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Abstract

Throughout spring and summer 2020, ozone stations in the northern extratropics recorded unusually low ozone in the free

troposphere. From April to August, and from 1 to 8 kilometers altitude, ozone was on average 7% (˜4 ppbv) below the 2000

to 2020 climatological mean. Such low ozone, over several months, and at so many stations, has not been observed in any

previous year since at least 2000. Atmospheric composition re-analyses from the Copernicus Atmosphere Monitoring Service

and simulations from the NASA GMI model indicate that the large 2020 springtime ozone depletion in the Arctic stratosphere

has contributed less than one quarter to the observed tropospheric anomaly. The observed anomaly is consistent with two

recent model simulations, which assume emission reductions similar to those caused by the COVID-19 crisis. COVID-19 related

emission reductions appear to be the major cause for the observed low free tropospheric ozone in 2020.
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Key Points: 55 

 From April through August 2020, ozone stations in the northern extratropics report on 56 

average 7% (or 4 ppbv) less ozone in the free troposphere than normal. 57 

 Such low tropospheric ozone, over several months, and at so many sites, has not been 58 

observed in any previous year since at least the year 2000. 59 

 We suggest that most of the low tropospheric ozone in 2020 is a consequence of the 60 

substantial emission reductions caused by decreased worldwide activity due to the 61 

COVID-19 pandemic. 62 

  63 
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Abstract 64 

Throughout spring and summer 2020, ozone stations in the northern extratropics recorded 65 

unusually low ozone in the free troposphere. From April to August, and from 1 to 8 kilometers 66 

altitude, ozone was on average 7% (≈4 ppbv) below the 2000 to 2020 climatological mean. Such 67 

low ozone, over several months, and at so many stations, has not been observed in any previous 68 

year since at least 2000. Atmospheric composition re-analyses from the Copernicus Atmosphere 69 

Monitoring Service and simulations from the NASA GMI model indicate that the large 2020 70 

springtime ozone depletion in the Arctic stratosphere has contributed less than one quarter to the 71 

observed tropospheric anomaly. The observed anomaly is consistent with two recent model 72 

simulations, which assume emission reductions similar to those caused by the COVID-19 crisis. 73 

COVID-19 related emission reductions appear to be the major cause for the observed low free 74 

tropospheric ozone in 2020. 75 

 76 

Plain Language Summary 77 

Worldwide actions to curb the spread of the COVID-19 virus have closed factories, grounded 78 

airplanes, and have generally reduced travel and transportation. Less fuel was burnt, and less 79 

exhaust was emitted into the atmosphere. Due to these measures, the concentration of nitrogen 80 

oxides and volatile organic compounds (VOCs) decreased in the atmosphere. These substances 81 

are important for photochemical production and destruction of ozone in the atmosphere. In clean 82 

or mildly polluted air, reducing nitrogen oxides and/or VOCs will reduce the photochemical 83 

production of ozone and result in less ozone. In heavily polluted air, in contrast, reducing 84 

nitrogen oxides can increase ozone concentrations, because less nitrogen oxide is available to 85 

destroy ozone. In this study, we use data from three types of ozone instruments, but mostly from 86 

ozonesondes on weather balloons. The sondes fly from the ground up to 30 kilometers altitude. 87 

In the first 10 kilometers we find significantly reduced ozone concentrations in spring and 88 

summer of 2020, less than in any other year since at least 2000. We suggest that reduced 89 

emissions due to the COVID-19 crisis have lowered photochemical ozone production and have 90 

caused the observed ozone reductions in the first 10 kilometers of the atmosphere, the 91 

troposphere. 92 

 93 

1 Introduction 94 

Widespread slowdowns caused by the COVID-19 pandemic have reduced anthropogenic 95 

emissions throughout the year 2020. Guevara et al. (2020) report emission reductions up to 60% 96 

for NOx, and up to 15% for non-Methane Volatile Organic Compounds (NMVOC) over Europe 97 

for March and April 2020 (Barré et al., 2020). Based on satellite observations of NO2 columns 98 

(Bouwens et al., 2020), comparable NOx emission reductions are reported for Chinese cities 99 

during February 2020 (Ding et al., 2020; Feng et al., 2020). For the first half of 2020, Liu et al. 100 

(2020) report an overall reduction of 8.8% for CO2 emissions, consistent in magnitude with the 101 

mentioned NO2 emission reductions. The largest relative reductions occurred for airtraffic, where 102 

traffic (and emissions) decreased by ≈40% in the first half of 2020 (Liu et al., 2020), and have 103 

remained low during the second half of 2020. 104 
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COVID 19 emission reductions are large enough to affect ozone levels in the troposphere 105 

