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Abstract

We confirm that energy dissipation weighting provides the most accurate approach to determining the effective hydraulic

conductivity (Keff) of a binary K grid. Machine learning and deep learning algorithms of varying complexity (decision tree,

vanilla CNN, UNET) can infer Keff with extremely high accuracy (R2 > 0.99), even given only the fraction of the grid occupied by

the high K medium. Adding information derived from the energy dissipation distribution improved each algorithm. However,

all methods failed to infer Keff accurately for outlier cases, all of which were inferred accurately using energy dissipation

weighting directly. The UNET architecture could be trained to infer the energy dissipation weighting pattern from an image

of the K distribution with high fidelity, although it was less accurate for cases with highly localized structures that controlled

flow. Furthermore, the UNET architecture learned to infer the energy dissipation weighting even if it was not trained on

this information. However, the weights were represented within the UNET in a way that was not immediately interpretable

by a human user. This reiterates the idea that even if ML/DL algorithms are trained to make some hydrologic predictions

accurately, they must be designed and trained to provide each user-required output if their results are to be used to improve

our understanding of hydrologic systems most effectively.
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Abstract 9 

We confirm that energy dissipation weighting provides the most accurate approach to determining 10 

the effective hydraulic conductivity (Keff) of a binary K grid.  Machine learning and deep learning 11 

algorithms of varying complexity (decision tree, vanilla CNN, UNET) can infer Keff with 12 

extremely high accuracy (R2 > 0.99), even given only the fraction of the grid occupied by the high 13 

K medium.  Adding information derived from the energy dissipation distribution improved each 14 

algorithm.  However, all methods failed to infer Keff accurately for outlier cases, all of which were 15 

inferred accurately using energy dissipation weighting directly.  The UNET architecture could be 16 

trained to infer the energy dissipation weighting pattern from an image of the K distribution with 17 

high fidelity, although it was less accurate for cases with highly localized structures that controlled 18 

flow.  Furthermore, the UNET architecture learned to infer the energy dissipation weighting even 19 

if it was not trained on this information.  However, the weights were represented within the UNET 20 

in a way that was not immediately interpretable by a human user.  This reiterates the idea that even 21 

if ML/DL algorithms are trained to make some hydrologic predictions accurately, they must be 22 

designed and trained to provide each user-required output if their results are to be used to improve 23 

our understanding of hydrologic systems most effectively.     24 

 25 

1- Introduction 26 

Numerical modeling is fundamental to understanding hydrologic systems, and to predicting 27 

outcomes to be used for water resources management and groundwater contaminant remediation 28 

[Ahuja et al., 2010; Chan & Elsheikh, 2017; Aliyari et al., 2019; Shamsudduha et al., 2019]. Water 29 
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movement through the subsurface is controlled largely by the hydraulic conductivity of the region, 30 

which can vary over orders of magnitude across multiple scales [Green et al., 2009].  31 

Recent advances in hydrogeophysics increasingly suggest that the spatial pattern of hydraulic 32 

conductivity can be mapped effectively [Slater, 2007a; Hertrich, 2008; Dlubac et al., 2013]. 33 

Coupled with carefully selected point measurements of hydraulic conductivity, these methods 34 

offer the promise of real improvements in our ability to accurately model water flow and associated 35 

solute transport in the subsurface.  However, it is less clear whether “indirect methods” can be 36 

used to infer upscaled effective values for hydraulic conductivity in a heterogeneous medium; i.e., 37 

it is unclear whether such methods can be used to infer the same effective conductivity value that 38 

would be obtained via detailed modeling using the highly resolved conductivity field.  One major 39 

challenge to achieving this goal is the current lack of understanding of how spatial structure 40 

(patterns in the conductivity field) affect the overall hydraulic conductivity of the medium.  In this 41 

study, we examine whether machine learning tools can provide insight into the problem of 42 

hydraulic conductivity upscaling.    43 

There is a rich body of literature on the upscaling of hydraulic conductivity. Wen & Gómez-44 

Hernández [1996]  categorized upscaling techniques as being either local or non-local. Local 45 

techniques, which include simple averaging, power averaging, renormalization, and percolation 46 

theory, are based on the assumption that effective upscaled conductivity depends only on the 47 

statistical distribution of media of different conductivities contained within the medium.  Non-48 

local techniques, which include inverse modeling and energy dissipation, also consider how 49 

boundary conditions affect flow.  50 

Local methods based on simple or power averaging [Journel et al., 1986; Matheron, 1965; 51 

Desbarats & Srivastava, 1991; Zhu & Mohanty, 2002; Masihi et al., 2016] typically represent the 52 
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domain in terms of fractions, each having a single conductivity, and exponentially weight the 53 

conductivity of each fraction by the percent area or volume that it occupies.  The extreme cases of 54 

arithmetic weighting (exponent of 1, conceptually representing flows in parallel) and harmonic 55 

weighting (exponent of -1, conceptually representing flows in series,) bound these approaches 56 

[Cardwell & Parsons, 1945].  In general, local approaches work well provided that the medium is 57 

approximately homogeneous; i.e., the spatial distributions of the fractions are not organized into 58 

patterns, giving rise to structure [Durlofsky, 1992]. For any specific case, the value of the exponent 59 

can be estimated by running a flow model [Wen & Gómez-Hernández, 1996; Colecchio et al., 60 

2020], but this requires the extra step of running the flow model to determine the effective 61 

conductivity, which is often counter to the intended purpose of the upscaling effort.   62 

