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Abstract

Geodetic altimeters provide unique observations of the river surface longitudinal profile due to their long repeat periods and

densely spaced ground tracks. This information is valuable for calibrating hydraulic model parameters, and thus for producing

reliable simulations of water level for flood forecasting and river management, particularly in poorly instrumented catchments.

In this study, we present an efficient calibration approach for hydraulic models based on a steady-state hydraulic solver and

CryoSat-2 observations. In order to ensure that only coherent forcing/observation pairs are considered in the calibration, we

first propose an outlier filtering approach for CryoSat-2 observations in data-scarce regions using simulated runoff produced by

a hydrologic model. In the hydraulic calibration, a steady-state solver computes the WSE profile along the river for selected

discharges corresponding to the days of CryoSat-2 overpass. In synthetic calibration experiments, the global search algorithm

generally recovers the true parameter values in portions of the river where observations are available, illustrating the benefit

of dense spatial sampling from geodetic altimetry. The most sensitive parameters are the bed elevations. In calibration

experiments with real CryoSat-2 data, validation performance against both Sentinel-3 WSE and in-situ records is similar to

previous studies, with RMSD ranging from 0.43 to 1.14 m against Sentinel-3 and 0.60 to 0.73 against in-situ WSE observations.

Performance remains similar when transferring parameters to a one-dimensional hydrodynamic model. Because the approach is

computationally efficient, model parameters can be inverted at high spatial resolution to fully exploit the information contained

in geodetic CryoSat-2 altimetry.
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Key Points: 11 

 We use satellite altimetry observations from CryoSat-2 and a steady-state solver to 12 

calibrate hydraulic model parameters 13 

 We develop an outlier filtering method for CryoSat-2 observations in ungauged 14 

catchments based on rainfall-runoff model simulations 15 

 We integrate the altimetry observations in an efficient global calibration approach at low 16 

cost compared to a 1D hydrodynamic model 17 
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Abstract 19 

Geodetic altimeters provide unique observations of the river surface longitudinal profile due to 20 

their long repeat periods and densely spaced ground tracks. This information is valuable for 21 

calibrating hydraulic model parameters, and thus for producing reliable simulations of water 22 

level for flood forecasting and river management, particularly in poorly instrumented 23 

catchments. In this study, we present an efficient calibration approach for hydraulic models 24 

based on a steady-state hydraulic solver and CryoSat-2 observations. In order to ensure that only 25 

coherent forcing/observation pairs are considered in the calibration, we first propose an outlier 26 

filtering approach for CryoSat-2 observations in data-scarce regions using simulated runoff 27 

produced by a hydrologic model. In the hydraulic calibration, a steady-state solver computes the 28 

WSE profile along the river for selected discharges corresponding to the days of CryoSat-2 29 

overpass. In synthetic calibration experiments, the global search algorithm generally recovers the 30 

true parameter values in portions of the river where observations are available, illustrating the 31 

benefit of dense spatial sampling from geodetic altimetry. The most sensitive parameters are the 32 

bed elevations.  In calibration experiments with real CryoSat-2 data, validation performance 33 

against both Sentinel-3 WSE and in-situ records is similar to previous studies, with RMSD 34 

ranging from 0.43 to 1.14 m against Sentinel-3 and 0.60 to 0.73 against in-situ WSE 35 

observations. Performance remains similar when transferring parameters to a one-dimensional 36 

hydrodynamic model. Because the approach is computationally efficient, model parameters can 37 

be inverted at high spatial resolution to fully exploit the information contained in geodetic 38 

CryoSat-2 altimetry.  39 

1. Introduction  40 

Climate change and human activities have altered river regimes globally, posing significant challenges for water 41 

resources managers (Mahé et al., 2013). Flood and drought patterns are changing calling for robust flood hazard and 42 

risk assessment. Many river basins are currently ungauged or sparsely gauged (Hannah et al., 2011), as monitoring 43 

efforts and data accessibility have severely declined in recent decades (Vörösmarty et al., 2001). However, a 44 

reasonable hydraulic representation of river channels is key to producing meaningful large-scale flood models and 45 

typically relies on ground monitoring. Simulating river hydraulics at large scale in poorly instrumented regions 46 

requires adapted model structures and simplifications to compensate for constraints on computational resources and 47 

insufficient ground observations.  48 

Remote sensing observations can be used to retrieve hydraulic parameters and have become a key supplement to in-49 

situ observations in hydrological studies. When parameters cannot be sensed even remotely, calibration is an 50 

important step to ensure that the simulated quantities agree with observations of the system (Michailovsky et al., 51 

2012). Very often, bathymetry and channel roughness need to be estimated through calibration or assumptions made 52 

by the modeler, e.g. regarding channel geometry (Alsdorf et al., 2007). Effective estimation methods in data-poor 53 

regions are needed.  54 

Satellite radar altimeters can measure the water surface elevation (WSE) of inland water bodies, which can be used 55 

as an alternative to in-situ level observations. WSE from satellite radar altimetry has been used increasingly in 56 

hydrodynamic model calibration studies as a supplement to in-situ gauge data (Paiva et al., 2013; Schneider, 57 

Tarpanelli, et al., 2018) or even as a possible surrogate in ungauged basins (Getirana et al., 2013; Jiang et al., 2019; 58 

Liu et al., 2015). Dense water level profiles have been proven useful in the estimation of distributed hydraulic 59 

parameters (F. O’Loughlin et al., 2013; Paris et al., 2016; Schumann et al., 2010). To capture the small-scale 60 

variability of river morphology, the spatial sampling must be denser than what can be achieved with short-repeat 61 

missions (down to 52 km at the Equator for the two Sentinel-3 satellites). In that respect, geodetic altimeters such as 62 

CryoSat-2 provide the opportunity to extract longitudinal profiles of rivers.  63 

Although not designed for hydrological applications, the benefit of high spatial sampling density of geodetic 64 

missions for hydraulic studies has been proven in recent years (Jiang et al., 2019; Schneider, Ridler, et al., 2018; 65 

Schneider, Tarpanelli, et al., 2018; Tourian et al., 2016). Schneider et al. (2018) exploited the dense spatial sampling 66 

of CryoSat-2 to calibrate channel roughness in the well-gauged Po River at a finer spatial resolution. They compared 67 
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homogenous roughness parameters to spatially distributed parameters with increasing the spatial resolution from 68 

subreach level to 10 km-long sections. The RMSE (Root Mean Square Error) against in-situ observations improved 69 

by up to 29 cm. They showed a strong correlation between the channel sinuosity and the spatially variable calibrated 70 

channel roughness. Jiang et al. (2019) showed that missions with high spatial coverage, such as CryoSat-2, 71 

improved the RMSE against ground observations by up to 4 cm compared to missions with wider ground track 72 

spacing (i.e. the spacing between satellite tracks) such as Envisat or Jason-2 and 3. Furthermore, the sharpness of the 73 

parameter estimates increased with decreasing ground-track spacing and increasing spatial detail. Tourian et al. 74 

(2016) reached a similar conclusion in a study on spatiotemporal densification of altimetry over rivers. The quality 75 

of time series at virtual stations deteriorated slightly when including CryoSat-2 data due to assumptions pertaining to 76 

the spatial interpolation. However, CryoSat-2 decreased the bias by increasing the spatial representation of the river 77 

profile.  78 

An important step in using satellite altimetry for inland water applications is outlier filtering. Typically, outliers are 79 

removed using secondary datasets such as a Digital Elevation Model (DEM) or binary water/land masks (Jiang et 80 

al., 2017; Schneider et al., 2017; Schwatke et al., 2015) or by evaluating the observations themselves, e.g. the return 81 

waveforms or the backscatter coefficients (e.g. Boergens et al., 2017; Dinardo et al., 2018; Schwatke et al., 2015; 82 