(Dentener et al., 2011). Tropospheric O3-NOx-VOC-HOx chemistry is, however, complex and 106 

non-linear. The net effect of emission changes on ozone depends on NOx and VOC 107 

concentrations, and on their ratios (Kroll et al., 2020; Sillman, 1999; Thornton et al., 2002). In 108 

polluted regions, at high NOx concentrations (>> 1pbb), reducing NOx concentrations can 109 

increase ozone, because ozone titration by NO is reduced (Sicard et al., 2020). At low 110 

concentrations (NOx < 1ppb), however, in the clean or mildly polluted free troposphere, reducing 111 

NOx lowers photochemical ozone production (Bozem et al., 2017) and results in less ozone. 112 

Indeed, for many polluted regions, studies report increased near-surface ozone 113 

concentrations after COVID-19 lockdowns (Collivignarelli et al., 2020; Shi & Brasseur, 2020; 114 

Siciliano et al., 2020; Venter et al., 2020). Reduced surface ozone is reported for some rural areas 115 

after COVID-19 lockdowns, e.g., in the US and Western Europe (Chen et al., 2020; Menut et al., 116 

2020). Meteorological conditions complicate matters, and play an important role as well 117 

(Goldberg et al., 2020; Keller et al., 2020; Ordóñez et al., 2020). 118 

In this paper we report significant ozone reductions observed in the free troposphere at 119 

many stations in the northern extratropics. These large-scale reductions occurred in late spring 120 

and summer 2020, following the widespread COVID-19 slowdowns, and are unique for the last 121 

two decades. 122 

2 Instruments and Data 123 

Regular observations of ozone in the free troposphere are sparse: Only around 50 ozone 124 

sounding stations worldwide (e.g. Tarasick et al., 2019), a handful of tropospheric lidars (Gaudel 125 

et al., 2015; Granados-Muñoz and Leblanc 2016; Leblanc et al., 2018), and about twenty Fourier 126 

Transform Infrared Spectrometers (FTIRs, Vigouroux et al., 2015). In-Service Aircraft for a 127 

Global Observing System (IAGOS, Nédélec et al., 2015) are another important source of 128 

tropospheric ozone data. Due to the COVID-19 slowdowns, however, few IAGOS aircraft were 129 

flying in 2020, and IAGOS data became quite sparse. The information content of satellite 130 

measurements on ozone in the free troposphere is limited: Typically, only one value (one degree 131 

of freedom) for the entire troposphere, with modest accuracy, 10 to 30% (Hurtmans et al., 2012; 132 

Liu et al., 2010; Oetjen et al., 2014). The recent Tropospheric Ozone Assessment Report found 133 

large differences in tropospheric ozone trends derived from different satellite instruments, and 134 

even different signs in some regions (Gaudel et al., 2018). 135 

Ozonesondes measure profiles with high vertical resolution, about 100 m, and good 136 

accuracy, about 5 to 15% in the troposphere, 5% in the stratosphere (Smit et al., 2007; Sterling et 137 

al., 2018). This is adequate to detect ozone anomalies of several percent. Substantial work has 138 

gone into standardizing and improving operating procedures for ozonesondes (WMO, 2014). 139 

Homogenization of historical records has started as well (Tarasick et al., 2016; Van Malderen et 140 

al., 2016; Witte et al., 2017; Sterling et al., 2018). We use stations with regular soundings, at 141 

least once per month since the year 2000, and with data available until at least July 2020. 142 

Soundings with obvious deficiencies were rejected (large data gaps, ozone column from the 143 

sounding deviating by more than 30% from ground- or satellite-based measurement). Table 1 144 

provides information on stations, and public data archives. 145 

 146 

 147 
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Table 1. Stations in this study, mostly ozonesonde stations. FTIR and LIDAR stations are 148 

italicized. Data sources: W=World Ozone and UV Data Centre 149 

(https://woudc.org/archive/Archive-NewFormat/OzoneSonde_1.0_1/ ), N=Network for the 150 

Detection of Atmospheric Composition Change (ftp://ftp.cpc.ncep.noaa.gov/ndacc/station/; 151 

ftp://ftp.cpc.ncep.noaa.gov/ndacc/RD/), E= European Space Agency Validation Data Center 152 

(https://evdc.esa.int/ requires registration, or 153 

ftp://zardoz.nilu.no/nadir/projects/vintersol/data/o3sondes requires account), G=Global 154 

Monitoring Laboratory, National Oceanic and Atmospheric Administration 155 

(ftp://aftp.cmdl.noaa.gov/data/ozwv/Ozonesonde/ ) 156 

1 
Currently, Canadian data are available only up to March or April 2020. Newer Canadian data should become 157 

available for the final version of this study, and will be included. Newer data from other stations will be included as 158 

well for the final version.
 