The renormalization method to compute block conductivity (Keff) is based on upscaling by a 63 

recursive calculation whereby the extent of each grid unit is doubled along each direction at each 64 

step [King, 1989; King & Neuwelier, 2002]. This approach essentially allows for the use of 65 

arithmetic and harmonic averaging at the local scale, thereby simplifying the computation of 66 

effective conductivity.  However, while the method is very fast and efficient, severe errors can 67 

occur in the final estimates at the scale of the largest blocks due to unrealistic boundary 68 

representations during the recursive upscaling process [Malick, 1995]. Further, as with the 69 

exponential approach, the renormalization method is only applicable to statistically isotropic, 70 

lognormal conductivity fields having no clear structure [Sánchez‐Vila et al., 1995; Wen & 71 

Gómez-Hernández, 1996].  72 

A significant advancement in the upscaling of K for binary media was achieved by the introduction 73 

of percolation theory, proposed by Vinay Ambegaokar [1971] to model electron hopping in 74 

semiconductors. The percolation concept was applied to hydrogeology by Katz & Thompson 75 
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[1985] to compute the Keff of a medium characterized by a strong contrast between low and high 76 

conductivities, with the assumption that the upscaled value of conductivity is primarily a 77 

consequence of flows through connected high permeability pathways when they exist [Slater, 78 

2007b; Ambegaokar et al., 1971].  Subsequent studies in which percolation theory was used to 79 

assess Keff [Berkowitz & Balberg, 1993; Hunt, Allen, Robert Ewing, 2014; Hunt & Sahimi, 2017] 80 

have generally found that percolation theory is appropriate when the proportion of the high 81 

conductivity medium is close to the percolation transition threshold [Colecchio et al., 2020].  82 

Non-local methods can be used to infer effective values for system parameters via inverse 83 

modeling, wherein the parameter field is constrained to be homogenous and the corresponding 84 

best-fit equivalent upscaled parameter value is determined; several recent studies [Hassanzadegan 85 

et al., 2016; Kotlar et al., 2019; Cheng et al., 2019; Coutinho de Oliveira et al., 2020] have used 86 

this technique for vadose zone parameter estimation. However, this approach requires solving the 87 

flow problem, including the boundary conditions, which requires that many observations are 88 

available to properly constrain the parameter estimation problem.  This can be very 89 

computationally demanding [Vrugt et al., 2008], further, Lai & Ren [2016] have shown that this 90 

approach can provide imperfect results; e.g., they showed that three different inverse approaches 91 

applied to a one-dimensional situation resulted in models that were unable to reproduce the average 92 

soil water content profile.  93 

The most direct approach to determining how spatially variable averaging of hydraulic 94 

conductivities occurs during flow is through energy dissipation analysis.  This approach is largely 95 

limited to steady-state problems, and also requires solving the flow problem to determine the 96 

effective, upscaled parameter value.  In essence, the energy dissipation approach defines the 97 

energy per unit time required to force the fluid through each block of the porous medium; this 98 
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value is normalized for the shape of the domain and the boundary conditions, and then can be used 99 

to define the spatial distribution of weights to be applied to the local conductivity values when 100 

upscaling to determine Keff.  In this regard, Knight [1992] and Indelman & Dagan [1993] 101 

suggested that Keff can be determined from a grid of cells by assuming that dissipated energy must 102 

be preserved during the equivalent block conductivity computation.  103 

Although the energy dissipation approach is computationally demanding and requires that the flow 104 

problem be solved for both the homogeneous and heterogeneous case, it has been found to be the 105 

most accurate and mathematically rigorous way to upscale conductivity for steady state problems 106 

[Colecchio et al., 2020].  Further, it can provide significant insight into the specific locations that 107 

contribute most to the upscaled value of Keff.  Borrowing on the approach to defining the sample 108 

area of time domain reflectometry probes using this approach (Ferre et al., 1998), it is possible to 109 

identify relatively small areas of the domain that contribute disproportionately to the value of Keff, 110 

thereby identifying key structures in the subsurface that may be controlling flow.     111 

In recent years, due to advances in storage, computation, and graphic processing power, machine 112 

learning (ML) and deep learning (DL) have gained popularity in different research areas, including 113 

in natural language processing [Allison Marier et al., 2016; Yadav & Bethard, 2019; Zhao & 114 

Bethard, 2020], computer vision [O’Mahony et al., 2020; Ronneberger et al., 2015; Voulodimos 115 

et al., 2018; Liu et al., 2020], economy [Luo et al., 2017; Mai et al., 2019], and hydrology [Assem 116 

et al., 2017; Nearing et al., n.d.; Kratzert et al., 2019; Demiray et al., 2020].  In hydrogeology, 117 

several attempts have been made to use deep learning to infer the forms of the equations governing 118 

flow through porous media [Afzaal et al., 2019; Mo et al., 2020; Tartakovsky et al., 2020; Wang 119 

et al., 2020].  120 
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In particular, the architecture underlying convolutional neural networks (CNNs) allows for the 121 

preservation of spatial structure and correlation information, and we might therefore expect that 122 

the CNN approach is particularly suitable for problems involving gridded inputs, such as hydraulic 123 

conductivity fields [Chan & Elsheikh, 2017; Canchumuni et al., 2018; Mo et al., 2020; Zhou et 124 

al., 2020]. For example, Zhou et al. [2020] used a CNN to map conductivity fields to macro-125 

dispersivity, Wu et al. [2018] combined images of porous media with integral quantities of 126 

porosity and specific surface area to estimate pore-scale permeability, and Mo et al. [2020] 127 

parameterized a non-Gaussian conductivity field using a convolutional adversarial autoencoder as 128 

well as proposing a deep residual dense CNN to map spatially distributed conductivity to head and 129 

solute concentration for 2D and 3D media.  130 

Reviews of several studies (e.g., Tartakovsky et al., 2020; Mo et al., 2020) indicate that data-driven 131 

approaches are efficient, and can even outperform stochastic modeling or local (i.e., structure-132 

based) techniques. In particular, in the context of estimating effective parameter values, the 133 

accuracy of CNN-based approaches can be attributed to the fact that, unlike classic stochastic 134 

approaches that only consider the first and second statistical moments of a highly spatially variant 135 

media, the machine learning approaches can account for spatial patterns that are not explicitly 136 

characterized by those statistical moments [Zhou et al., 2020] or by classical structure-based 137 

models.  138 

Despite their impressive predictive power, ML-based models can suffer from a lack of 139 

interpretability [Chakraborty et al., 2018; Apley & Zhu, 2016]. Most studies [Srisutthiyakorn, 140 