Zhang et al., 2020). For larger water bodies or short return missions, statistical outlier removal can be used to further 83 

refine the filtering (e.g. Nielsen et al., 2015; Schwatke et al., 2015; Zhang et al., 2020). For medium-sized rivers, the 84 

number of observations per ground track may be too low to perform meaningful statistical outlier removal. When 85 

bathymetry is unknown, WSE is dominated by the unknown bed elevation and errors larger than 1 m may be 86 

difficult to detect. This poses a challenge particularly for geodetic missions such as CryoSat-2, where the seasonal 87 

signal cannot be removed due to the long revisit time. The dense spatial sampling pattern is impractical for on-88 

ground validation and comparison to traditional gauging stations would require aggregation of the observations at 89 

the expense of the valuable spatial resolution to obtain time series. Therefore, robust outlier removal procedures are 90 

needed to extract useful observations from geodetic altimetry datasets.  91 

Water levels alone can only provide limited information, and the modelling and calibration problems must be 92 

adequately formulated to reflect the available observations. Getirana et al. (2013) and Liu et al. (2015) achieve good 93 

simulation results when calibrating channel roughness and bed elevation parameters simultaneously in spite of 94 

model equifinality. Jiang et al. (2019) investigated the information contained in altimetry WSE and the capability to 95 

recover parameter values (bed elevation, channel roughness and channel geometry) through calibration. Only the 96 

bed elevation could be consistently retrieved in combination with one of the other parameters. To avoid ambiguity, 97 

channel geometry can be inferred e.g. by assuming rectangular river cross-sections (Biancamaria et al., 2009; Jiang 98 

et al., 2019) or power channel shapes ( Neal et al., 2015) and information from satellite imagery and global 99 

databases. 100 

The inverse problem to determine hydrodynamic model parameters is highly non-linear and non-convex. Studies 101 

have used local iterative search algorithms such as Levenberg-Marquardt (Jiang et al., 2019; Schneider, Tarpanelli, 102 

et al., 2018) or global search algorithms (Getirana et al., 2013; Liu et al., 2015) to identify the optimal parameters. 103 

Global search algorithms are less sensitive to the starting point for non-convex problems; however, a higher number 104 

of simulations are usually required to search the parameter space adequately. The computational requirements to 105 

calibrate spatially distributed hydraulic parameters increase with the number of estimated parameters. Furthermore, 106 

solving the shallow water equations – even with efficient solvers – still requires long simulation time, including 107 

warm-up periods (Neal et al., 2012). Using a hydrodynamic solver in the inverse problem combined with a global 108 

search algorithm is infeasible due to resource requirements. Therefore, efficient calibration approaches balancing 109 

parameter accuracy and resources requirements are greatly needed. 110 

In this study, we evaluate the combination of a steady-state solver of the shallow water equations and a global search 111 

algorithm for efficient calibration of hydraulic parameters against robustly selected CryoSat-2 observations. 112 

Specifically, we  113 

 Propose an outlier filtering method for CryoSat-2 observations suited for data-scarce regions based on 114 

runoff simulations 115 

 Evaluate the capability of retrieving spatially distributed parameter values (i.e., channel roughness and bed 116 

elevation at least every 20 km) using a steady-state solution of the Saint-Venant equations and CryoSat-2 117 

sampling pattern in synthetic calibration experiments 118 

 Evaluate the method using real-world CryoSat-2 observations 119 

 Assess the performance of the calibrated parameters in dynamic state using a hydrodynamic solver 120 

The proposed method is most valuable in ungauged catchments, where observations of the targeted calibrated 121 

parameters are unavailable. Synthetic experiments allow us to evaluate how the calibration performs and to identify 122 
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potential limitations (e.g., parameter interactions, behavioral parameters). The full workflow is then assessed for 123 

tributaries of the Zambezi, by comparing Sentinel-3 water level and in-situ gauge data with the water levels 124 

simulated using a 1D hydrodynamic model parameterized with the calibrated parameters. 125 

2. Study area  126 

The Zambezi is located in Southern Africa and is the fourth largest river in Africa. It is 2,574 km long and drains a 127 

1.4 million km2 basin. Precipitation follows a declining North-to-South gradient, with an average of 1,500 mm in the 128 

North and 500 mm in the South. The wet season is between October and March. Flow is driven largely by the 129 

precipitation climatology but also by retention in large swamps and floodplains, and artificial reservoirs in the basin.  130 

The Zambezi provides key ecosystem services, supporting large populations of fauna and flora, but is also an 131 

important resource for the people living in the basin. We select three regions within the Zambezi as study areas: the 132 

Kafue, the Luangwa and the Upper Zambezi, upstream of the Barotse floodplain, specifically the tributaries 133 

Kabompo and Lungwebungo (Figure 1). 134 

 135 

 136 
Figure 1 Study area and in-situ gauging stations. Calibration is performed for the five 137 

highlighted reaches (Lungwebungo, Kabompo, Upper Zambezi, Kafue and Luangwa). 138 

3. Data 139 

 Radar Altimetry 3.1.140 

 CryoSat-2 3.1.1.141 

CryoSat-2 Level 2 data were provided by the National Space Institute, Technical University of Denmark (DTU 142 

Space) for the period 16-07-2010 to 21-03-2018. The data is based on the 20Hz Level-1b ESA dataset and has been 143 

retracked at DTU Space using an empirical retracker based on a sub-waveform threshold (Villadsen et al., 2016). In 144 
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the Zambezi, CryoSat-2 operates only in Low Resolution Mode (LRM). The DEM and CryoSat-2 observations are 145 

reprojected onto the EGM2008 using VDatum (Myers et al., 2007).  146 

 Sentinel-3 3.1.2.147 

The Sentinel-3 dataset is independent of the data used to calibrate the steady-state model and its virtual stations’ 148 

monitoring network is denser and with more recent observations than the ground network. Sentinel-3 Level-2 WSE 149 

observations were obtained from the ESA GPOD (Grid Processing on Demand SAR Versatile Altimetric Toolkit for 150 

Ocean Research and Exploitation) service (available on https://gpod.eo.esa.int/). The data has been described and 151 

evaluated in Kittel et al. (2020b). Performance was quantified in the Upper Zambezi with RMSD varying between 152 

2.9 and 31.3 cm. In the rest of the river catchment, there was good coherence between historical seasonal trends and 153 

the Sentinel-3 water surface elevation. 154 

 In-situ observations 3.2.155 

In situ observations were available for five subcatchments in the Upper Zambezi and in the Kafue, and two out of 12 156 

subcatchments in the Luangwa (Table S1 and Figure S1). The Zambezi River Authority (ZRA) kindly provided in-157 

situ observations in the Upper Zambezi, completing the dataset from Michailovsky & Bauer-Gottwein (2014). In-158 

situ discharge was used for the calibration of the rainfall-runoff model, while in-situ stage at two stations (Kabompo 159 

and Chavuma) was used to validate the hydraulic model. To avoid bias related to the vertical datum of the datasets, 160 

all records are referenced to their long-term mean and only amplitudes are compared. 161 

 Ancillary datasets 3.1.162 

The river network is delineated using TauDEM v. 5 (Tarboton, 2015) and the MERIT DEM (Multi-Error-Removed 163 

Improved-Terrain Digital Elevation Model, Yamakazi et al., 2017). The model is forced using remote sensing 164 

observations: GPM (Global Precipitation Model) precipitation (Huffman et al., 2014) and ECMWF ERA-Interim 165 

