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Abstract

Recent developments of infrastructures and methods are major driving forces in the advances of solid Earth sciences. The

deployment of large and dense sensor networks enables data centres to acquire data of increased volume and quality. The

analysis of such data provides scientists with a better understanding about natural phenomena in the subsurface. Nevertheless

new challenges arise to exploit the growing information potential. Innovative methods based on Artificial Intelligence offer

concrete opportunities to tackle those challenges. In this paper we present an investigation of Convolutional Neural Networks

(CNN) for seismo-acoustic event classification in the Netherlands. We designed, trained and evaluated two CNN models.

Our results suggest that as CNN inputs spectrograms are more suitable than continuous waveforms. We discuss our findings’

potential and requirements for their operational adoption. We focus on explainability aspects and offer an approach to pave

the way for a broader uptake of Artificial Intelligence based methods.
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Abstract

Recent developments of infrastructures and methods are major driving forces in the
advances of solid Earth sciences. The deployment of large and dense sensor networks
enables data centres to acquire data of increased volume and quality. The analysis of
such data provides scientists with a better understanding about natural phenomena in
the subsurface. Nevertheless new challenges arise to exploit the growing information
potential. Innovative methods based on Artificial Intelligence offer concrete opportu-
nities to tackle those challenges. In this paper we present an investigation of Convolu-
tional Neural Networks (CNN) for seismo-acoustic event classification in the Nether-
lands. We designed, trained and evaluated two CNN models. Our results suggest that
as CNN inputs spectrograms are more suitable than continuous waveforms. We discuss
our findings’ potential and requirements for their operational adoption. We focus on
explainability aspects and offer an approach to pave the way for a broader uptake of
Artificial Intelligence based methods.

1 Introduction
Seismo-acoustic waves are regularly observed from earthquakes [Shani-Kadmiel et al.,
2018], mining blasts [Evers et al., 2012], demolition of old ordnance [Ruigrok et al., 2019],
nuclear tests [Assink et al., 2016] and (underwater) volcanoes [Green et al., 2013]. Such
natural and human-made sources, often have a signature in more than one medium, i.e.,
seismic-waves in the solid Earth can couple to the oceans and/or atmosphere and generate
acoustic waves and vice versa. The analysis of the seismo-acoustic wavefield, as it is cap-
tured by the various sensors, provides unprecedented insight into the source characteristics
and the medium through which the waves have propagated.

Source detection, identification and characterisation in terms of the type of event, its
location, origin time and size is the ultimate challenge. At present the characterisation of
seismo-acoustic sources and the discrimination of earthquakes from other type of events is
predominantly done by human analysts trained to cross-link diverse types of information.
With the evolution and growing density of geophysical monitoring networks, the number
of events that need to be analysed rapidly increases, making it impractical to fully rely on
human analysts. Thus, an automated system that can correctly classify events as a natural or

*corresponding author: trani@knmi.nl
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an induced earthquake or as other, is desirable. Such a system, could for instance, improve
the critical decision-making process of an earthquake Early Warning service. This is crucial
in order to timely and correctly inform society about an unraveling geophysical hazard.

In recent years Artificial Intelligence (AI) and methods such as Machine Learning (ML)
and Deep Learning (DL) have become increasingly popular. Their successful application
in several geophysical contexts has demonstrated great potential. For instance, in the solid
Earth domain those methods have been applied to classify volcano deformations from In-
SAR images [Anantrasirichai et al., 2018], to detect, locate and characterise earthquakes
[Perol et al., 2018; Lomax et al., 2019; Kriegerowski et al., 2019; Zhang et al., 2020], to
pick and associate phase arrivals [Ross et al., 2018; Dokht et al., 2019; Ross et al., 2019;
Wang et al., 2019] and to help analysts discriminate between different types of seismic
events [Linville et al., 2019].

In this paper we present an investigation of Convolutional Neural Networks (CNN) for
seismo-acoustic event classification in the Netherlands. We report the results obtained in
the DeepQuake project that focused on the classification of continuous seismic waveforms
recorded in the Groningen region into three categories: earthquake, noise and other seismo-
acoustic event-type (e.g. ordnance explosion and sonic booms).

The Royal Netherlands Meteorological Institute (KNMI) operates an extensive seismo-
acoustic network in order to monitor and assess anthropogenic hazards induced by the
extraction of natural gas from the Groningen reservoir [KNMI, 1993]. The seismicity of
that region is characterised by shallow events of low to moderate magnitude (typically,
depth around 3km and magnitude ≤3.6) [Dost et al., 2017]. The automated detection of
such microseismic events is an inherently challenging task, this is especially true in the
Groningen gas field due to the peculiar site characteristics and noise conditions [Spica
et al., 2018]. Combining CNN and validation techniques, we devised a novel approach
to tackle those challenges, thus laying the foundations for an explainable and trustworthy
automated seismo-acoustic classification system.