2016; Mosser et al., 2017; Wu et al., 2018; Zhou et al., 2020] have mapped from measured inputs 141 

to outputs without due consideration of the underlying physical processes involved. Consequently, 142 

several studies [Raissi et al., 2019; Tartakovsky et al., 2020; Wang et al., 2020], have attempted 143 
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to incorporate physical constraints into DL algorithms. For example, Wang et al. [2020] used a 144 

knowledge-based neural network to estimate head distribution by taking into consideration the 145 

residuals of the governing equations, boundary conditions, and expert knowledge when 146 

formulating the loss function used to train the model. Tartakovsky et al. [2020] incorporated 147 

governing flow partial differential equation constraints (the Darcy and Richards equations) along 148 

with training data into a DL algorithm to infer the hydraulic conductivity map based on sparse 149 

observations of head and conductivity during saturated flow through a heterogeneous medium and 150 

to infer the constitutive pressure-conductivity relationship from observations of capillary pressures 151 

during unsaturated flow.  152 

The aforementioned studies represent clear advances in the use of ML/DL for the upscaling of Keff.  153 

However, to date, little attention has been paid to the design of the underlying ML/DL architecture. 154 

Further, we found no publications addressing the problem of how the ML/DL approach extracts 155 

and uses information from the heterogeneous field in the process of inferring Keff.  Here, we make 156 

use of recently developed approaches that facilitate comparing the activation patterns of different 157 

DL models [Kornblith et al., 2019a] to examine how these ML tools extract and use the knowledge 158 

that is relevant to the process of upscaling (i.e. energy dissipation weighting).  159 

This study has three primary objectives.  The first is to examine the potential for using ML/DL to 160 

infer effective the hydraulic conductivities of two-dimensional binary conductivity fields; these 161 

represent the simplest fields that display different levels of importance of K field structure (spatial 162 

organization) on effective conductivity value Keff.  Conceptually, these binary fields can be viewed 163 

as simplifications of bimodal K fields that can result from coastal depositional processes and 164 

fracturing in low permeability media [Knudby et al., 2006]. The second is to evaluate the 165 

performance of a specific type of CNN, an image to image translation algorithm known as UNET, 166 
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to infer the structure of energy dissipation weighting directly from binary K grids.  The third is to 167 

compare the ability of a UNET to infer Keff from a binary K grid when trained on the energy 168 

dissipation weighting to that when trained only on the K grid.  In this regard, we examine how 169 

information is processed by the UNET, to examine whether it is accounting for energy dissipation 170 

‘naturally’, even when it is not explicitly trained using such information.   171 

 172 

2- Methodology 173 

We examined the effect of the structure of a binary medium on the effective hydraulic conductivity, 174 

Keff, using the MODFLOW numerical 2-D groundwater model to produce the steady-state head 175 

distribution over a square grid with a 1-D applied gradient.  We computed Keff from the geometry 176 

of the grid, the applied Type I boundary conditions, and the steady-state flow through the system 177 

for different random distributions of two media with different K values. We also computed the 178 

energy dissipation in every cell to examine whether this information can provide insight into the 179 

spatial weighting of the K values used to determine Keff [Indelman & Dagan, 1993].  Further, we 180 

examined a range of approaches to infer Keff from the K grid, with and without information about 181 

the energy dissipation distribution, including simple tree-based and more complex, CNN-based, 182 
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machine learning algorithms. Finally, we 183 

used central kernel alignment similarity 184 

Kornblith et al., [2019b] to infer the hidden 185 

layer representation for Keff estimation in 186 

an attempt to understand how and whether 187 

the deep learning algorithm considers 188 

energy dissipation during Keff estimation.  189 

 190 

2-1- Flow through Heterogeneous 191 

Binary Grids (Dataset Generation) 192 

We defined 25 by 25 grid domains with no flow boundaries at the top and bottom and constant 193 

head boundaries of 2 m and 1 m on the left and right boundaries, respectively.  Each cell has a 194 

length of 1 m on a side.  Two media populated the grid, with K values of 1 and 0.001 cm/s.  195 

Different percentages of the prevalence of the high K material were considered, ranging from 1% 196 

to 99%.  For each high K percent, 3000 random distributions of the media were modeled.  Figure 197 

1 shows one example of a grid with 50% high K material.   198 

For each grid, the effective hydraulic conductivity was computed based on Darcy’s Law, the global 199 

gradient applied over the domain, and the steady-state flow through the system.  The convergence 200 

criterion on the head used in MODFLOW was 0.01 m.  To account for small errors that persisted 201 

when the convergence criterion was met, the value of Keff was calculated based on the flow into 202 

the left boundary and the flow out of the right boundary.  The resulting Keff values calculated at 203 

both boundaries agreed within 1%, and the average value was used for all analyses.   204 

Figure 1. Sample 25x25 cell grid with 50% high K (white) and 

50% low K (grey) cells, constant head boundaries (blue), and no 

flow boundaries (diagonal lines).  The left boundary has a constant 

head of 2 and right boundary has a constant head of 1, with flow 

occurring from left to right. 
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 205 