(European Centre for Medium range Weather Forecasts - Interim Reanalysis) (Berrisford et al., 2011) temperature 166 

observations for the period 2001 to August 2019.  167 

4. Methods 168 

The entire workflow starting from data selection and ending with hydrodynamic simulation of water levels is shown 169 

in Figure 2. The methodology uses remote sensing inputs and two different models: a rainfall-runoff model and a 170 

hydraulic model in steady-state and dynamic mode.  171 

https://gpod.eo.esa.int/
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 172 
Figure 2 Schematic diagram presenting an overview of the main inputs, models and outputs of the calibration 173 

workflow presented in this study 174 

 CryoSat-2 pre-processing 4.1.175 

 176 

First, we use the water occurrence maps from Pekel et al., (2016) to extract observations over the river. We use a 177 

threshold of 10% water occurrence frequency, and allow a 90-m buffer zone around the river mask based on the 178 

results from Schneider et al., (2018). The footprint in LRM is several km wide (2.5 km2 with a diameter of 1.64 km) 179 

and a return signal from the water surface can be captured before and after the satellite has crossed the river. 180 

Parabolic distortions of the water levels due to this so-called “hooking effect” (Frappart et al., 2006; Maillard et al., 181 

2015), are expected to be negligible at the scale of the buffer applied. 182 

Second, we remove observations deviating from the local value of the MERIT DEM by more than 30 m. This 183 

ensures that the surface elevation is indeed within the 60 m satellite reception window. In total, CryoSat-2 crossed 184 

the Zambezi basin 3,724 times during the observation period, resulting in 291,287 observations over water bodies in 185 

the basin. Of those, 38,697 observations are over the river network itself. The rejection rate in step one is 10.5%, 186 

yielding 34,647 observations after this step. 187 

Unlike previous studies, the third step takes into account the river dynamics by using the output of the rainfall-runoff 188 

model. We fit a one-dimensional smoothing spline in the space domain to the CryoSat-2 observations on each river 189 

reach. The spline curve is assumed to represent the mean water level for the days of observation. The expected 190 

deviation, Δ𝑦, from the mean level, ymean, associated with the simulated discharge, Q, at the time of sensing 191 

assuming uniform flow and a wide rectangular channel is estimated using Manning’s equation for a wide rectangular 192 

channel 193 

𝑄 =
1

𝑛
√𝑆 𝑦

5
3                      (1) 

𝑄 is the river discharge (m3/s) 𝑆 is the bed slope (m/m), 𝑛 is the channel roughness and 𝑦 is the channel depth. Eq. 1 194 

can be written for the mean discharge and water level and for the specific conditions on the day of CryoSat-2 195 

overpass. By taking the log-transform and subtracting the two, we can isolate the Δ𝑦 196 

log(𝑄) − log(𝑄𝑚𝑒𝑎𝑛) =
5

3
(log(𝑦) − log(𝑦𝑚𝑒𝑎𝑛))                      (2) 
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log(𝑦) − log(𝑦𝑚𝑒𝑎𝑛) = log (
𝑦𝑚𝑒𝑎𝑛 + Δ𝑦

𝑦𝑚𝑒𝑎𝑛
) =

3

5
log (

𝑄

𝑄𝑚𝑒𝑎𝑛
)                      (3) 

Δ𝑦 = ((
𝑄

𝑄𝑚𝑒𝑎𝑛
)

3
5

− 1) 𝑦𝑚𝑒𝑎𝑛                      (4)  

We calculate the mean discharge, 𝑄𝑚𝑒𝑎𝑛, using only the days with CryoSat-2 observations. We use error 197 

propagation to estimate the total uncertainty of Δ𝑦 based on assumed uncertainties of the discharge estimate, width, 198 

slope and Manning’s number (Table 1). The effect of the spline function smoothing factor on the magnitude of the 199 

level deviation from the mean is mitigated by using an ensemble of spline curves using varying smoothing factors 200 

(0.01-4 times the number of observations in the reach). From the ensemble, we obtain different estimates of the 201 

deviation from the mean water level (Δ𝑦) for each CryoSat-2 observation. If the deviation falls outside of the 202 

predicted confidence interval of Δ𝑦 for all smoothing factors the observation is rejected.  203 

 204 

Table 1 Assumed uncertainties of parameters used to estimate the confidence interval of the 205 

WSE deviation 𝛥𝑦 206 

Parameter  Estimate Error propagation 

Q Daily discharge from rainfall-runoff model +/- 25 % 

Slope From univariate spline function (minimum fixed at 10-5) 2 x standard deviation over the reach 

Manning’s n 0.035 Calibration range: 0.02-0.05 

Width GRWD database +/- 25 % 

 Hydraulic model 4.2.207 

 Steady-state solver 4.2.1.208 

The steady-state solver is based on the Saint-Venant equations, which express the mass balance and momentum 209 

balance equations for gradually varied one-dimensional flow in an open channel. The equations for the steady-state 210 

solver are detailed in the supporting information text, S1. 211 

Equation 4 is the general form of the equation to solve, when assuming steady flow (i.e., constant discharge over 212 

time) and lateral inflow in a rectangular channel, where RHS (Right Hand Side) is the collection of terms not 213 

containing the derivative of the depth with respect to the chainage 214 

𝑑ℎ

𝑑𝑥
=

(
𝑄2

𝑔𝐴3
𝜕𝐴
𝜕𝑥

+ 𝑆0 −
𝑄2

𝐾2 +
2𝑄 × 𝑞

𝑔𝐴2 )

(1 −
𝑄2

𝑔𝐴3
𝜕𝐴
𝜕ℎ

)

𝑑ℎ

𝑑𝑥
= 𝑅𝐻𝑆(𝑥, ℎ(𝑥))                      (4)

 

Where q is the lateral inflow at chainage x. Lateral inflow consists of runoff generated by the rainfall-runoff model 215 

in tributary subcatchments, which enters the hydrodynamic model at the most upstream node, and runoff produced 216 

in the subcatchment itself, which is distributed along the chainage proportionally to the contributing area. 217 

The solver is initialized by calculating the downstream water level boundary condition using Manning’s equation 218 

and a downstream slope of 2e-4 m/m at chainage, i. The downstream slope condition was chosen based on the 219 

average slope in the catchment and only affects the most downstream cross-section. The level is then calculated 220 

stepwise at 𝛥𝑥 spatial increments, moving upstream along the channel and solving Eq. 4 either implicitly (Eq. 5) or 221 

explicitly (Eq. 6): 222 

ℎ𝑖−1 = ℎ𝑖 −
1

2
× (𝑅𝐻𝑆(𝑥𝑖 , ℎ𝑖) + 𝑅𝐻𝑆(𝑥𝑖−1, ℎ𝑖−1)) × 𝛥𝑥                       (5)  

ℎ𝑖−1 = ℎ𝑖 − 𝑅𝐻𝑆(𝑥𝑖 , ℎ𝑖) × Δ𝑥                      (6)  
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The explicit solution is faster but requires smaller steps Δ𝑥 to be stable, while the implicit solution is less sensitive to 223 

the spatial increments but requires the solution of a non-linear implicit equation for ℎ𝑖−1 at each time step. We tested 224 

the speed of the two solvers using a hypothetical formulation of the Kabompo reach channel. The solutions are 225 

virtually identical when solving the equations for steps of less than 500 m. The implicit solver runs in 5.3 seconds, 226 

whereas the explicit solution needs 0.06 seconds. Even when applying the implicit solution only to cross-sections 227 

with observations, the fastest computational time remains slower (0.17 seconds), and the large spatial increments 228 

affect the final solution. We therefore use the explicit solver using 250 m spatial steps. If the solution becomes 229 

numerically unstable, the spatial step is subdivided into 1 m increments. 230 

We define calibration cross-sections every 20 km and at each CryoSat-2 observation. Although the steady-state 231 

solver is less computationally demanding than a full hydrodynamic calibration, the number of model parameters 232 

must still be constrained. Because of the CryoSat-2 orbit configuration, some observations and thus cross-sections 233 

are very closely spaced. This increases the number of calibration parameters and the risk of parameter correlation. 234 