159 

2 
Tateno data were corrected for the change from Carbon Iodine to ECC ozonesondes in December 2009. 160 

3
 Stations affected by a drop-off in ECC sonde sensitivity > 3% in the stratosphere, after 2015 (see Stauffer et al., 161 

2020). The drop-off is much smaller (<< 1%) in the troposphere, and should be negligible here. At many of the 162 

affected stations, ECC sondes behaved normally again in 2019/2020.   163 

 164 

Station Latitude 

(deg N)  

Longitude 

(deg E) 

Data source 

(see caption) 

Data 

until 

Profiles / 

spectra per 

month in 

2020 

Alert, Canada 1, 3 82.50 -62.34 W 4/2020 3.75 

Eureka, Canada 
1, 3

 80.05 -86.42 W, E 4/2020 5.75 

Ny-Ålesund, Norway 78.92 11.92 W, E 8/2020 7.63 

Ny-Ålesund FTIR, Norway 78.92 11.92 N 7/2020 12.86 

Thule FTIR, Greenland 76.53 -68.74 N 9/2020 73 

Resolute, Canada 1 74.72 -94.98 W 4/2020 5.50 

Scoresbysund, Greenland 70.48 -21.95 E 9/2020 3.89 

Kiruna FTIR, Sweden 67.41 20.41 N 7/2020 46 

Sodankylä, Finland 67.36 26.63 W, E 8/2020 3.00 

Lerwick, United Kingdom 60.13 -1.18 W, E 8/2020 4.38 

Churchill, Canada 1, 3 58.74 -93.82 W 3/2020 3.33 

Edmonton, Canada 1, 3 53.55 -114.10 W 3/2020 3.67 

Goose Bay, Canada 1 53.29 -60.39 W 3/2020 2.67 

Bremen FTIR, Germany 53.13 8.85 N 10/2020 5.27 

Legionowo, Poland  52.40 20.97 W 10/2020 4.00 

Lindenberg, Germany 52.22 14.12 W 10/2020 4.60 

DeBilt, Netherlands 52.10 5.18 W, E 8/2020 4.25 

Valentia, Ireland 51.94 -10.25 W, E 8/2020 2.75 

Uccle, Belgium 50.80 4.36 W, E 8/2020 12.13 

https://woudc.org/archive/Archive-NewFormat/OzoneSonde_1.0_1/
ftp://ftp.cpc.ncep.noaa.gov/ndacc/station/
ftp://ftp.cpc.ncep.noaa.gov/ndacc/RD/
https://evdc.esa.int/
ftp://zardoz.nilu.no/nadir/projects/vintersol/data/o3sondes
ftp://aftp.cmdl.noaa.gov/data/ozwv/Ozonesonde/
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Hohenpeissenberg, Germany 47.80 11.01 W 10/2020 10.10 

Zugspitze FTIR, Germany 47.42 10.98 N 9/2020 73 

Jungfraujoch FTIR, Switzerland 46.55 7.98 N 10/2020 49 

Payerne, Switzerland 46.81 6.94 W 10/2020 11.10 

Haute Provence, France 43.92 5.71 N 8/2020 2.50 

Haute Provence LIDAR, France 43.92 5.71 N 8/2020 3.50 

Toronto FTIR, Canada 43.66 -79.40 N 10/2020 59 

Trinidad Head, California, USA 41.05 -124.15 G 8/2020 4.00 

Madrid, Spain 40.45 -3.72 W 10/2020 4.10 

Boulder, Colorado, USA 39.99 -105.26 G 8/2020 5.13 

Boulder FTIR, Colorado, USA 39.99 -105.26 N 10/2020 56 

Tateno (Tsukuba), Japan 2 36.05 140.13 W 6/2020 3.50 

Table Mountain LIDAR, 

California, USA 

34.40 -117.70 N 8/2020 19 

Izana, Tenerife, Spain 28.41 -16.53 W 8/2020 2.00 

Izana FTIR, Tenerife, Spain  28.30 -16.48 N 9/2020 28 

Hong Kong, China 22.31 114.17 W 9/2020 4.11 

Hilo, Hawaii, USA 3 19.72 -155.07 G 8/2020 4.00 

Mauna Loa FTIR, Hawaii, USA 19.54 -155.58 N 10/2020 36 

Paramaribo, Suriname 5.81 -55.21 N, E 9/2020 3.56 

Pago Pago, American Samoa 3 -14.25 -170.56 G 9/2020 2.67 

Suva, Fiji 3 -18.13 178.32 G 9/2020 1.44 

Wollongong FTIR, Australia  -34.41 150.88 N 10/2020 43 

Broadmeadows, Australia  -37.69 144.95 W 7/2020 4.29 

Lauder, New Zealand -45.04 169.68 W 10/2020 4.40 

Lauder FTIR, New Zealand -45.04 169.68 N 10/2020 99 

Macquarie Island, Australia -54.50 158.94 W 7/2020 4.29 

 165 

Apart from the sondes, FTIR spectrometers from the Network for the Detection of 166 