2 Data collection and preprocessing
The effectiveness of CNN and the reliability of their predictions strongly depend on the
quality and amount of available training data. We build our dataset using 1172 events (in-
cluding earthquakes and other types of events, e.g. explosions and sonic booms) catalogued
in the Netherlands between 2014 and 2018 [KNM, 2016]. These events have been recorded
by the 599 stations of the Dutch network [KNMI, 1993] presented in Figure 1.

For each event in the catalogue, a 20-second waveform stream S is extracted from
all stations within a certain radius depending on the event magnitude. For events with
magnitude M ≤ 1.5, the maximum distance considered is 10 km; when 1.5 < M ≤ 2.5,
events up to 25 km are considered; and larger events have a maximum distance of 50 km.

To inhibit the neural network from “expecting” a signal at a specific time in the stream,
we first estimate the direct P-wave arrival time tP , using a local velocity model (see supp.
mat.). We then select our 20-second window between t−P , randomly chosen between 1.5
and 8.5 seconds before tP , and t+P = t−P + 20 seconds. For each selected S, the signal-to-
noise ratio (SNR) is calculated as

SNR(S) =
max(|S[tP − 0.5 : tP + 6.5]|)

max(|S[t−p : tP − 0.5]|)
.

Only streams with SNR ≥ 4 are used in the training set.
Noise samples are selected by extracting streams between events, with at least a 15

minutes difference from any event. They are not tested for SNR. This ensures that all types
of noise, including high-amplitude irregular noise, are included for training within the noise
dataset.

After the streams are collected, the following pre-processing steps are applied:
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Figure 1: Overview map showing the distribution of stations (red dots) and normalised
number of events of our dataset.

1. rotation into vertical, North, and East components (Z-N-E)

2. resampling to 100Hz (using Fourier method)

3. linear detrending

4. a bandpass filter between 0.5Hz and 22Hz (to avoid 50Hz electronic distortion)

5. normalisation by the absolute maximum value in the stream

Additionally, the short-time Fourier transform (STFT) of each stream is computed using
a basic Hanning window (with length 120 and overlap 60). Both the pre-processing and
the frequency computation processes are equally applied to either event and noise streams.
The process from raw waveforms to the input samples for the CNN model is summarised
in Figure 2.

At the end of this process, each sample has three one-dimensional channels of length
2000, corresponding to amplitude, and three two-dimensional channels of size 61x35, cor-
responding to frequency data. The final dataset contains 83863 samples: 41931 for events
and 41932 for noise. They are split into training, validation and test sets at a ratio of
approximately 8:1:1. To minimise biases each set is created with streams from distinct
days. This enables a balanced time spreading and avoids to use the same event recorded by
different stations for training and validation.

3 Methods
The approach adopted and described in this paper builds on recent advances in seismology
[Perol et al., 2018; Lomax et al., 2019; Kriegerowski et al., 2019]. We leverage machine
learning and CNN to perform supervised classification of continuous seismic waveforms.

3



Pr
ep

ri
nt

su
bm

itt
ed

fo
rp

ub
lic

at
io

n

Figure 2: Pre-processing steps for the preparation of the training, validation and test
datasets.

CNN are composed by several convolutional layers and their corresponding filters that
learn different representations of the input data by activating on features of increasing com-
plexity. The presence of several layers characterises CNN as Deep Architectures [Bengio,
2009]. Therefore, they are also associated with the concept of Deep Learning [LeCun et al.,
2015].

Deep Architectures, such as LeCun’s CNN constituted by convolutional layers and sub-
sampling layers, are particularly effective for recognition and detection tasks [LeCun and
Bengio, 1995; LeCun et al., 1999]. They exploit inherent compositional hierarchies present
in many signals whereby high-level features can be derived by composing low-level ones
[LeCun et al., 2015]. Compared to fully connected neural networks they enable a more
efficient use of resources (e.g. computation, memory), thus making them suitable for oper-
ational, real-time systems and Early Warning applications [Li et al., 2018].

Our architecture (depicted in Figure 3) builds on those features – inspired by CNN’s
ability to recognise objects in multidimensional arrays (e.g. 2D images) [Krizhevsky et al.,
2012; Hemanth and Estrela, 2017], we apply them to time-series data (i.e. continuous seis-
mic waveforms) in order to recognise and learn seismo-acoustic features.