We therefore remove cross-sections less than 5 km apart for shorter reaches (Kabompo and Upper Zambezi) and 10 235 

km apart for longer reaches (Lungwebungo, Kafue and Luangwa).  236 

 Hydrodynamic model 4.2.2.237 

LISFLOOD-FP is a coupled 1D/2D hydrodynamic model simulating the propagation of flood waves along channels 238 

(in 1D) and over floodplains (in 2D). LISFLOOD-FP has three solvers available for calculating channel flow. The 239 

kinematic wave routing model only considers the friction slope, assuming that local and convective acceleration 240 

terms are negligible and that the free surface gradient is equal to the bed slope. The diffusive wave model includes 241 

an additional pressure term. The sub-grid channel solves the full shallow water equations with the exception of the 242 

convective acceleration term (J. Neal et al., 2012). All three formulations are numerically stable (De Almeida et al., 243 

2012). The model is specifically designed for poorly gauged catchments and has been implemented for a number of 244 

sites including the Niger River (J. Neal et al., 2012), the Congo (F. E. O’Loughlin et al., 2020), and rivers in the UK 245 

(Sosa et al., 2020). 246 

We use LISFLOOD-FP to simulate the channel hydrodynamics in the transient state. The model requires 247 

information about channel geometry in the form of channel slope, channel width and bankfull depth from a DEM or 248 

surveyed cross-sections. The bank elevation is derived from the MERIT DEM, the width from the GRWD database 249 

and the bed elevation and channel roughness from the calibrated steady-state solver. The bankfull depth is the 250 

difference between the bed and bank elevations. The resolution of the input files is 900 m instead of the 250 m used 251 

by the steady-state solver to ensure reasonable computation time. The model is forced with daily discharge from 252 

headwater catchments and lateral inflow, both simulated by the rainfall-runoff model. Runoff increments are 253 

distributed according to the contributing area to each channel pixel, obtained from the river delineation. The model 254 

is run in 1D as a means to compare the steady-state solver to a transient solver by burning in the channel bed 255 

elevation into the DEM. 256 

 Hydrologic model 4.3.257 

The CryoSat-2 pre-processing and the hydraulic model require runoff estimates. In ungauged catchments, these can 258 

be obtained using a hydrologic model. In this study we use a conceptual rainfall-runoff model of the Zambezi basin. 259 

The rainfall-runoff model is described in Kittel et al. (2018) and is based on the work by Zhang et al. (2008) who 260 

extended the Budyko framework’s concept of limits to monthly and daily time steps. The model builds on a 261 

representation of the water balance through demand and supply at various levels.  At each time step, Fu’s 262 

representation of the Budyko curve (L. Zhang et al., 2008) is used to partition precipitation into catchment retention 263 

and runoff, and catchment retention into evapotranspiration, groundwater recharge and root-zone storage. The model 264 

is coupled to a Nash cascade of linear reservoirs simulating tributary processes.  265 

The model is calibrated against in-situ discharge records from 1990-present after careful analysis to ensure 266 

hydrometeorological stationarity can be assumed between the observation and simulation periods. In order to 267 

parametrize ungauged subcatchments, we use the same catchment characteristics as proposed in Kittel et al. (2020): 268 

the subcatchments were grouped into calibration clusters using the European Space Agency Climate Change 269 

Initiative Land Cover map v.2 (ESA, 2017) and the MERIT DEM and calibrated holistically using an aggregated 270 

objective function at catchment scale allowing trade-offs between parameters in nested subcatchments. The 271 

regionalization and resulting calibration zones are summarized in Table S2. Performance was then evaluated based 272 

on the flow duration curves using equal flow volume classes as described in Westerberg et al. (2011) and on the 273 

daily discharge climatology Root Mean Square Deviation (RMSD). Additionally we use the Kling-Gupta Efficiency 274 
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to quantify post-calibration performance (Gupta et al., 2009). The model setup and performance are summarized in 275 

the supporting information, in Tables S1 and S2.  276 

 Hydraulic model calibration 4.4.277 

 Global search algorithm and performance statistics 4.4.1.278 

The bed elevation and channel roughness are calibrated for each cross-section using the Shuffled Complex 279 

Evolution algorithm from the University of Arizona (SCEUA) developed by Duan et al., (1992) and implemented in 280 

Python using SPOTPY (Houska et al., 2015). The algorithm uses “complexes” to sample the parameter space. The 281 

complexes are groups of parameter samples, which are evolved independently and shuffled after each evolution 282 

cycle to ensure an efficient global search. The bed elevation parameters are initialized using a spline function 283 

interpolating between the CryoSat-2 WSE observations minus one meter to adjust for the water level. The bed 284 

elevation can vary between -5 m and 3 m from this initial value. The channel roughness is initialized at 0.04 and 285 

allowed to vary between 0.018 and 0.055. The calibration objective function consists of a data misfit term 286 

comparing the residuals between the CryoSat-2 WSE and the simulated WSE  287 

𝐸𝑖 =  (𝑤𝑖 + 𝑧𝑖) − 𝑊𝑆𝐸𝐶2,𝑖                       (7)  

and a smoothness preference for the two parameters along the chainage 288 

𝑆𝑚𝑖 =
√(𝑝𝑖 − 𝑝𝑖−1 )

2

𝑓𝑠𝑚𝑜𝑜𝑡ℎ
                      (8)  

𝑓𝑠𝑚𝑜𝑜𝑡ℎ is the smoothness preference: smaller values will give higher weight to 𝑆𝑚 and force the solver to move 289 

towards a smoother solution with less abrupt changes in bed elevation or channel roughness, represented by p in Eq. 290 

8. The calibration objective is 291 

𝑂𝑏𝑗 = √
1

2𝑁
(∑ 𝐸𝑖

2

𝑁

𝑖=1

+ ∑ 𝑆𝑚𝑖
2

𝑁

𝑖=1

)                      (9)  

The smoothness preference must be chosen to balance a realistic water surface and allowing features from the bed 292 

and channel roughness to be simulated. The preference is set to 1, giving equal weight to the smoothness and error 293 

objectives due to the types of parameters evaluated. Thus, the difference in magnitude between the objectives are 294 

balanced while still prioritizing a good fit between data and observation. 295 

We compute three additional diagnostic performance measures to evaluate the post-calibration performance of the 296 

hydraulic model: the Pearson correlation coefficient, Spearman’s rank correlation coefficient and the non-parametric 297 

Kling-Gupta Efficiency (Pool et al., 2018). The Kling-Gupta Efficiency (KGE) combines the Pearson correlation 298 

coefficient, and the biases between mean and observed mean discharge and between the simulated and observed 299 

standard deviation. In the non-parametric version, the rank correlation is used instead, and the discharge variability 300 

performance is computed using the flow duration curve. This method is less sensitive to assumptions of data 301 

linearity, data normality and outliers (Pool et al., 2018). 302 

 Synthetic experiments 4.4.2.303 

Synthetic calibration experiments are used to evaluate the capabilities of the steady-state solver and calibration 304 

algorithm to retrieve the bed elevation and channel roughness using CryoSat-2-type observations of WSE. We 305 

generate a synthetic set of parameters (i.e., bed elevation and Manning’s n at all cross-sections) to produce synthetic 306 

