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Abstract

Understanding the linkages between between climatic and surface properties that influence water uptake and loss by vegetation
is essential for understanding the impact of drought on dryland regions. The Normalized Difference Vegetation Index (NDVT)
is a common metric used to identify vegetation condition across LULC types. Here we employ empirical dynamic modeling
(EDM) to forecast NDVI changes for savannas, grasslands, and croplands across East Africa at a dekadal (10-day) time scale
using satellite-derived environmental forcing variables. The model relies on state space reconstruction with lagged coordinate
embedding of multiple time series observations to recover the dynamic environmental system that links vegetation dynamics
to environmental forcing. We apply convergent cross mapping based on Takens’ Theorem to detect the impact of landcover on
directional causal interactions and time delays between driving (e.g. LST, rainfall) and response variables (NDVI). The model
brings to light that certain regions are highly consistent in their trajectories and therefore easier to project while other regions
are more dispersive and thus more difficult to determine anomalies. In terms of land cover, we are able to make projections
with high accuracy for grasslands out to 6 months ahead while croplands and savannas show reduced forecast skill overall and
prove less useful after 3 months. The use of historical seasonal NDVI patterns to diagnose the manner by which landcover and
land use determine climate-land surface couplings provides a means for defining critical areas of inquiry related to the impacts
of future change, particularly the expansion of agricultural areas. In addition, the EDM approach provides a robust means for
creating short term vegetation forecasts across LULC types in East Africa. These predictions can assist relief organizations in

advising drought management, declaring food security classifications and providing early response to famine.
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SEMI-ARID DYNAMICS IN EAST AFRICA

* Droughts impacts more people than any other hazard
globally

e East Africa rainfall patterns are extremely heterogenous
spatially and temporally, prone to droughts

* \egetation is largely rain-fed and farming is a major
source of livelinoodwhere 0% of production comes from
smallholders

e/ Back'to back droughts contribute to severe tood insecurity



PREDICTING NDVI

e Predictability of NDVI has not been done routinely

e Potential value may include early indicators of
drought, crop failure, disease and pest outbreak

e Inform drought relief funding and index-based
INsurance payouts

e NDVI state dependent on antecedent precipitation
and land surface temperature
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MODELING COUPLED

Autoregression

AUMAN-NATURAL SYSTEMS
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EMPIRICAL DYNAMIC MODELING

 Model simulations are computationally
expensive and only represent an Empirical
approximation representation of true

physical processes Empirical
Dynamic
e Rely on correlation based inference Modeling

Instead

e EDM does not make any assumptions about relationship between variables
e Lightweight

e Can make inferences of the effects of actions on the observed system

e Prediction skill is therefore constrained by quantity and quality of data rather than
imposed hypotheses
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SIMPLEX PROJECTION

Precipitation(t-2)

Nearest neighbor forecasting
method using manifold
reconstruction



Land Cover Classes

Rainfed Cropland

Grassland

Sh:rubland

rrigated Cropland




Prediction Skill
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EMBEDDING DIMENSION AND
PREDICTION SKILL

Prediction Skill
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NDVI Time Series in High and Low Predictive Skill Regions

i Low Skill

Low Skill

|

|

|

@

|

|

|
il

- Predictions




Raintall Anomalies and
Manifolds of High and Low Skill
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NDVI Predictive Skill
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Predictive Skill (p)

SEASONAL SKILL
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