Figure 3a illustrates the steps and operations involved in the classification of a seismic
waveform into three categories: earthquake, noise and other event-type. In a first phase,
Feature Learning, relevant elements, known as feature maps, are extracted from an input
data sample (i.e. a seismic waveform) by applying a convolution operation combined with a
Rectified Linear Unit (ReLu) activation function [Goodfellow et al., 2016]. The process is
iterated on the resulting feature maps – they are inputs to a next layer of convolution where
new filters are applied to generate new feature maps. At each step the map dimensionality
is reduced by exploiting suitable stride values, a similar result can be obtained by using
pooling operations (e.g. average, max).

In a second phase, Classification, the feature maps produced by the last convolution
are flattened into a vector which is provided as input to a fully connected layer of neurons.
That layer is followed by a final one containing the three output categories; scores for each
category are computed by a SoftMax activation function [Goodfellow et al., 2016].

4
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The design of an optimal CNN architecture is usually a long and complex task. It

involves finding and tuning suitable configurations, an operation also known as hyper-
parameter search [Donoghue and Roantree, 2015]. Such a process leverages variables like:
type and amount of layers, amount of neurons in each layer, regularisation parameters,
optimisation of learning rate, stride values etc. Methodologies exist to perform random
searches in a hyper-parameter space [Bergstra and Bengio, 2012]. However, heuristic ap-
proaches are often preferred for pragmatic reasons. In our case we performed a manual
search to get insight of the effects of different configurations on the detection accuracy.
This yielded the two architectures as shown in Figure 3: arch-time with time-series as
input (Figure 3b); arch-spect with spectrograms as input (Figure 3c).

(a) Schematic view of a CNN architecture for seismo-acoustic event classification.

(b) Architecture arch-time. The input layer
contains 2000 values (20 seconds of signal sam-
pled at 100Hz) and 3 channels corresponding
to the seismometer orientations (Vertical, North-
South, East-West). The input layer is followed by
6 convolutional layers with 64 filters. Data reduc-
tion is achieved by using a combination of filter
size and its displacement (i.e. stride). After the
last convolution layer a fully connected layer and
a SoftMax function are applied to obtain an output
score for each of the 3 detection categories.

(c) Architecture arch-spect. The input con-
tains 3 channels represented with a 61x35 matrix
followed by 6 layers of convolutions with 64 fil-
ters. The data reduction is performed in a similar
way as for arch-time by using stride. Once the
convolutions are performed on the inputs a fully
connected layer is applied.

Figure 3: CNN architectures.

After selecting a specific architecture, a CNN needs to be trained in order to be usable.
The process of training a CNN consists in finding the appropriate set of weights (i.e. values
for the filters) that minimise a chosen loss function – it is an iterative process that requires
several epochs. Typically the minimisation is realised by applying a form of gradient de-
scent to the loss function [Ruder, 2016]. The training process stops either after a number of
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predetermined epochs or when a certain tolerance value has been obtained in the reduction
of the loss function between consecutive epochs.

Our solution is implemented in Python [van Rossum, 1995], using ObsPy [Beyreuther
et al., 2010] for seismic processing, numerical facilities from NumPy and SciPy [Virtanen
et al., 2020], and the TensorFlow [Abadi et al., 2015] platform for machine learning.

4 Results and Validation
We evaluated the performance of our approach by combining automated statistics, valida-

tion and benchmarking techniques.
Figure 4 illustrates the classification results on the test set by adopting a confusion

matrix representation [Sammut and Webb, 2011]. We can notice that the properly classi-
fied categories emerge on the other diagonal whereas the miss-classifications are scattered
around it.

(a) Confusion matrix for arch-time. (b) Confusion matrix for arch-spect.

Figure 4: Confusion matrix representation of classification results on the test set.

Overall arch-time (Figure 4a) achieves an accuracy of 0.965 while arch-spect
(Figure 4b) reaches an accuracy of 0.983. Noteworthy are the improvements in the clas-
sification of the “Other Event” class and the “Earthquake Event” class. To evaluate the
effectiveness of our CNN we run predictions on continuous waveform data recorded in
2019. Figure 5 shows the classification results for a few earthquakes of diverse intensity. It
also includes a comparison with the current operational seismic detection system adopted
at KNMI i.e. SeisComP3 (SC3) [Weber et al., 2007].

We can notice that with lower magnitudes the results are less prominent, conceivably
such effects are due to the noise conditions. However, our system seems to be less sensi-
tive to daily noise variations. We repeated such an experiment with data recorded in the
lockdown due to the COVID-19 pandemic – a unique period characterised by a substantial
ambient noise reduction [Lecocq et al., 2020]. Example results are illustrated in Figure 5g
– despite a slight reduction of false positives the detection of low magnitude events remains
a challenging task.