CryoSat-2 observations in the Kabompo reach, i.e., a synthetic representation of the true WSE. To reflect data 307 

uncertainties, the synthetic truth is perturbed with normally distributed random noise with varying standard 308 

deviations. The resulting three experiments are: 309 

 3 cm standard deviation representing in-situ water level accuracy 310 

 20 cm standard deviation representing high accuracy for altimetry WSE 311 
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 40 cm standard deviation representing average accuracy for altimetry WSE 312 

Parameter sensitivity is evaluated by conducting an extended Fourier amplitude sensitivity test (FAST) (Saltelli et 313 

al., 1999) as implemented in SPOTPY (Houska et al., 2015). We compare the total sensitivity of the bed elevation 314 

and channel roughness at each cross-section to assess the spatial sensitivity of the two parameters along the river 315 

chainage. Over 686.000 model runs are performed to achieve the recommended sampling of the parameter space 316 

based on the number of calibration parameters in the synthetic example (Houska et al., 2015; Saltelli et al., 1999). 317 

 Calibration against real-world observations 4.4.3.318 

We then use the real-world CryoSat-2 observations and calibrate the bed elevation and channel roughness in five 319 

reaches in the Zambezi catchment. To ensure that the steady-state assumption is reasonable, we choose CryoSat-2 320 

observations where the 10-day discharge gradient is less than 5% of the mean discharge. This is the case for 69.9% 321 

of the CryoSat-2 observations. To minimize the impact of uncertainties related to the CryoSat-2 observations and 322 

runoff simulations, we classify the simulated runoff and CryoSat-2 observations into discharge classes based on the 323 

runoff histogram and time of observation. The steady-state model is run for each class and residuals are calculated 324 

for all CryoSat-2 observations within the class. 325 

5. Results 326 

 CryoSat-2 outliers filtering 5.1.327 

Figure 3 illustrates the CryoSat-2 river longitudinal profiles and outlier filtering for each of the five reaches. In the 328 

downstream part of the Upper Zambezi, water level increases of 5 m are unlikely during the low flow season; 329 

therefore, the associated CryoSat-2 observations are rejected, however a similar increase may occur during the high 330 

flow season, highlighting the benefit of a dynamic threshold. The rejection rate is between 10% for Lungwebungo 331 

and 24% for Luangwa.  332 
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 333 
Figure 3 Selection of CryoSat-2 observations in the Zambezi. Left: longitudinal profile of each 334 

studied river reach, right: illustration of the outlier filtering process for a subset of each reach. 335 

The main challenges in terms of outlier-filtering are adequately fitting the spline function so it is representative of 336 

the mean water surface profile along the river line. In the Upper Zambezi, Kafue and Kabompo we removed 337 

observations deviating from the spline function by more than twice the residual standard deviation and fitted a new 338 

spline function through the remaining observations, resulting in rejection rates of 18%, 19% and 23% respectively. 339 

This was necessary due to the combination of large variations in WSE and changes in the reach slope.  There is a 340 

fine balance between overfitting outliers and smoothing the mean water level. 341 

The Luangwa River runs from North-East to South-West. CryoSat-2 predominantly crosses the Luangwa between 342 

March and end of November, thus missing the wet season. Therefore, the CryoSat-2 observations are expected to be 343 

relatively close to the mean water elevation with very small predicted residuals. In this case the outlier filtering is 344 

particularly sensitive to the estimation of the mean water surface profile. However, reducing the smoothing factors 345 

of the spline curve ensemble also increased the risk of admitting clear outliers. 346 

 Synthetic test 5.2.347 

The synthetic tests evaluate the impact of observation uncertainties by using respectively 3 cm, 20 cm and 40 cm 348 

standard deviations to perturb the synthetic CryoSat-2 observations. The results are shown in Figure 4. 349 
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 350 

 351 
Figure 4 Top: Simulated against synthetic water level (the calibrated bed elevation is subtracted) 352 

for the three experiments. Bottom: Retrieval of synthetic Manning’s roughness, n (left) and 353 

offset from the initial datum guess (right) by the model. The black crosses indicate the chainage 354 

of the synthetic observations consistent with the CryoSat-2 observation density.  355 

A difference in performance is seen when increasing the observation uncertainty, as seen in the performance 356 

statistics (Table 2) and the spread in the scatter plot in Figure 4. The RMSD is in the order of magnitude of the 357 

observation uncertainty. For all assumed uncertainty levels, parameter retrieval is most improved at cross-sections 358 

with synthetic observations. This was expected and confirms the advantage of using spatially dense observations to 359 

calibrate hydrodynamic parameters. The weighted objective used in calibration includes a smoothness factor. There 360 

is good consistency between the RMSD and calibration objective, with the smoothness factor forcing a reduction in 361 

variations where the observation density is low. 362 

Table 2 Calibration performance for the synthetic experiments at all cross-sections and at cross-363 

sections with synthetic observations (gauged cross-sections). 364 

Observation uncertainty 𝜎 = 40 cm 𝜎 = 20 cm 𝜎 = 3 cm 

 

WSE objective 0.26 0.15 0.09 

RMSD [m] 0.33 0.17 0.08 

Datum offset RMSD [m] 0.75 0.49 0.56 

Considering only gauged cross-section 0.53 0.39 0.39 

Manning’s n RMSD [s/m1/3] 0.0083 0.0072 0.0075 
 365 
The downstream sections are most sensitive during calibration according to the FAST sensitivity analysis. The 366 

Saint-Venant equations account for backwater effects; therefore, changes in downstream parametrization have an 367 

impact on all upstream evaluation points. Tweaking upstream parameters will mainly impact the upstream 368 

predictions in the steady-state solver and thus have limited effect on the overall performance. Sensitivity is driven by 369 

the observation density, as seen for the parameters at cross-section 12, which correspond to the first large gap in 370 

observations, and are not sensitive at all (Figure 4 and Figure 5).  371 
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 372 

 373 
Figure 5 Top: FAST sensitivity analysis of the synthetic calibration test with 20 cm standard 374 

deviation; the parameters are numbered from downstream to upstream cross-sections. Bottom: 375 

Sampling pattern and model performance during calibration at three randomly selected cross-376 

sections. Cross-section numbering is from downstream to upstream. The objective is lowered 377 

during calibration. 378 

The analysis also confirms that the objective function is less sensitive to the channel roughness, n, than the datum 379 

offset, z, as shown in Figure 5 (top). The scatter plots in Figure 5 provide information on whether trade-offs during 380 

calibration can explain the low sensitivity of the channel roughness. We plot the results of the low uncertainty 381 

calibration, to remove the effect of observation uncertainty on the parameter retrieval. During calibration, the 382 

parameters converge to relatively narrow parameter spaces. The synthetic truth is not always within the optimum 383 

range, which is due to the global objective function and trade-offs between parameters at the different cross-384 

sections.  385 

The bed elevation and channel roughness have similar local effects: overestimating the channel roughness raises the 386 

water level but can be compensated by slightly decreasing the bed elevation locally. Previous studies have shown 387 

that the two parameters impact the water surface differently over different characteristic spatial scales (Durand et al., 388 

2014; Wood et al., 2016). When calibrating a single, global roughness parameter, the bed elevation will tend to have 389 

a local impact, whereas adjustments of the friction parameter will have a more diffuse effect and impact a longer 390 

portion of the reach. Thus, the two parameters can be retrieved simultaneously. In this study, both parameters are 391 

calibrated locally, and both have a local impact. This can be seen at cross-section 0, where the best performing 392 

parameter samples (objective function less than 0.2) form a straight line towards the synthetic truth. Thus, although 393 

parameters can be retrieved successfully at some cross-sections, there is still model ambiguity (e.g., at cross-section 394 