Atmospheric Composition Change (NDACC, De Mazière et al.,2018) provide independent 167 

information, based on a completely different method (ground-based solar-infrared absorption 168 

spectrometry). Altitude resolution of FTIR ozone profiles in the troposphere is much coarser (5 169 

to 10 km) compared to the sondes, while accuracy is similar, 5 to 10% (Vigouroux et al.,2015). 170 

Finally, we use data from tropospheric lidars (Gaudel et al., 2015, Granados-Muñoz & Leblanc 171 

2016), which provide ozone profiles from ≈3 to 12 km altitude, with accuracy comparable to the 172 

sondes (5 to 10%; Leblanc et al., 2018), and slightly coarser altitude resolution (100 m to 2 km). 173 

We also use global atmospheric composition re-analyses from the Copernicus 174 

Atmosphere Monitoring Service (CAMS, Inness et al., 2019; see also Park et al., 2020), at the 175 

grid-points closest to the stations in Table 1. CAMS re-analyses are based on meteorological 176 
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fields, and assimilation of satellite observations of ozone and NO2. They account for the large 177 

Arctic stratospheric depletion in spring of 2020 (Manney et al., 2020; Wohltmann et al., 2020), 178 

for 2020 meteorological conditions, and for ozone transport, e.g. from the stratosphere to the 179 

troposphere (Neu et al., 2014). However, ozone (and NO2) concentrations in the free troposphere 180 

in the CAMS re-analyses are driven primarily by the prescribed emissions. The CAMS re-181 

analyses rely on “business as usual” emissions for 2020, and do not account for COVID 19 182 

emission reductions in 2020. Differences between observations (affected by emission reductions) 183 

and CAMS re-analyses ( “business as usual” emissions) provide a proxy for the effects of 184 

COVID 19 emission reductions. 185 

(Note: at the time of writing, CAMS re-analyses were available until 12/2019. CAMS 186 

operational analyses were used to extend the re-analyses from 01/2020 to 10/2020. For the final 187 

version of the paper, CAMS re-analyses will be available until at least 06/2020, and will be 188 

used). 189 

3 Results 190 

For selected stations, Fig. 1 presents the annual cycles of tropospheric ozone over the last 191 

20 years, at an altitude of 6 km, a representative level for the free troposphere. Monthly means 192 

(over 1 km wide layers) reduce synoptic meteorological variability and measurement noise, and 193 

focus on longer-term, larger-scale variations.  194 

Payerne and Jungfraujoch measure an annual cycle with low ozone in winter and high 195 

ozone in summer. This is the case for most stations in the northern extratropics (Cooper et al., 196 

2014; Gaudel et al., 2018; Parrish et al., 2020). Hilo (Hawaii), and Hongkong (both not shown 197 

here), further south and in the Pacific region, have an annual cycle where tropospheric ozone 198 

peaks in spring. To a lesser degree this is also seen at Table Mountain (California). At tropical 199 

stations and in the Southern Hemisphere (not shown), the annual cycle generally peaks in 200 

September or October (=spring in the Southern Hemisphere), and has a smaller amplitude 201 

(Cooper et al., 2014; Gaudel et al., 2018; Thompson et al., 2012). Increased photochemical 202 

production due to more sunlight and warmer temperatures is the main driver for the summer 203 

ozone maximum in the northern extratropics (Wu et al., 2007; Archibald et al., 2020). 204 

Figure 1 shows substantial variations from year to year. Apart from these variations, Fig. 205 

1 shows ozone levels below average in the year 2020 at all four stations (thick red lines in Fig. 206 

1). At Payerne and Jungfraujoch, and a number of other stations, monthly means from February 207 

2020 through August 2020 were actually the lowest, or close to the lowest, since 2000. 208 

  209 
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 210 

Figure 1. Observed ozone monthly means, from January 2000 to August 2020, and at four 211 

typical stations. Results are for 6 km altitude. The thick red line highlights the year 2020. 212 

Climatological average, and standard deviation over the years 2000 to 2020 are indicated by the 213 

thick black lines. Payerne (a) and Trinidad Head (c) are sonde stations. Jungfraujoch (b) is an 214 

FTIR station. Table Mountain (d) is a lidar station. 215 

 216 

Ozone anomalies as a function of time and altitude are presented in Fig. 2. For clarity, we 217 

only show the years 2010 to 2020. Both stations in Fig. 2 show varying positive and negative 218 

anomalies at different altitudes. The largest anomalies occur in the 8 to 15 km region, and are 219 

caused by meteorological changes, movement of jet streams, changes in tropopause height and 220 

location, and large variations of the stratospheric circulation (e.g. Neu et al., 2014). In the 221 

troposphere (≈1 to 10 km), the largest and most notable negative anomaly at both stations occurs 222 

in 2020 (dark blue region in Fig. 2). This negative anomaly covers several months and most 223 

altitudes from 1 to 10 kilometers. Similar significant, extended negative anomalies throughout 224 

the troposphere occur at many northern extratropical stations in 2020, but are not seen in 225 

previous years, and not across so many locations at the same time. 226 

 227 
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 a)                                                                         b) 228 