5 Discussion
The results achieved suggest that an operational system based on our CNN could outper-
form current automated detection systems (e.g. SC3) by improving the detection accu-
racy (e.g. less false positive) and by extending the range of application to other types of
events beyond earthquakes. We notice that the accuracy performance improves when using
arch-spect. We attribute this behaviour to (i) an intrinsic difference of the frequency
content of the three classification categories; and (ii) the time-frequency representation that,
for similarity with image data, is more suitable for CNN.

6
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(d) Kantens 0.8 SC3 (e) Luddeweer 1.0 SC3 (f) Westerwijtwerd 3.4 SC3

(g) Predictions computed with recordings from 200 stations in one lockdown day contain-
ing 3 catalogued events (highlighted in grey)

Figure 5: Results of predictions obtained with arch-spect. Recordings of 90 stations
during 3 days containing catalogued events (highlighted in grey) are analysed in (a, b,c).
A comparison with SC3 is done in (d,e,f) by counting the number of picks detected in the
same days. An analysis of a lockdown day is illustrated in (g)

The higher accuracy of arch-spect comes with additional pre-processing steps for
the computation of the STFT. Therefore, the final choice of the trade-off between accuracy
and response time depends on the application requirements.

Moving a DL-based tool to production requires building understanding, trust and confi-
dence in such methods and their results. In other words they need to be made “explainable”
[Adadi and Berrada, 2018] to seismologists, operators and analysts. DL is often perceived
as a black box for the lack of transparency of its processes and decision logic. As a first
attempt to better understand the features learned by the trained CNN model, we devised a
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visual tool that presents the activations of each filter in the convolutional layers integrated
with the original input signal – an example of such a representation is illustrated in Figure 6.

When using the trained model, we can notice how the heatmap for a noise signal ap-
pears randomly scattered (Figure 6a) whereas in the case of an earthquake (Figure 6b) or
an acoustic event (Figure 6c) it appears more focused on specific features e.g. amplitude
variations. Such a focus is even more evident in the time-frequency domain. In the case
of a noise sample (Figure 6d) the activation focuses on a low range of frequencies and it
is spread across the whole time window. In the cases of seismic and acoustic events (Fig-
ure 6e and Figure 6f) there are clear frequency patterns that the network is able to recognise
and activate upon. Such a representation confirms that the CNN model is extracting rele-
vant seismological features. When further developed, this tool could be used for dynamic
inspection and to support fine tuning of the CNN. Also, it could be adopted to relate pre-
dictions with expert knowledge.

6 Conclusions and future work
We have presented a DL approach for the classification of seismo-acoustic events and
showed potential advantages with respect to current detection systems. We have reported
the results obtained with two CNN architectures, arch-timeworking with seismic wave-
forms and arch-spect working with spectrograms; with the latter achieving a higher
accuracy. Low magnitude events remain a challenge, however, the COVID-19 lockdown
period showed us that low ambient noise conditions result in fewer false alarms.

We validated the results and provided a visual inspection mechanism based on the ac-
tivation of CNN layers to highlight the data features captured by the network. Such a tool
would enable domain experts to gain trust in DL-based methods.

Our future work will focus on improving seismo-acoustic source discrimination and
characterisation e.g. magnitude, location. For that goal we are investigating multi-model
solutions, for instance by combining our CNN with Graph (GNN) and Recurrent Neural
Networks (RNN). Also, we are considering to enhance our dataset with synthetic samples
e.g. by using Generative Adversarial Networks (GANs). Furthermore, we will continue
working on explainability aspects towards the establishment of a trusted, reliable and re-
producible operational tool.
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(a) Activation heatmap for a filter
of the CNN superimposed to the
waveform for a noise signal.

(b) Activation heatmap for a fil-
ter of the CNN superimposed to
the waveform for a seismic event
signal.

(c) Activation heatmap for a filter
of the CNN superimposed to the
waveform for an acoustic event
signal.

(d) Spectrograms and corre-
sponding activation heatmap for
a filter of the CNN for a noise
signal.

(e) Spectrograms and corre-
sponding activation heatmap for
a filter of the CNN for a seismic
event signal.

(f) Spectrograms and corre-
sponding activation heatmap
for a filter of the CNN for an
acoustic event signal.

Figure 6: Example of a filter’s activation relative heatmap superimposed to the three cat-
egories of waveform in time domain (a,b,c) and spectrogram with filter heatmap (d,e,f).
Other filters might focus on different features.
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