4). The ambiguity can be partially resolved by increasing the observation density.  395 

 Calibration using real-world CryoSat-2 observations in the Zambezi 5.3.396 

Figure 6 shows the calibrated longitudinal water surface profiles at the five locations in the Zambezi after 397 

calibrating the steady-state solver against real-world CryoSat-2 observations. Overall, the simulated WSE 398 

corresponds quite well to the CryoSat-2 observations.  399 

 400 
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 401 
Figure 6 Calibrated longitudinal profile of the bed elevation and the WSE simulated by the 402 

steady-state solver for the five subreaches in the Zambezi – the calibrated WSE is computed 403 

using the discharge of the corresponding day of observation by CryoSat-2 assuming steady-state. 404 

LISFLOOD-FP models are run for each reach using the calibrated channel roughness and bed elevation. Table 3 405 

summarizes performance statistics of the calibration and evaluation based on the steady-state solver and the transient 406 

solution respectively. We compare the simulated and observed water level by subtracting calibrated bed elevation 407 

from the satellite altimetry WSE. This removes the otherwise dominating effect of elevation on the performance. 408 

Overall performance is good and consistent across performance metrics. The weighted objective includes a 409 

smoothness and shallowness preference and is therefore generally larger than the RMSD. There is a good correlation 410 

between the simulated WSE and CryoSat-2 WSE. The RMSD is between 0.58 m and 0.88 m. 411 

Figure 7 shows the WSE time series simulated by LISFLOOD-FP against the in-situ records at Chavuma and 412 

Watopa and against the Sentinel-3 WSE. We note that there are some timing issues in the water level prediction, 413 

particularly at Chavuma, and in the low flow predictions at Watopa. These are consistent with uncertainties in the 414 

rainfall-runoff model, which forces the steady-state hydraulic model and hydrodynamic models. Sentinel-3 is a SAR 415 

altimeter and expected to have a lower uncertainty than a conventional altimeter (3-30 cm in the Zambezi, according 416 

to Kittel et al., 2020b). We represent the Sentinel-3 data with a slightly higher uncertainty, as the stations used in 417 

this study could not all be evaluated against in-situ observations. A conservative upper bound of 50 cm, consistent 418 

with previous studies on altimetry observations of inland water (Villadsen et al., 2016) was therefore selected to 419 

indicate the Sentinel-3 uncertainty in Figure 7. 420 
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 421 
Figure 7 Dynamic WSE at in-situ stations Chavuma (Upper Zambezi – top row) and Watopa 422 

(Kabompo – middle row) and simulated by LISFLOOD-FP and Sentinel-3 WSE versus 423 

simulated WSE by LISFLOOD-FP at Sentinel-3 VS (bottom row). The shaded area represents 424 

the expected uncertainty of Sentinel-3 of up to 50 cm. 425 

The steady-state and transient solutions differ by around 20 to 40 cm in RMSD against CryoSat-2 observations, 426 

which is in the order of magnitude of the expected CryoSat-2 uncertainty in LRM (Villadsen et al., 2016). The 427 

difference between the steady-state and transient solution (22 cm to 98 cm) can be partly explained by 1) the 428 

difference between the subgrid representation of the channel and the 1-dimensional line representation of the steady-429 

state solver and 2) the coarser spatial resolution (900 m instead of 250 m) needed to allow reasonable computation 430 

time. The performance metrics remain comparable or better than results reported in previous studies. 431 

 432 

Table 3 Steady-state (SS) solver and LISFLOOD-FP (L) performance statistics using calibrated 433 

parametrization and CryoSat-2 observations (C2), Sentinel-3 (S3) WSE and in-situ water level 434 

observations. The Pearson and Spearman correlation coefficients are calculated by subtracting 435 

the calibrated bed elevation from the CryoSat-2 observations to remove the effect of elevation on 436 

the performance. A p-value below 2.5% is considered significant – in all cases the p-value is 437 

below the threshold and the correlation is significant. 438 

 Weighted 

objective 

 

RMSD 

Non-

parametric 

KGE 

Pearson r2 Spearman r2 

Data source C2  C2 S3 In-

situ 

C2 In-

situ 

C2 S3 In-

situ 

C2 S3 In-

situ 

Solver SS SS 

vs. L 

SS L L L L L L L L L L L 

Upper 

Zambezi 

0.68 0.39 0.83 0.79 0.71 0.73 0.79 0.25 0.91 0.79 0.84 0.79 0.82 0.92 

Lungwebungo 0.78 0.98 0.88 1.31 0.43  0.50  0.37 0.58  0.53 0.58  
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Kabompo 0.45 0.32 0.61 0.71 1.14 0.60 0.89 0.49 0.90 0.69 0.90 0.90 0.79 0.90 

Kafue 0.74 0.35 0.89 1.05 0.62  0.78  0.85 0.91  0.85 0.90  

Luangwa 0.54 0.17 0.66 0.60 0.99  0.11  0.58 0.43  0.44 0.61  

 439 

Overall, the performance is consistent with previous studies with RMSD values between 0.60 and 1.31 m. Jiang et 440 

al. (2019) obtained RMSD between the simulated and altimetry WSE between 0.72 m and 1.6 m, when using 441 

various combinations of altimetry datasets, with CryoSat-2 alone giving a calibration performance of 1.28 m. 442 

Domeneghetti et al. (2014) obtained a RMSD of around 1 m using Envisat data to calibrate a hydrodynamic model 443 

of the Po river. O’Loughlin et al. (2020) achieved RMSD between 0.84 and 2.02 m in the Congo when comparing a 444 

large-scale hydraulic model forced with in-situ and simulated discharge. As in this study, the channel depths and 445 

friction were calibrated against satellite altimetry WSE observations; however, the study used a global channel 446 

friction parameter. 447 

6. Discussion  448 

 CryoSat-2 data selection 6.1.449 

The CryoSat-2 observations used in the calibration must be accurate and representative of the river WSE. CryoSat-2 450 

is not error-free and is difficult to validate due to the high spatial sampling but low temporal sampling frequency. In 451 

this study, we used hydrological simulations from a calibrated hydrological model to assess the validity of the 452 

CryoSat-2 observations. Instead of selecting a fixed threshold to assess the deviation of a given CryoSat-2 453 

observation from the local river surface longitudinal profile, we predict the expected range of water level deviation 454 

based on the hydrological conditions in the reach at the time of observation.  455 

Robust outlier removal is essential but highly challenging in poorly instrumented catchments. By exploiting 456 

simulations of discharge, which are already available as input to the hydraulic model, a more refined method was 457 

developed in this study. Valid observations may be rejected due to errors in the corresponding simulated discharge. 458 

This is likely to occur in poorly gauged catchments, where calibration is constrained by data availability. Retaining 459 

these observations may introduce errors in the calibration, as it fits the parameters to produce water levels, which are 460 

unlikely to have occurred under the simulated flow conditions. In this study, we demonstrate the method in a 461 

sparsely gauged catchment, where the added value of altimetry WSE is high. In future studies, we recommend 462 

applying this method in a highly instrumented catchment to validate the proposed method. 463 

 Model performance 6.2.464 

The steady-state assumption of the solver is a simplification of the actual hydrodynamic conditions; it can be run for 465 

specific time steps corresponding to satellite overpasses greatly reducing computational time. The results are in the 466 

order of magnitude of the calibration data uncertainty and comparable to previous studies. This confirms that the 467 

method can be used to calibrate hydraulic models efficiently against spatially dense WSE observations.  468 