 229 

Figure 2. Monthly mean ozone anomalies as a function of altitude and time, for the years 2010 230 

to 2020. Years are labeled with tick marks on January 1
st
. Panel a) is for Trinidad Head. Panel b) 231 

is for Lindenberg. Anomalies are in percent, relative to the climatological monthly means 232 

calculated for the period 2000 to 2020 (all Januaries, all Februaries, …, all Decembers). 233 

Anomalies less than 1 standard deviation are crossed out as “insignificant”. 234 

 235 

Figs. 1 and 2 show the largest negative anomalies in the troposphere from April to 236 

August 2020. Therefore, Fig. 3 compares anomaly profiles averaged over those five calendar 237 

months, for the years 2011, and 2020. Both years saw unusually large springtime ozone 238 

depletion in the Arctic stratosphere (Manney et al., 2020; Wohltmann et al., 2020). In the 239 

stratosphere, above  ≈10 km, the Arctic depletion appears as low ozone, both in observations and 240 

CAMS results, and particularly for the stations north of 50°N. In both stratosphere and 241 

troposphere, the observed profiles are much noisier than the smooth CAMS profiles. In 2020, 242 

most observed single station anomaly profiles (Fig. 3b) are negative throughout the troposphere 243 

(between 1 and 10 km). This is not the case in 2011 (Fig. 3a, 3c). It is also not reproduced by the 244 

CAMS data in 2020 (Fig. 3d). 245 

The difference in 2020 is even clearer for the northern extratropical station average 246 

profiles (thick black lines in Fig. 3). The observed 2020 northern extratropical average anomaly 247 

is clearly negative, -6% to -9% from 1 to 8 km (Fig. 3b), throughout much of the troposphere, 248 

whereas in the CAMS data (Fig. 3d) it is close to zero. Fig. 3 indicates that Arctic stratospheric 249 

springtime depletion ozone did not have a large effect on tropospheric ozone in 2011 and 2020, 250 

and that the CAMS “business as usual” simulation does not account for the observed large 251 

negative tropospheric anomaly in 2020. 252 
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 253 

Figure 3. Ozone anomaly profiles (in percent), averaged over the months April to August. 254 

Stations are excluded in years where their data cover less than three of these five months. Panel 255 

a) for the year 2011. Panel b) for the year 2020. Colors and stations are sorted by decreasing 256 

latitude. Thick black line: average over all stations north of 15°N (=all stations, except 257 

Paramaribo, Samoa, Fiji, Wollongong, Broadmeadows, Lauder, Macquarie Island). Thin black 258 

lines: ±2 standard deviations around the average. Panels c), d): Same as a), b), but for 259 

atmospheric composition re-analyses from CAMS at the grid-points closest to the stations.  260 

 261 

Time series of average tropospheric anomalies (averaged from April to August, and now 262 

additionally from 1 to 8 km altitude), are shown in Fig. 4. In the observations (left panel) the 263 

year 2020 stands out with large negative anomalies. This is not seen in the CAMS data. In almost 264 

all twenty previous years, tropospheric ozone anomalies (colored lines) are scattered around 265 

zero. The northern extratropical station average (thick black line) is usually smaller than ±3%. 266 

The only other exception is the positive anomaly in the (European) heat-wave summer of 2003 267 

(Vautard et al., 2007) in the observations. (The 2003 and 2004 CAMS results might have a low 268 

bias). The large negative northern extratropical anomaly in the observations in 2020, ≈-7%, is 269 
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definitely unique in the 21 year observational record, and is not reproduced by the CAMS 270 

“emissions as usual” simulation. 271 

 272 

 273 

Figure 4. Tropospheric ozone anomaly, averaged over the months April to August and over 274 

altitude from 1 to 8 km. Time series for the years 2000 to 2020. Panel a) Results from the 275 

observations. Panel b) same, but for CAMS atmospheric composition re-analyses. Thick black 276 

line: Average over all stations north of 15°N. Thin black lines: ±2 standard deviations around the 277 

average. 278 

 279 

The geographic distribution of the average tropospheric ozone anomalies is shown for 280 

2011 and 2020 in Fig. 5. 2020 stands out in the observations with large negative anomalies at 281 

nearly all Northern Hemisphere stations, and a fairly uniform geographical distribution (see 282 

Table S1 of the supplement for the numerical values). CAMS does show negative anomalies in 283 

2020, but only north of 50°N, and not as large as the observations. In the Southern Hemisphere 284 

in 2020, agreement between observations and CAMS is quite good. In 2011, some stations show 285 

positive anomalies. Negative anomalies are not as large as in 2020, and the geographical 286 

distribution is less uniform. Agreement between observations and CAMS is reasonable in 2011. 287 
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 288 