2-1-1- Energy Dissipation Weighting Method 206 

Conceptually, energy dissipation is defined as the energy per unit time necessary to force the fluid 207 

through the porous medium [Indelman & Dagan, 1993]. The value of Keff can be thought of as a 208 

weighted average of the spatially distributed values of K.  Energy dissipation can be used to define 209 

the spatial distribution of weighting factors based on the square of the gradient of the potential at 210 

each location normalized by the sum of the square of the gradient of the potential for the same 211 

boundary conditions for a domain filled with a homogeneous medium [Knight, 1992]. The 212 

weighting factor at a point at (x,y) can be expressed as: 213 

 214 

𝑊 (𝑥, 𝑦) =  
[∇∅(x, y)]2

∬[∇∅0(𝑥, 𝑦)]2𝑑𝑥𝑑𝑦
 215 

 216 

where w(x,y) is the weighting factor at point (x,y), ∅(x,y) is the potential at each location, and ∅0 217 

is the potential distribution for the equivalent homogenous field.  Knight [1992] showed that 218 

spatially variable properties (e.g. for K) can be weighted to determine an upscaled property (here 219 

Keff) as the sum of the local K weighted by the energy dissipation weighting factor over the domain, 220 

as: 221 

                                                   𝐾𝑒𝑓𝑓 = ∬ 𝑊(𝑥, 𝑦)𝐾(𝑥, 𝑦)𝑑𝑥𝑑𝑦 222 

 223 

In this study, the steady-state head values were used to compute the energy dissipation distribution.  224 

Because MODFLOW determines head values at the nodes and the K values are defined over the 225 

Eq. 1 

Eq. 2 
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cells, the gradient and K values are not aligned.  There are two approaches to compute Keff with 226 

the energy dissipation approach for these conditions.  First, the gradient can be computed at each 227 

cell edge and the value of Keff at the edge can be determined based on the K value in the two 228 

neighboring cells.  Second, the head values can be interpolated to the edges, allowing for gradients 229 

to be computed at the nodes, matching the locations of the K grid.  Both of these approaches were 230 

tested and were found to agree within 1%; accordingly, the average of these two estimates of Keff 231 

was used for each grid for further analyses.  Hereafter, the energy dissipation weights are referred 232 

to as ED weights, or simply as weights. 233 

 234 

2-1-2- Estimating Keff with a Regression Tree with and without ED Weights 235 

For a given percent of high K material, the energy dissipation distribution depends on the structure 236 

and arrangement of high K and low K cells in the domain. As a result, the K distribution and the 237 

ED weight distribution are related (but not identical) sources of information for inferring Keff. 238 

Throughout this study, we examine whether added knowledge of the ED weight distribution 239 

improves the estimation of Keff by machine learning and deep learning algorithms.  First, we 240 

compare the performance of simple regression tree (RT) models with and without the inclusion of 241 

energy distribution information. We use a regression tree as a very simple ML to provide a baseline 242 

of comparison for more advanced machine learning algorithms.  For completeness, a gradient 243 

boosting algorithm was also applied, but its performance was not significantly different than the 244 

RT, so we opted for the simpler version of the tree-based ML.  245 

Because RT models are not well-suited to considering spatial relationships among inputs, rather 246 

than providing the RT models with the K grid and spatially distributed weights, we provided only 247 
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the following summary statistics: the percent of high K grids within the domain, and the fraction 248 

of the cells that contain high spatial weights.  To label the high ED weight cells in a grid, we 249 

followed the procedure suggested by [Ferré et al., 1998]. We first computed the energy 250 

distribution (Eqns. 1 & 2) after solving the steady-state head distribution with MODFLOW. The 251 

weights were sorted in descending order, and the cells that contributed 95% of the total weight 252 

were identified as high energy cells, thereby defining the smallest area contributing 95% of the 253 

total weight in determining Keff. 254 

To apply the RT analysis, we considered paired values of targets (Keff) and features (percent of 255 

high K material with or without the fraction of high energy cells).  These were divided randomly 256 

into 65% training, 15% validation, and 20% testing.  The models were trained using the training 257 

set and tuned using the validation set. We chose to use a binary split at each node, such that the 258 

RT sequentially divided the training set of Keff samples at each node into two subsets.  The split 259 

was based on the choice of a feature and a threshold value such that every sample was identified 260 

as being above or below that threshold. At each point of division, the tree maximized the reduction 261 

in overall variance such that the sum of the population-weighted variability of the Keff values in 262 

the two subsets was less than that of the parent set. Because each feature and threshold 263 

identification is made without regard to any future or past selections, RT is known as a “greedy” 264 

algorithm and is not guaranteed to be optimally efficient. Furthermore, RT results in binned 265 

outputs, with a single value applied to all samples that fall into the final node along each branch.  266 

The performance of the RT was based on its ability to predict Keff for the testing set.  This 267 

procedure was then repeated with only the percent high K material provided to the RT (i.e., without 268 

also providing the fraction of high energy cells).  A comparison of the performance of these two 269 
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RT models provides an estimate of the value of the information contained in the fraction of high 270 

weight cells for inferring Keff with RT. 271 

 272 

2-1-3- Estimating Keff with a Vanilla CNN with and without ED Weights 273 

The estimation of Keff can be viewed as an image mapping problem: i.e., our goal is to map a grid 274 

of 25x25 K values onto a single value of Keff.  From this perspective, together with the expectation 275 

that the spatial patterns of K within the domain are important to predicting Keff, a convolutional 276 

neural network (CNN) is a natural choice for a deep learning method to apply to this problem. 277 

CNN is a class of supervised learning algorithms that is suitable for processing image-based 278 

datasets. It consists of two main types of components, a convolutional kernel, and a pooling layer. 279 