Furthermore, simplifications are necessary to represent poorly instrumented river channels for hydraulic modelling. 469 

In particular, some assumption on the cross-section geometry is required (e.g., trapezoidal, rectangular channel, 470 

power channel). In this study, we select a simple rectangular shape, and use global river width databases to obtain 471 

the missing information about the mean width. An alternative approach could be to use a power-law to correlate the 472 

area and water depth and the conveyance and water depth, removing the need for an explicit definition of the 473 

channel shape.  474 

Neal et al. (2015) investigated incorporating the channel cross-section uncertainty into large-scale flood inundation 475 

models of data sparse areas and showed that performance improved in models with calibrated channel friction and 476 

rectangular channels. Their results suggest that a channel shape parameter, roughness and elevation could be fitted 477 

simultaneously, provided sufficient dynamic observations are available in the reach. Neal et al. (2015) also showed 478 

that informing the model with even basic information about the channel geomorphology, such as width-discharge 479 

curves from optical or radar satellite imagery improved model calibration against level observations. The shape and 480 

friction have similar effects locally and calibrating the shape parameter may be more appropriate than calibrating 481 

friction for narrow channels, where the assumption of a rectangular shape is less appropriate.  482 
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The calibration of local variations in channel roughness greatly increases the parameter space, and poses a further 483 

challenge. Jiang et al. (2019) demonstrated that altimetry alone is insufficient to calibrate geometry parameters as 484 

well as a spatially distributed channel roughness. The reason for this is clear: local channel conveyance depends on 485 

both the channel roughness and flow area. Thus, there is model ambiguity and additional datasets are required to 486 

constrain the increased parameter space (e.g., channel width under known flow conditions). The unknown channel 487 

bed elevation prevents a satisfactory calibration of the level to area relationship and channel roughness. Thus, an 488 

interesting future path could include exploring whether the geometry parameters could be sufficiently constrained 489 

from alternative or new remote sensing observations, or whether calibrating local changes in channel geometry may 490 

be more robust than calibrating the channel roughness.  491 

 1D versus 2D hydrodynamic model 6.3.492 

 The steady-state solver is one-dimensional and thus does not include bank overflow and floodplain processes. This 493 

will introduce errors in shallow reaches during extreme events, where the peak water level might be over-predicted 494 

to accommodate the high flow in a rectangular channel. Therefore, we only consider tributary branches of the 495 

Zambezi. The subgrid solver in LISFLOOD-FP calculates the floodplain water level when the level in the channel 496 

exceeds the bank elevation. This requires a robust match between bed and bank elevation. Figure 8 illustrates the 497 

calibrated cross-sections versus the DEM at selected locations of the five reaches. Because the steady-state solver 498 

only calibrates the bed elevation, the bank elevation is extracted from the DEM. This poses a challenge if the 499 

calibrated bed is equal to or higher than the DEM elevation height, e.g., in the Upper Zambezi (Figure 8). The 500 

calibration information then becomes obsolete. If the difference is too small, the channel might overflow too often 501 

(as might be the case at Kabompo). Thus to apply the results in a 2D modelling setup, the bank elevation must be 502 

corrected, to ensure the channel is correctly burned into the floodplain, e.g. using SAR imagery to deduce the bank 503 

and bed elevation relationship (Wood et al., 2016). Despite the higher demands for parametrization and computation 504 

power, a two-dimensional solver would be necessary to adequately model the entire Zambezi, particularly the delta, 505 

which is not included in this study. The proposed method may however still be a useful steppingstone for more 506 

complex modelling efforts, particularly in poorly instrumented catchments. 507 
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 508 
Figure 8 Selected calibrated river cross-sections versus MERIT DEM bed and bank elevations 509 

(left) and calibrated bed elevation versus the MERIT DEM river surface longitudinal profiles 510 

(right).  511 

The DEM will usually give the elevation of the water surface in the channel at time of observation. This means that 512 

the calibrated bed elevation is more likely to be below than above the DEM elevation. The opposite occurs at 513 

Chavuma, where the slope is very high. CryoSat-2 observations before and after the drop in elevation force a 514 

compromise.  515 

7. Conclusion 516 

A reasonable hydraulic representation of river channels for large-scale flood modeling is essential but challenging to 517 

obtain in data poor regions. In this study, we propose using a steady-state solver to calibrate hydraulic parameters 518 

against geodetic altimetry observations. We propose an informed outlier rejection framework based on simulated 519 

discharge to select CryoSat-2 observations for calibration. The approach successfully removes obvious outliers, 520 

while allowing reasonably large deviations from the estimated mean level, provided there is coherence with the 521 

hydrological conditions on the day of observation. Furthermore, it ensures that only coherent forcing/observation 522 
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pairs are included in the calibration. The method enables filtering spatially dense WSE observations from geodetic 523 

satellite altimetry missions in data sparse regions, where traditional outlier identification methods fail.  524 

Hydraulic parameter retrieval was evaluated in synthetic experiments, focusing on the impacts of observation 525 

density and quality, and on the calibration setup. Bed elevation was retrieved with a RMSD of 42-75 cm and channel 526 

roughness with a RMSD of 0.007-0.009 s/m1/3. The calibration revealed a higher sensitivity to the elevation offset 527 

compared to the roughness parameter, resulting in a poor retrieval of the upstream channel roughness. Furthermore, 528 

we noted the effect of the WSE observation density, with the most successful performance occurring in densely 529 

observed segments of the reach. Observation uncertainty affected the retrieval of parameters at ungauged cross-530 

sections, and performance was more similar at gauged cross-sections for the three investigated data quality 531 

scenarios.  532 

By carefully selecting observations where the steady-state assumption is reasonable, five reaches of the Zambezi 533 

were calibrated with satisfactory model performance using real CryoSat-2 observations. Calibration against real-534 

world CryoSat-2 observations was evaluated using a range of statistical diagnostics to confirm the model behavior 535 

and compared to Sentinel-3 and in-situ observations of WSE to evaluate the temporal patterns of WSE in the river 536 

channels. The method yielded at least as good performance as past studies at far reduced computational cost and the 537 

parameter transfer from the steady-state to the transient solver did not impact performance significantly. 538 

Geodetic altimetry missions clearly hold valuable information for hydrological studies, particularly in ungauged 539 

basins. However, the dense spatial sampling requires careful data selection and comes at a computational cost 540 

because, in the hydraulic inversion, WSE must be simulated at all points of observation by the hydraulic forward 541 

model. The approach presented in this study integrates the altimetry observations in a fast and efficient, global 542 

calibration approach at low cost compared to a 1D hydrodynamic model.  543 
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Text S1. 

The Saint-Venant equations express the mass balance and momentum balance 

equations for gradually varied one-dimensional flow in an open channel 
𝜕𝐴

𝑑𝑡
+

𝑑𝑄

𝑑𝑥
= 𝑞                       (𝐶. 1)  

𝜕𝑄

𝜕𝑡
+

𝜕

𝜕𝑥
(

𝛽𝑄2

𝐴
) + 𝑔𝐴

𝜕ℎ

𝜕𝑥
− 𝑔𝐴(𝑆0 − 𝑆𝑓) = 0                      (𝐶. 2)  

x is the chainage or distance along the channel [m], t the time [s], h the channel depth 

[m], Q the discharge [m3/s], A, the flow cross-sectional area [m2], q the lateral inflow 

[m3/s], g, the acceleration due to gravity (set to 9.81 m2/s) and β the momentum 

coefficient (set to unity). The bed slope, S0 [m/m] is given by 

𝑆0 = −
𝑑𝑧

𝑑𝑥
                      (𝐶. 3)  

z is the channel datum or bed elevation above a given height. The friction slope, Sf 

[m/m], is given by  

𝑆𝑓 =
𝑄2

𝐾2
                      (𝐶. 4)  

K, the conveyance [m3/s], can be expressed as a function of channel cross-section 

geometry using Manning’s equation 

𝐾 =
𝐴

5
3

𝑛 × 𝑃
2
3

                      (𝐶. 5)  

P is the wetted perimeter [m] and n is Manning’s friction coefficient [s/m1/3]. 