Figure 5. Geographic distribution of observed tropospheric summer ozone anomalies (averaged 289 

over the months April to August, and over altitudes from 1 to 8 km) for the years a) 2011 and b) 290 

2020. Panels c) and d): same, but for CAMS results at the station locations. Colored circles (or 291 

squares) give the anomaly at the ozonesonde stations. Squares are for FTIR and lidar stations. 292 

See Table S1 of the supplement for the numerical values. Black filling indicates insufficient data 293 

in the given year. 294 

 295 

4 Discussion and Conclusions 296 

Ozone stations in the northern extratropics indicate exceptionally low ozone in the free 297 

troposphere (1 to 8 km) in spring and summer 2020. Compared to the 2000 to 2020 climatology, 298 

ozone was reduced by 7% (≈4 ppbv). Widespread low tropospheric ozone across so many 299 

stations and over several months has not been observed in any previous year since 2000. 300 

Atmospheric composition re-analyses with “business as usual” emissions from the Copernicus 301 

Atmosphere Monitoring Service (CAMS, Inness et al., 2019) do not reproduce the observed low 302 

tropospheric ozone in 2020. 303 

The year 2020 stood out in a number of ways: a.) The Arctic stratospheric winter vortex 304 

was exceptionally cold and stable. This produced record levels of springtime ozone depletion in 305 

the Arctic lower stratosphere (Manney et al., 2020; Wohltmann et al., 2020), which might affect 306 
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tropospheric ozone (Neu et al., 2014). b.) worldwide measures due to the COVID-19 pandemic 307 

caused substantial emission reductions in the Northern Hemisphere, up to 60% for some regions 308 

and some sectors (Barré et al., 2020; Bauwens et al., 2020; Ding et al., 2020; Guevara et al., 309 

2020). The largest reductions took place in the first months of the year, but air traffic, for 310 

example, remains much reduced throughout 2020 (Liu et al., 2020). c.) large wildfires, in early 311 

2020 in Australia (Kablick et al., 2020), in August and September 2020 in California, with 312 

significant pollution. It is unlikely that the Australian fires have affected tropospheric ozone in 313 

the northern extratropics, because pollution from these fires did not reach far into the Northern 314 

Hemisphere. The California fires were too late to affect April to July ozone values. In any case, 315 

emissions from the wildfires should have increased, not reduced, tropospheric ozone (Archibald 316 

et al. 2020). 317 

Transport of ozone-depleted air from the Arctic stratospheric vortex appears to be only a 318 

minor contributor to the reduced tropospheric ozone: In the observations (Figs. 3 to 5) 2011, and 319 

other years with substantial Arctic ozone depletion (2000 and 2016, not shown), do not exhibit 320 

large negative anomalies in the troposphere. CAMS atmospheric composition re-analyses also 321 

indicate that the 2020 Arctic depletion did not lead to widespread large tropospheric ozone 322 

reduction in the northern extratropics (on average less than 1%, see Figs. 3d and 4b). Further 323 

evidence for only a small contribution (<1 ppbv, less than one quarter) from the 2020 Arctic 324 

depletion to the observed large 7% (or 4 ppbv) reduction comes from the Global Modeling 325 

Initiative (GMI) chemistry transport model using MERRA re-analyses (Gelaro et al., 2017; 326 

Strahan et al., 2019). See Fig. S2 in the supplement. 327 

Weber et al. (2020) recently simulated global effects of COVID-like emission decreases 328 

with the UKCA composition climate model. They find tropospheric ozone reductions very 329 

similar to our observational results, both in magnitude and in geographical distribution: Figure 2 330 

of Weber et al. (2020), for example, shows a fairly uniform ozone decrease by 4 to 7% 331 

(depending on emission reduction scenario) in the Northern Hemisphere, and no ozone change in 332 

the Southern Hemisphere. This is very similar to our results (e.g., Fig. 5b). Analyses based on the 333 

NASA GEOS-CF model also project COVID-19 slowdown-related ozone reductions of about 334 

5% for the second half of 2020 (see Fig. 10 of Keller at al., 2020).  335 

We suggest that substantial emission reductions caused by COVID-19 pandemic are the 336 

major cause for the observed 7% (or 4 ppbv) reduction of northern extratropical free tropospheric 337 

ozone in late spring and summer 2020. The large and continuing reduction in air traffic might be 338 

particularly important (Grewe et al., 2017). 339 

 340 
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Most of the ozonesonde data used in this study are freely available from the World Ozone and 375 

UV Data Centre (https://woudc.org ) at Environment Canada (https://exp-studies.tor.ec.gc.ca/ ), 376 

and are downloadable at https://woudc.org/archive/Archive-NewFormat/OzoneSonde_1.0_1/ ).  377 