A kernel is a sliding window of weights used to extract “features” from the inputs by convolution 280 

of the inputs using the kernels, and propagation of the result to the next layer of the network. 281 

Application of an activation function provides nonlinear elementwise transformation. Pooling 282 

layers are optional blocks of a network that reduce the size of the hidden layers.   283 

Herein, a ‘vanilla’ CNN refers to a common architecture comprising several convolutional layers 284 

that are fully-connected to a dense output layer to perform predictions (see structure presented in 285 

Table A1-A of the appendices). The number of layers and filters were selected via hyperparameter 286 

tuning using the validation dataset. Dropout regularization was not included. For the cost function, 287 

we used the mean squared error between the observed and predicted Keff in the training samples. 288 

The Adam algorithm [Kingma & Ba, 2015] was used to optimize the model parameters and 289 

weights. 290 
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As for the RT analyses, the CNN was trained both with and without providing the ED weights as 291 

input information.   As shown previously by Knight [1992], knowledge of the K field and the ED 292 

weights provides a near-exact definition of Keff.  Therefore, we provided a degraded metric related 293 

to the ED weights; specifically, a 25x25 0/1 masking matrix with 1 indicating high energy cells 294 

was used as a surrogate for the ED weights.    295 

 296 

2-1-4- Estimating Keff with and without ED Weights 297 

Recent advances in the application of deep learning to image processing have led to the 298 

development of powerful machine learning architectures.  In particular, given that the knowledge 299 

of energy dissipation has been shown to provide valuable information regarding the weighting 300 

required to define Keff, the problem of estimating Keff from a grid of K values can be seen as a 301 

problem that has two stages.  The first is to estimate the energy dissipation weighting at each cell, 302 

and the second is to use the estimates of the spatially distributed ED weights to estimate Keff.  The 303 

UNET architecture [Ronneberger et al., 2015] was developed to address problems that require 304 

consideration of multiple scales by including skip connections, which recombine information from 305 

earlier hidden layers with that of later hidden layers.  Here, we propose a modified UNET 306 

architecture that estimates the spatial weight distribution and then combines this estimate with the 307 

K grid to estimate Keff (Figure 2).   308 

We applied the UNET in two different ways to understand if and how ED weighting is used in the 309 

estimation of Keff. In the first implementation, referred to as ‘informed’, the model is trained using 310 

the freeze-training technique [Zoph et al., 2016; Brock et al., 2017], in which the lower branch of 311 

the model, Figure (2), up to the point that the K grid information is reintroduced, is first trained to 312 
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estimate the spatially distributed ED weights.  This is achieved by providing the ED weights during 313 

training.  Once trained, the informed UNET is then used to predict Keff without being provided ED 314 

weights.  This is possible because UNET models are a variation of encoder-decoder algorithms, 315 

which include a contracting path (like the vanilla CNN) followed by an expanding path. The 316 

contracting path (i.e., encoder) is responsible for capturing the context while the expanding path 317 

(i.e., decoder) enables localization.  Through the use of encoder-decoder paths, the UNET can 318 

provide an output that has the same dimensions as the input.  In our application, this property is 319 

necessary to obtain ED weights on a grid having the same size as the K grid.  Making use of this 320 

structure, we trained UNET to infer the ED weights and then used those inferred weights to predict 321 

Keff.  In other words, for the informed UNET, the weights of the lower branch were frozen after 322 

training, and training was then continued by feeding only the K grid into the UNET.  The algorithm 323 

then provided estimates of the ED weights, which were concatenated with the K grid and fed into 324 

the final fully-connected layer.  This model was trained to estimate Keff.   325 

The second implementation of UNET is referred to as ‘uninformed’.  The model structure was 326 

identical to the informed UNET, but was only provided K grid information; it was not trained 327 

using any information about the actual ED weights.  Rather, all weights in the model were fitted 328 

simultaneously during training to fit Keff.   329 

The details of our UNET structure are provided in the Appendices (Table A1-B). Briefly, the 330 

contracting path is comprised of repeated blocks of two consecutive 3x3 convolutional kernels 331 

with rectified linear activation functions (Relu) followed by a 2 x 2 max-pooling layer with a stride 332 

of 2 to reduce the number of parameters and diminish the next layer input size. On the contracting 333 

path, multilevel decomposition is applied to each layer, doubling the number of feature maps (i.e., 334 

filters) at each step. The expanding path consists of repeated blocks of transposed convolution 335 
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layers with a kernel size of 2X2 and a stride of 2.  In each block, the output of the transposed 336 

convolution layer is concatenated with the cropped feature map of the corresponding step from the 337 

encoding procedure (a skip connection).  The concatenated values are subjected to two consecutive 338 

3x3 convolutional kernels with Relu activation functions. The skip connections help to recover 339 

information that may be lost by down-sampling during decoding.  The cropping procedure in the 340 

concatenation ensures that the tensor extracted from the encoder will have the same size as the 341 

corresponding layer in the decoder. During decoding, the convolutional layer halves the number 342 

of channels. A final convolution layer with a kernel size of 1X1 and linear activation maps the 343 

current number of channels to a single layer. A skip connection was introduced to recover 344 

information of the original grid, like the percent of high K, that may be lost by when inferring the 345 

ED weights.  Specifically, the inferred ED weights were concatenated with the K grid and fed 346 

through a convolutional layer and a dense, fully-connected layer to estimate Keff.  It should be 347 

noted that as part of preprocessing, we padded the input image to 32×32 to make the final output 348 

of the UNET the same as the original image. 349 
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 350 

2-2- Model Evaluation 351 

Identical data were provided to all of the methods; specifically, the K grids (dimension 3000*99) 352 

MODFLOW-determined Keff values, and (where applicable) ED weights. The inputs and targets 353 

were divided into training, validation, and testing subsets. A random selection of 65% of these 354 

inputs was used for training and 15 % were used as a validation dataset for hyperparameter tuning. 355 