If we assume steady flow, i.e., constant Q, and no lateral inflow, the mass balance 

equation (Eq. C.1) becomes equal to the lateral inflow and Saint-Venant equations 

simplify to  

𝑑ℎ

𝑑𝑥
−

𝑄2

𝑔𝐴3

𝑑𝐴

𝑑𝑥
− 𝑆0 +

𝑄2

𝐾2
= 0                      (𝐶. 6)  

By taking the partial derivative of the area relative to the chainage and width, and 

expanding the first term, Eq. C.2 becomes: 

(1 −
𝑄2

𝑔𝐴3

𝜕𝐴

𝜕ℎ
)

𝑑ℎ

𝑑𝑥
−

𝑄2

𝑔𝐴3

𝜕𝐴

𝜕𝑥
− 𝑆0 +

𝑄2

𝐾2
= 0                      (𝐶. 7)  

Isolating the change in depth over the chainage gives the general form of the equation 

to solve 

𝑑ℎ

𝑑𝑥
=

(
𝑄2

𝑔𝐴3
𝜕𝐴
𝜕𝑥

+ 𝑆0 −
𝑄2

𝐾2)

(1 −
𝑄2

𝑔𝐴3
𝜕𝐴
𝜕ℎ

)

𝑑ℎ

𝑑𝑥
= 𝑅𝐻𝑆(𝑥, ℎ(𝑥))                      (𝐶. 8)
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Where RHS (Right Hand Side) is the collection of terms not containing the derivative of 

the depth with respect to the chainage. We can replace 
𝜕𝐴

𝜕ℎ
 and 

𝜕𝐴

𝜕𝑥
 with channel 

properties. For a rectangular channel with variable width 𝑤 = 𝑤(𝑥) 

𝑑ℎ

𝑑𝑥
=

(
𝑄2

𝑔𝐴3
𝑑𝑤
𝑑𝑥

+ 𝑆0 −
𝑄2

𝐾2)

(1 −
𝑄2

𝑔𝐴3 𝑏)
                      (𝐶. 9)  

If we apply this method to larger river networks, there will be lateral inflow, q, at certain 

points. Therefore, we must take into account 

𝑑

𝑑𝑥

𝑄2

𝐴
=

𝐴
𝑑𝑄2

𝑑𝑥
− 𝑄2 𝑑𝐴

𝑑𝑥
𝐴2

                       (𝐶. 10)
 

𝑑𝑄2

𝑑𝑥
=

𝑑(𝑄2)

𝑑𝑄

𝑑𝑄

𝑑𝑥
= 2𝑄 × 𝑞                       (𝐶. 11)   

Eq. C11 becomes 

𝑑ℎ

𝑑𝑥
=

(
𝑄2

𝑔𝐴3
𝜕𝐴
𝜕𝑥

+ 𝑆0 −
𝑄2

𝐾2 +
2𝑄 × 𝑞

𝑔𝐴2 )

(1 −
𝑄2

𝑔𝐴3
𝜕𝐴
𝜕ℎ

)

𝑑ℎ

𝑑𝑥
= 𝑅𝐻𝑆(𝑥, ℎ(𝑥))                      (𝐶. 12)

 

 

 

 

 

 
Figure S1. Water level at Kabompa Boma over the years of observation with at least 250 

days of record and discharge record before and after bias correction of the level 

observations. The observed shift between the pre-1990 and post-2000s records is likely 

due to a shift in reference height, resulting in a bias of 65 cm. Comparison with the closest 

downstream station, Watopa, confirms this discrepancy. The station rating curve is applied 

to obtain the corrected post-2000 discharge records.  
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Main river 
and 
tributaries 

Drainage 
area 
[km2] 

Length 
[km]/ 
tributary 
to 

Observations Stations Time of 
operation 

Mean 
annual 
discharge 
[m3/s] 

CryoSat-2 
observations 
after outlier 
removal 

Zambezi 238,667 468.9 Discharge, 
stage 

Chavuma 
(1105) 

1959-
2019 

656 
 

140 

    Zambezi 
Pump 
house 
(1150) 

1990-
2006 
 

911 
 

 

    Lukulu 
(2030) 

1950-
2018 

886  

Kabompo 72,068 491.0  Kabompo 
Boma* 
(1650) 

2000-
2008 
 
 

165 
 

 

83 

    Watopa 
(1950) 

1958-
2019 

273  

Lungwebungo 47,071 754.1     375 

Kafue 102,714 739,1 Discharge, 
stage 

Chilenga 
(4350) 

1962-
2007 

153 180 

    M’Swebi 
(4435) 

1953-
2005 
 

162  

    Lubungu 
(4450) 

1959-
2007 
 

147  

    Hook 
Pontoon 
(4670) 

1973-
2008 

231  

Lunga 24,517 Kafue   Chifumpa 
Pontoon 
(4560) 

1959-
2007 

87  

Luangwa 149,523 989.4 Discharge, 
stage 

Great 
East Rd. 
Bridge 
(5940) 

1948-
2002 

168 230 

 

 

Table S1. Summary of In-situ stations used to calibrate the hydrologic (discharge 

records) and validate the hydrodynamic model (stage records) and of the number of 

CryoSat-2 observations available for calibration of the hydraulic model are indicated for 

the three study areas. The mean annual discharge is over the time of simulation, 2001-

2018. *: the discharge record at Kabompo Boma has been manually bias-corrected based 

on historical records from 1990-1992. 
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 Calibration 
zones 

Calibration and 
validation 
stations 

RMSD of 
discharge 
climatology 

Flow 
duration 
curve 

Non-
parametric 
KGE 

Upper 
Zambezi 

1. Low slope, 
dominant 
forest 
cover 

2. Low slope, 
land cover 
mosaic 

3. High slope, 
dominant 
forest 
cover 

4. Watopa (C) 
5. Chavuma 

(C) 
6. Kabompo 

Boma (C) 

 

1. 0.63 
2. 1.05 
3. 0.79 

1. 0.12 
2. 0.21 
3. 0.15 

1. 0.82 
2. 0.74 
3. 0.84 

Kafue 7. Low slope, 
forest 
cover > 
75% 

8. Low slope, 
land cover 
mosaic 

9. High slope, 
forest and 
shrub 
mosaic 

10. High slope, 
forest 
cover > 
80% 

11. Lubungu 
(C) 

12. Hook 
Pontoon 
(C) 

13. Chilenga 
(C) 

14. Chifumpa 
Pontoon 
(C) 

1. 1.47 
2. 0.83 
3. 0.57 
4. 1.64 

1. 0.08 
2. -0.36 
3. -1.04 
4. -0.72 

1. 0.88 
2. 0.87 
3. 0.90 
4. 0.74 

Luangwa 15. High cover, 
forest 
mosaic 

16. Great East 
Rd. Bridge 
(C) 

1. 0.58 1. 0.002 1. 0.37 

 

Table S2. Summary of calibration setup of the rainfall-runoff model and performance 

statistics at the calibration and validation stations 
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