Some ozonesonde data for 2020 were not yet available at the WOUDC. Instead, rapid delivery 378 

data were obtained from ftp://zardoz.nilu.no/nadir/projects/vintersol/data/o3sondes (requires 379 

registration), at the Nadir database of the Norwegian Institute for Air Quality (NILU, 380 

https://projects.nilu.no/nadir/obs.html ). Registration information, and the same data in a 381 

different format, are available from the European Space Agency Validation Data Center 382 

(https://evdc.esa.int/ ). 383 

For Boulder, Trinidad Head, Hilo, Fiji, and Samoa, stations operated by the US National Oceanic 384 

and Atmospheric Administration, Global Monitoring Laboratory 385 

(https://www.esrl.noaa.gov/gmd/ozwv/ ), data can be obtained freely from 386 

ftp://aftp.cmdl.noaa.gov/data/ozwv/Ozonesonde/ .  387 
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FTIR and lidar data, as well as some ozonesonde data, are from the Network for the Detection of 388 

Atmospheric Composition Change (https://ndacc.org), and are freely available at 389 

ftp://ftp.cpc.ncep.noaa.gov/ndacc/station/ and ftp://ftp.cpc.ncep.noaa.gov/ndacc/RD/. 390 

Copernicus Atmosphere Monitoring Service (CAMS) global chemical weather re-analyses are 391 

available at https://atmosphere.copernicus.eu/data . CAMS operational global analyses and 392 

forecasts are available at https://apps.ecmwf.int/datasets/data/cams-nrealtime/ . 393 
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Introduction  58 

The supplementary material presented here gives additional information on: 59 

 the annual progression of observed and CAMS-simulated ozone anomalies in 2020 and 60 
in previous years 61 

 the magnitude of tropospheric ozone reductions that might have been caused by the 62 
large springtime ozone depletion of the Arctic stratosphere in 2020. 63 

 the numerical values of the average tropospheric ozone reduction observed in 2020 at 64 
the individual stations, and simulated by CAMS at the closest gridpoints. 65 

Text S1. 66 

Figure S1 shows the annual cycle of ozone anomalies observed in the years 2000 to 2020, or 67 
simulated by the CAMS re-analyses. The observations show unusual, negative anomalies in 68 
2020, whereas CAMS anomalies in 2020 are within the usual range. The variation over the year 69 
2020 is comparable in observations and CAMS, but the observed monthly anomalies in 2020 70 
are 5 to 10% lower than CAMS. This is attributed to the missing COVID-19 emission reductions 71 
in the CAMS simulations, which rely on “business as usual” emissions for 2020. Negative CAMS 72 
anomalies from March to May 2020 could indicate tropospheric effects of the large Arctic 73 
stratospheric ozone depletion in the spring of 2020. 74 
 75 

Text S2. 76 

Figure S2 shows the difference between two simulations by the Global Modeling Initiative 77 
(GMI) chemistry transport model (Strahan et al., 2019), based on meteorological fields from 78 
MERRA2 re-analysis (Gelaro et al., 2017). One simulation includes the large Arctic ozone 79 
depletion caused in spring 2020 by heterogeneous chemistry in the polar vortex; the other 80 
simulation does not. The difference between both simulations provides an estimate for the 81 
effect of 2020 Arctic stratospheric depletion on ozone in the troposphere. According to the 82 
simulations, the tropospheric effect is similar at most latitudes north of 40° to 50°N. It is smaller 83 
than 1 ppbv (or ≈2%) on average, and is largest in June 2020. 84 

  85 
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 86 

Figure S1. Variation over the year for monthly mean ozone anomalies at 6 km, averaged over 87 
all stations north of 15°N (Northern Extra-Tropics). Anomalies are relative to the 2000 to 2020 88 
climatological mean for each calendar month. Colored lines: different years from 2000 to 2020. 89 
Thick red line: for the year 2020. Panel a) sonde, FTIR and lidar observations. Panel b) 90 
Copernicus Atmosphere Monitoring Service (CAMS) atmospheric composition re-analyses at 91 
the grid-points next to the stations. Black lines: average anomaly for each calendar month (zero 92 
by definition), and ±1 standard deviations. 93 
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 95 

Figure S2. Latitude - altitude cross sections of tropospheric ozone reductions (in ppbv), 96 
attributed to the large Arctic springtime stratospheric ozone depletion of 2020. Latitudes go 97 
from 20°N to 90°N. Altitudes go from 0 km to 8 km. Top panel is for March 1st, middle panel for 98 
June 1st, bottom panel for August 28th. Results are from two simulations by the Global Modeling 99 
Initiative (GMI) chemistry transport model (Strahan et al., 2019), based on meteorological fields 100 
from the MERRA2 re-analysis (Gelaro et al., 2017). One simulation includes ozone depletion 101 
caused by heterogeneous chemistry in the Arctic polar vortex. The other simulation does not. 102 
The plotted difference gives an estimate, how much the large Arctic stratospheric ozone 103 
depletion in spring 2020 contributed to reduced ozone in the troposphere. 104 
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 106 