The same training/validation/testing sets were used for all of the analyses reported herein (e.g. 356 

Regression Tree, vanilla CNN, etc.).  Model performance is reported using the testing data set, 357 

comprising the remaining 20% of the data. Before training, the inputs were standardized by 358 

subtracting the mean value and dividing by the standard deviation. All hyper-parameters were 359 

tuned using a grid search approach. The root mean squared error (RMSE) between the observed 360 

Figure2) Proposed U-net architecture. The architecture is composed of two submodel. Energy dissipation model 

has a UNET shape structure followed by a CNN model to map output of UNET to Keff. Blue box corresponds to a 

multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the 

lower left edge of the box. White boxes represent skipped connection. The arrows are operations performed on 

feature maps described in the legend.  
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and model-calculated values (of Keff or ED weight) is used to assess the prediction quality of each 361 

model. The R2 value was also calculatedbut is only used to further illustrate the quality of the 362 

predictions. 363 

 364 

2-3 Deep Learning Implementation 365 

All deep learning architectures were implemented in Python 3.6.9 with Tensorflow V. 2.2.0 and 366 

CUDA version 10.1. Training and predictions were done on a P100 NVIDIA GPU. For both the 367 

“informed” and “uninformed” models, we used Adamax with a learning rate of 5e-4 as the 368 

optimizer. For the vanilla CNN, the Adam optimizer with a learning rate of 1e-4 was used. For all 369 

cases, training was stopped when performance on the validation dataset stopped improving within 370 

a patience value equals to 50. 371 

 372 

2-4- CKA and Similarity Analysis 373 

In addition to investigating whether machine learning algorithms can be trained to predict Keff 374 

using gridded binary K information, we also wanted to determine whether these tools can infer the 375 

underlying pattern of energy-dissipation in the process of inferring Keff.  If it can be shown that the 376 

deep learning procedure naturally infers the spatial distribution of energy dissipation, then it would 377 

provide an example of how DL tools can “learn” underlying concepts.  Further, because the 378 

distribution of energy dissipation indicates which parts of the medium are having the largest impact 379 

on steady-state flow, the ability to make inferences regarding these patterns would also enable an 380 

understanding of the relationship between Keff and the structure of the K distribution. Such 381 
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knowledge would also be valuable for understanding soil property distributions that may impact 382 

dispersion, colloid trapping/mobilization, and erosion/piping.   383 

To investigate the ability of deep learning tools to make inferences regarding the underlying 384 

pattern of energy dissipation, we applied the UNET methodology in both informed and uninformed 385 

modes, as described above.  To compare how information flowed through the UNET in informed 386 

and uninformed modes, we examined the intermediate representations (i.e., hidden layer outputs) 387 

of each trained model. Specifically, the hidden layer outputs, known as hidden representations, 388 

characterize the “features” learned by a hidden layer of a neural network from an input (i.e, K 389 

grid), represented in a machine-readable format. Similarity measurements can be used to compare 390 

these intermediate representations between networks.  391 

Kornblith et al. [2019] showed that for a similarity index to be suitable, it should be invariant to 392 

orthogonal transformation and isotropic scaling, and not be an invertible linear transformation.  393 

We use the Hilbert-Schmidt independence criterion (HSIC) [Gretton et al., 2005], which is a 394 

kernel-based statistical measure of the independence between two sets of variables: 395 

 396 

𝐻𝑆𝐼𝐶(𝐾, 𝐿) =
1

(𝑛 − 1)2
𝑡𝑟(𝐾𝐻𝐿𝐻) 397 

where:  398 

 399 

 𝐾, 𝐻, 𝐿 ∈  𝑅𝑛×𝑛 400 

 401 

Eq. 3 
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in which H is the centering matrix 𝐻 = 𝐼 − 
1

𝑛
11𝑇, and K=𝑘(𝑋(𝑖), 𝑋(𝑗)), 𝐿 = 𝑙(𝑌(𝑖), 𝑌(𝑗)) are 402 

positive semidefinite kernel functions. For linear kernels, K=𝑘(𝑋, 𝑌) = X𝑌𝑇 .  An HSIC value of 0 403 

implies independence. Other researchers [Cristianini et al., 2006; Cortes et al., 2012; Kornblith 404 

et al., 2019a] showed that HSIC can be made to be invariant to isotropic scaling by normalization. 405 

This normalized HSIC index is known as centered kernel alignment (CKA): 406 

 407 

𝐶𝐾𝐴(𝐾, 𝐿) =
𝐻𝑆𝐼𝐶(𝐾,𝐿)

√𝐻𝑆𝐼𝐶(𝐾,𝐾)𝐻𝑆𝐼𝐶(𝐿,𝐿)
     408 

In this study, we used the Centered Kernel Alignment (CKA) metric proposed by Kornblith et al., 409 

[2019b] with linear kernels to evaluate the similarities of layer representations in our trained 410 

networks. Specifically, we calculated the CKA between corresponding intermediate 411 

representations of the informed and uninformed networks. To assess the similarity between 412 

corresponding intermediate representations of model 1 and model 2 at layer i and j, we flattened 413 

the representations and let 𝑋 ∈ 𝑅𝑛×𝑚1 and 𝑌 ∈ 𝑅𝑛×𝑚2 be the matrix of intermediate 414 

representations of model 1 and model 2 with m1 and m2 neurons for n examples. Then, we 415 

constructed the linear kernel matrices: K= X𝑋𝑇and L= Y𝑌𝑇.  Finally, we used equation [4] to 416 

compute the CKA metric. We compared similarities for all paired combinations of layers to 417 

explore how information flowed through both networks.  418 

 419 

 420 

 421 

 422 

Eq. 4 
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3- Results 423 

The main goal of this study was to investigate the impact that “structure” has on the effective value 424 

of hydraulic conductivity (Keff) of a binary heterogeneous medium. We examined this for multiple 425 

realizations of random fields that contain different percentages of the higher K material.  426 

