The main features164

of the image extracted by the F-J method are similar to the results of Hu et al. (2020),165

but there are some differences in the frequency range where the overtones can be iden-166
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Table 2. Computation time for each example

F-J l1 BCS

Model 1 1229.6 s 413.9 s 44.2 s

Model 2 1233.6 s 404.4 s 44.1 s

Eastern NCC 2443.2 s 781.3 s 351.2 s

Eastern US 1614.2 s 715.9 s 281.8 s

tified (Figure 4a). This may be caused by the different approaches for synthesizing the167

ambient noise, including the different methods employed to calculate the synthetic seis-168

mograms and the different source distributions. Up to five dispersion curves can be clearly169

identified in the image extracted by the F-J method (Figure 4a). The dispersion curves170

in the images obtained by the l1-based and BCS methods are similar to those obtained171

by the F-J method, and the dispersion curves obtained by the three methods are all con-172

sistent with the theoretical dispersion curves (Figure 4). Again, the spectrograms ob-173

tained by the CS methods have a higher resolution than that obtained by the F-J method174

(Figure 4). The BCS method produces the dispersion image with the least noise and takes175

the shortest computation time, followed by the l1-based method, while the F-J method176

obtains the noisiest image and takes the longest computation time (Figure 4, Table 2).177

These results are obtained because these CS methods use a sparsity constraint, fewer sta-178

tion pairs and highly efficient inversion algorithms.179
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Figure 4. Same as Figure 3 but for Model 2.
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4 Application to real data180

To further verify the effectiveness and practicability of the CS methods, we apply181

our method to two real datasets. One field dataset was recorded by stations located in182

the eastern North China Craton (NCC), and the other dataset was recorded by USAr-183

ray stations in the eastern United States. We first calculate the CCFs from the ambi-184

ent noise data in these two areas and then extract the dispersion curves from the CCFs185

of the two areas using the F-J, l1-based and BCS methods and finally compare the re-186

sults of the three methods.187

4.1 Field data from the eastern NCC188

For the first field data example, we use the continuous vertical component records189

from 102 stations in the eastern NCC (Figure 5a) for the entire year of 2007. First, be-190

fore computing the CCFs, we preprocess the raw ambient noise data following the pro-191

cess presented in Bensen et al. (2007). Because the stations are of the same type, we do192

not remove the instrument response. We downsample the daily ambient noise records193

to 5 Hz and remove the mean and trend of each daily segment. Then, the ambient noise194

is bandpass filtered between the periods of 0.6 s and 200 s. To reduce the effects of non-195

stationary sources, especially earthquake signals, and to broaden the band of CCFs, we196

apply temporal normalization and spectral whitening to the ambient noise data. Sec-197

ond, we compute the daily CCFs between all available station pairs and stack all the CCFs198

for the same station pair. The stacked CCFs of some station pairs are shown in Figure199

5b; the Rayleigh wave signals can be clearly identified in the CCFs. The CCFs are al-200

most temporally symmetric, and we use the positive lag parts of the CCFs to extract201

the dispersion curves. We sort the spectral CCFs by their interstation distances in as-202

cending order for further computation.203

Finally, we apply the F-J, l1-based and BCS methods to extract the dispersion curves204

from the spectral CCFs. For the F-J method, we use the CCFs of all station pairs. For205

the l1-based method, we randomly select 1000 CCFs from among the CCFs of all sta-206

tion pairs. More CCFs are used in the eastern NCC than in the above synthetic tests207

because the CCFs retrieved from the real data have a lower signal-to-noise ratio than208

the synthetic data. For the BCS method, we use the same 1000 randomly selected CCFs209

to compare the results of the CS methods. The images recovered by the three methods210

–12–
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are illustrated in Figure 5d-f. The results of the three methods are roughly similar. The211

low-frequency part of the fundamental mode (0.02-0.25 Hz) is clear, whereas the high-212

frequency part (0.25-0.5 Hz) is blurred. In addition to the fundamental mode, six over-213

tones can be recognized in the images. It is worth noting that there are obvious differ-214

ences among these results (Figure 5d-f). Compared with the image obtained by the F-215

J method, the dispersion images obtained by the CS methods have a higher resolution216

(the distribution of dispersion energy is narrower), which is very important for reduc-217

ing the error when picking phase velocities. These findings also show that the CS meth-218

ods can suppress noise better than the F-J method. Moreover, unlike the F-J image, there219

are no obvious sidelobes parallel to the dispersion curves or aliasing interfering with the220

dispersion curves in the CS images (Figure 5d-f). Furthermore, the dispersion energy221

in the image obtained by the BCS method is more continuous and concentrated than that222

obtained by the l1-based method (Figure 5e-f). This shows that the BCS method is more223

stable when dealing with noisy real-world data.224

Next, we average the 3-D S-wave velocity (Vs) model of Shen et al. (2016) in the225

study area to obtain a local 1-D Vs model (Figure 5c). The P-wave velocity (Vp) and226

density models are calculated using the empirical formulas of Brocher (2005). The the-227

oretical dispersion curves computed from the 1-D discretized velocity model basically agree228

with the dispersion curves extracted by the three methods (Figure 5d-f). However, there229

are mismatches between the theoretical dispersion curves and extracted dispersion curves230

for some modes, such as the fundamental mode in the frequency range of 0.2-0.5 Hz and231

two higher modes, namely, the fifth higher mode and the sixth higher mode. This shows232

that the average 1-D Vs model of Shen et al. (2016) may not accurately describe the true233

underground velocity structure. Hence, it is necessary to add higher modes to the in-234

version of surface waves to provide more constraints on the velocity structures.235
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Figure 5. (a) Distribution of stations in the eastern NCC. Red triangles represent stations;

the red rectangle in the inset map shows the location of the study area. (b) Ambient noise CCFs

of some station pairs in the period band of 2-50 s. (c) The 1-D Vs model (red line) obtained by

averaging the 3-D Vs model of Shen et al. (2016) in the study area and its discretized model