Station Latitude 
(deg N)  

Longitude 
(deg E) 

observed 
average 
anomaly 
2020 [%] 

CAMS 
average 
anomaly 
2020 [%] 

Alert, Canada 82.50 -62.34 N/A -5.5 

Eureka, Canada 80.05 -86.42 N/A -5.8 

Ny-Ålesund, Norway 78.92 11.92 -9.6 -5.5 

Ny-Ålesund FTIR, Norway 78.92 11.92 -15.5 -5.5 

Thule FTIR, Greenland 76.53 -68.74 -9.3 -3.2 

Resolute, Canada 74.72 -94.98 N/A -4.5 

Scoresbysund, Greenland 70.48 -21.95 -22.9 -4.4 

Kiruna FTIR, Sweden 67.41 20.41 -4.1 -4.1 

Sodankylä, Finland 67.36 26.63 -11.9 -4.2 

Lerwick, United Kingdom 60.13 -1.18 -8.0 -2.6 

Churchill, Canada 58.74 -93.82 N/A -2.4 

Edmonton, Canada 53.55 -114.10 N/A -0.2 

Goose Bay, Canada 53.29 -60.39 N/A -0.7 

Bremen FTIR, Germany 53.13 8.85 -8.2 -1.3 

Legionowo, Poland  52.40 20.97 -5.8 -2.6 

Lindenberg, Germany 52.22 14.12 -11.1 -2.3 

DeBilt, Netherlands 52.10 5.18 -6.0 -0.9 

Valentia, Ireland 51.94 -10.25 -5.5 -0.5 

Uccle, Belgium 50.80 4.36 -6.6 -0.4 

Hohenpeissenberg, Germany 47.80 11.01 -10.3 -0.6 

Zugspitze FTIR, Germany 47.42 10.98 -8.1 0.3 

Jungfraujoch FTIR, Switzerland 46.55 7.98 -5.7 3.9 

Payerne, Switzerland 46.81 6.94 -10.2 0.2 

Haute Provence, France 43.92 5.71 -5.1 -0.5 

Haute Provence LIDAR, France 43.92 5.71 -1.6 -0.5 

Toronto FTIR, Canada 43.66 -79.40 -4.9 -0.1 

Trinidad Head, California, USA 41.05 -124.15 -12.0 -1.3 

Madrid, Spain 40.45 -3.72 -6.3 0.4 

Boulder, Colorado, USA 39.99 -105.26 -4.3 7.8 

Boulder FTIR, Colorado, USA 39.99 -105.26 -9.8 7.8 

Tateno (Tsukuba), Japan 36.05 140.13 -3.6 0.5 

Table Mountain LIDAR, 
California, USA 

34.40 -117.70 -2.6 4.7 

Izana, Tenerife, Spain 28.41 -16.53 -1.6 0.0 
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Izana FTIR, Tenerife, Spain  28.30 -16.48 -6.3 0.0 

Hong Kong, China 22.31 114.17 0.0 3.2 

Hilo, Hawaii, USA 19.72 -155.07 -1.7 5.6 

Mauna Loa FTIR, Hawaii, USA 19.54 -155.58 N/A 5.6 

Northern extratropical station 
average ±standard deviation 

50.94 
±16.98 

-29.57 
±66.63 

-7.5 ±4.6 -0.5 ±3.6 

Paramaribo, Suriname 5.81 -55.21 -1.0 3.6 

Pago Pago, American Samoa -14.25 -170.56 -10.8 -3.0 

Suva, Fiji -18.13 178.32 -5.8 -5.2 

Wollongong FTIR, Australia  -34.41 150.88 0.3 0.8 

Broadmeadows, Australia  -37.69 144.95 1.3 2.3 

Lauder, New Zealand -45.04 169.68 -1.4 1.4 

Lauder FTIR, New Zealand -45.04 169.68 3.7 1.4 

Macquarie Island, Australia -54.50 158.94 1.7 3.0 

Tropical and Southern 
Hemisphere station average 
±standard deviation 

-30.41 
±20.00 

93.33 
±131.40 

-1.5 ±4.7 0.5 ±3.1 

 107 

Table S1. Similar to Table 1, but showing the average April to August, 1 to 8 km, tropospheric 108 
ozone anomaly observed in 2020 at each station, and simulated at the CAMS grid-point next to 109 
the station. Two additional rows (bold-face) show the 2020 tropospheric anomaly averaged 110 
over all northern extratropical stations, and averaged over Tropical and Southern Hemisphere 111 
stations. 112 