A key insight regarding this was presented by Knight, [1992] and Indelman & Dagan [1993], who 427 

showed that the spatial distribution of energy dissipation during steady-state flow can be used to 428 

define spatially distributed weights on K that can be used to compute Keff. We first confirm this 429 

finding for the set of binary grids examined.  Then, we show that the performance of a regression 430 

tree, trained to predict Keff based only on the percent high K material, is improved by providing 431 

(reduced) information about the ED weights.  Finally, we examine whether deep learning 432 

algorithms can predict Keff with and without information regarding the ED weights.  By comparing 433 

DL algorithms trained with and without access to energy dissipation information, we seek to 434 

understand the mechanism by which Keff is inferred by the DL.   435 

3-1- Analysis of the Effective Hydraulic Conductivity (Keff) and High K 436 

Percentage 437 

The steady-state flow problem, Figure (1), was solved for 3000 random realizations of a binary 438 

flow field for high conductivity mixtures ranging from 1 to 99%.  Keff was computed from the 439 

overall gradient applied over the domain and the steady-state flow through the domain.  Figure 3 440 

indicates how Keff varies as a function of the percent high K material present in the realization. 441 

The parallel and series arrangements for each percent high K realization were calculated 442 

analytically and are seen to place limits on the ranges that Keff values can take.  The mean value 443 

of Keff for each high K percentage is shown in the figure. 444 
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The plot demonstrates the nonlinear dependence of Keff on percent high conductivity.  At low 445 

percentages of high conductivity, Keff is only minimally affected by the addition of more high K 446 

material and remains approximately equal to the conductivity of the lower K material.  A nonlinear 447 

transition zone is seen to occur at approximately 40 to 70% high K, and the relationship becomes 448 

approximately linear above 70%.  For a given percentage of high K, the maximum variance of Keff 449 

occurs in the central transition zone.   450 

These results illustrate the two related but different challenges for inferring Keff from a binary grid: 451 

predicting mean Keff as a function of the percent high K material; and predicting Keff for a specific 452 

grid given knowledge regarding the percentage of high K material present.   453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

3-2- Analysis of the Energy-Dissipation Weighting Method to Explain the Keff 462 

Knight [1992] showed that the pattern of energy dissipation, calculated from the square of the 463 

gradient of the potential, can be used to determine an upscaled property like Keff. This fact is 464 

Figure 3 Keff distribution as a function of percent high K for medium K 

contrast condition 
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confirmed by our study (Figure 4).  The energy dissipation approach can be thought of as 465 

computing a weighted average of the local K values on the grid that perfectly recovers the flow-466 

based Keff.   467 

Despite the power of the energy dissipation approach, the weights are very difficult to identify 468 

visually.  For example, the two grids are shown in Figures 5a and 5b both have 80% high 469 

conductivity material but have strikingly different Keff values (0.53 and 0.24 respectively).  The 470 

corresponding maps of the ED weights are shown in Figures 5c and 5d, illustrating that the grid 471 

with the lower Keff has a much more localized pattern of ED weighing.  While it might be tempting 472 

to attribute this localized weighting to the connected pattern of low K cells running vertically 473 

through Figure 5b, beyond this qualitative assessment it is essentially impossible to visually infer 474 

the values of the ED weights from the knowledge of the spatial organization of K.  Of course, both 475 

the pattern of ED weights and their values can be computed readily by solving the steady-state 476 

flow problem, but then the value of Keff can be determined directly and knowledge of the ED 477 

weights is superfluous.  Accordingly, the ED weighting approach is best seen as a method for 478 

understanding spatial organization (e.g. Ferre et al., 1998), rather than a practical approach for 479 

inferring Keff from a K grid.  480 
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 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

By classifying the domain into high and low weight areas, we can see that the spatial structure of 489 

high-weight areas varies systematically with the percent high conductivity material.  The paired 490 

images in Figure 6a show how the fractions of high energy cell relate to the corresponding ED 491 

maps for several K grids with different percentages of high K material.  Figure 6b shows the 492 

expected fraction of high energy cells as a function of the threshold used to define high weight 493 

areas. There are two clear conclusions.  First, the high energy area is restricted in a relatively small 494 

area for percent high conductivity conditions between approximately 50 and 80%.  Second, the 495 

results are not highly sensitive to the choice of threshold.  Finally, Figure 6c indicates a strong 496 

relationship between Keff and the fraction of high energy dissipation cells (defined with a threshold 497 

of 95%), but with some interesting complications to that relationship in the range of 50 to 60% 498 

high conductivity material. These results suggest that information regarding the fraction of high 499 

energy cells may be informative for inferring Keff for a given percent high conductivity material 500 

fraction, but that the relationship is likely to be complex.   501 

 502 

Figure 4) Keff estimation using energy dissipation method 
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 503 

 504 Figure 5) Effects of structure on Keff   for the structures with the same percent high conductivity. A,B: 

Grid samples with percent high conductivity values of 80.  
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 505 

Figure 6) The energy dissipation pattern for different percent of high K materials. A: Grid samples and their corresponding energy dissipation weightings of 
high contributing cells as a function of percent of high K material. B: Average fraction of high energy dissipation cells as a function of the percent high K 
material, shown for definitions of ‘‘high energy dissipation”. C: relationship between high energy cells and Keff for different ranges of high k percentage. 
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3-3- Inferring Keff with a Regression Tree Given Information on Energy 506 