(blue line). The F-J spectrograms extracted by (d) the F-J method; (e) the l1-based method; and

(f) the BCS method. In (d)-(f), the red dots are the theoretical dispersion curves calculated from

the discretized average model of Shen et al. (2016).
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4.2 Field data from the eastern United States236

For the second field data application, we use the vertical components recorded by237

93 USArray Transportable Array stations in the eastern United States (Figure 6a) from238

1 June 2011 to 1 December 2011. We use the same stations as those employed in the first239

application of Wu et al. (2020). We cut the continuous records to a length of one day240

and remove the instrument response of each daily segment. The following data process-241

ing procedure is the same as that in the first example of field data described above. We242

compute and stack the daily CCFs between all possible station pairs, and Rayleigh waves243

clearly appear in the stacked CCFs (Figure 6b). We again apply the three methods to244

the positive lag parts of the CCFs, and the images produced by the three methods are245

shown in Figure 6d-f. The image reconstructed by the F-J method is similar to that pre-246

sented by Wu et al. (2020). The fundamental mode can be clearly identified in the fre-247

quency range of 0.02-0.3 Hz and is split into two branches at 0.3 Hz in the image obtained248

by the F-J method (Figure 6d). This bifurcation of the fundamental mode may be caused249

by lateral heterogeneity of the subsurface velocity structure. In addition, six higher modes250

can be reasonably identified in the low-frequency part (0.2-0.5 Hz) but only vaguely ob-251

served in the high-frequency part (0.5-0.6 Hz) (Figure 6d).252

Comparing the results of the CS methods with those of the F-J method, we can253

draw a similar conclusion to that from the first example. The dispersion curves extracted254

by the CS methods agree well with those extracted by the F-J method (Figure 6d-f). How-255

ever, the images obtained by the CS methods have a higher resolution than that obtained256

by the F-J method. In addition, the image from the BCS method contains the least noise,257

followed by the image from the l1-based method, while the image from the F-J method258

is the noisiest (Figure 6d-f).259

The 1-D Vs model (Figure 6c) is obtained by averaging the 3-D Vs model of Shen260

and Ritzwoller (2016) in the study area. The Vp and density models are calculated by261

the empirical formulas of Brocher (2005). The dispersion images obtained by the three262

methods coincide well with the theoretical dispersion curves computed from the aver-263

age discretized 1-D velocity model except for some higher modes in the low-frequency264

range (the fourth and fifth higher modes in 0.29-0.32 Hz and 0.34-0.37 Hz, respectively)265

(Figure 6d-f). This result again shows the importance of extracting higher-mode disper-266

sion curves and including them in the inversion.267
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For the two applications of field data, the computation times of the three meth-268

ods are shown in Table 2. As in the two synthetic examples, the BCS method takes the269

shortest computation time owing to using the CCFs of fewer station pairs and adopt-270

ing the fast and efficient RVM algorithm, followed by the l1-based method, which sim-271

ilarly uses the CCFs of relatively few station pairs, and finally, the F-J method takes the272

longest computation time because it employs the CCFs of all station pairs. These field273

data examples take more computation time than the synthetic tests (Table 2) because274

the CCFs of more station pairs are utilized to suppress the noise of the dispersion im-275

ages when dealing with real data.276
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Figure 6. Similar to Figure 5 but for the eastern United States. In (c), the red line is the

1-D average Vs model of Shen and Ritzwoller (2016), and the blue line is the corresponding

discretized model.

5 Discussion and conclusions277

We present CS methods to extract Rayleigh wave multimodal dispersion curves from278

ambient noise. We validate the new methods on both synthetic data and real datasets279
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from the eastern NCC and the eastern United States. The tests on the synthetic and field280

data demonstrate that (1) the dispersion curve images obtained by the CS methods have281

a higher resolution than that obtained by the F-J method; (2) the image from the BCS282

method has the lowest noise level, followed by the l1-based method and finally by the283

F-J method; and (3) the BCS method has the highest computational efficiency, followed284

by the l1-based and F-J methods. As a result, the proposed CS methods can quickly and285

accurately extract multimodal dispersion curves, which is crucial for the inversion of mul-286

timodal dispersion curves to obtain a more reliable velocity structure.287

For the F-J method, the F-J spectrogram is calculated by integrating over inter-288

station distances which is approximated by a discrete summation. According to the Nyquist-289

Shannon theorem, the interstation distance coverage should be dense to avoid aliasing290

for the F-J method. However, only a small number of random measurements are needed291

to recover a sparse signal in CS theory. Since small numbers of CCFs are used, the com-292

putation time is reduced for the CS methods. Furthermore, for the CS images, the true293

dispersion curves with relatively large amplitudes are resolved, while noise with small294

amplitudes in the F-J image, such as aliasing and sidelobes, is not present in the CS im-295

ages; this may be due to the sparse constraint used in the CS methods. In addition, the296

resolution of the spectrogram increases with the implementation of the sparse constraint297

in the CS methods.298

In this work, we apply two CS methods to the CCFs computed from ambient noise.299

We use fewer CCFs that are randomly selected from among all available CCFs for the300

extraction of multimodal dispersion curves. In future work, CS methods can be used to301

image multimodal dispersion curves from seismograms in engineering applications or earth-302

quake event data. CS methods can reduce the number of stations used and can quickly303

obtain high-resolution dispersion curve images.304
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