Dissipation 507 

Given only the gridded K values, it is a simple matter to determine the fraction of high conductivity 508 

cells.  This property was used to infer Keff by training a simple regression tree machine learning 509 

algorithm (Figure 7a), which achieved an RMSE of 0.0213 and R2 of 0.9942 when evaluated using 510 

the testing data.  Note that this essentially finds only the mean value of Keff at each percent high K 511 

[red line in Figure 3].  Further providing the number of high-weight cells (based on a threshold of 512 

95%) to the regression tree algorithm improves the estimation of Keff, achieving an RMSE of 513 

0.0133 and an R2 of 0.9978 (Figure 7b).  While the improvement in R2 may seem unimportant, 514 

there is a reduction in the error of Keff prediction for outliers, for which structure is more important 515 

(compare Figures 7a and 7b). 516 
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 517 

3-4- Use of a Vanilla CNN to infer Keff with and without ED Weights 518 

For this part of the study, the binary K grid and a 0/1 map of high energy cells was provided as 519 

inputs to the CNN, and the target to be learned was Keff.  The vanilla CNN, provided with only the 520 

Figure 7) the testing performance of Keff estimation using different methods. A: Keff estimation using regression tree 

and only percent high K as input. B:  Keff estimation using regression tree and percent high K and fraction of high 

energy dissipation as inputs. C: Keff estimation using vanilla CNN using only K grid as input. D: Keff estimation using 

vanilla CNN using K grid and high energy dissipation cells mask as inputs.  E: Keff estimation using energy dissipation 

Uninformed UNET model. F:  Keff estimation using Informed UNET model with pre-training on energy dissipation. 



30 | P a g e  
 

K grid as input, performed as well (RMSE= 0.0171 and R2=0.9962) as the regression tree model 521 

that had been provided both the percent high conductivity material and the fraction of high energy 522 

cells (compare Figures 7c and 7b). Providing the binary high energy cell location map along with 523 

the K grid improves the performance (RMSE=0.0087 and R2=0.999); see Figure 7d.  524 

Note that, unlike the RT, the CNN method provides estimates for Keff on a continuum (not binned). 525 

Qualitatively, however, the CNN models provide relatively poor performance for low percent high 526 

conductivity material when given only the K grid as input (Figure 7c).   527 

 528 

3-5- Inferring Keff with UNET with and without ED weights 529 

The uninformed UNET performs better (RMSE=0.0113 and R2 =0.9984) than the vanilla CNN 530 

when given only the K grid (compare Figures 7e and 7c).  This indicates that the structure of the 531 

UNET enables it to learn something that allows it to achieve improved performance.   532 

The results of the informed UNET (Figure 7f) are interesting. On the one hand, while it shows 533 

further improvement (RMSE=0.0106 and an R2=0.9986) over the uninformed UNET, it does not 534 

outperform the corresponding CNN where the high energy map was provided.  So, the UNET 535 

structure seems to improve Keff estimation while direct training on the ED weights only offers 536 

marginal performance improvement. On the other hand, although the informed UNET was 537 

provided information regarding the ED weights during training, its predictions of Keff are made 538 

based solely on the K grid.  In other words, training with knowledge of the ED distribution mainly 539 

affects the internal structure of the UNET.  The result is that the “uninformed” and “informed” 540 

versions of UNET exhibit similar predictive performance (indicating equally informative 541 
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representations of the overall input-output mapping) while learning different internal 542 

representations of the mapping from gridded K to Keff. 543 

 544 

3-6- Inferring ED weights with UNET 545 

The performance of the informed UNET for inferring EC is illustrated for some example grids in 546 

Figure 8.  The correspondence between the ED weights predicted by the informed UNET and the 547 

value calculated directly from the flow model shows low RMSE (0.0069) and high R2 (0.9549)  548 

and the ability of the UNET to infer the fraction of high energy cells is likewise good 549 

(RMSE=0.04876 and R2=0.9832).  However, there is still a considerable mismatch (Figure 9A).  550 

In particular, UNET consistently under-predicts the ED weights for cells that have very high actual 551 

weight, while consistent over-predicting the fraction of high energy cells for cases with 552 

intermediate percent high K (Figure 9B).  From Figure 5b, these are the conditions that give rise 553 

to the most concentrated weighting.  Taken together, these results suggest that the UNET has 554 

difficulty in inferring the ED weights when they are concentrated in highly localized areas (e.g. 555 

60% high K material in Figure 5b).         556 

 557 
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 558 

 559 Figure 8) Samples of energy dissipation weight distributions prediction for different ranges of percent of high K 

material. Panel A: Observation. Panel B: Predicted values. 
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 560 

 561 

 562 

4- Discussion 563 

Based on the results presented above, we discuss three issues.  First, can ML/DL learn relationships 564 

that can predict both the trend and grid-specific variation of Keff as a function of percent high K 565 

material?  Second, does the use of increasingly more complex architectures lead to the improved 566 

inference of Keff?  Finally, can the DL algorithms make effective use of reduced information 567 

provided regarding ED weighting (here, the number of high energy cells), and can they use such 568 

information during training to infer patterns associated with ED weighting? 569 

 570 

 571 

Figure 9 ) Performance of informed UNET model in energy dissipation estimation A: Energy dissipation 

weighting prediction for all grids. B: Fraction of high energy dissipation cells prediction performance as function 

of percent of high K material. 

 



34 | P a g e  
 

4-1- Dependence of the ED Weighting Distribution on the K Field 572 

The Keff associated with binary grids shows a highly nonlinear dependence on the percentage of 573 

high K material (Figure 3). Specifically, Keff is closer to the arithmetic mean for materials with 574 

low to medium percentage of high K, while being approximately halfway between the arithmetic 575 

and harmonic means for materials with a higher percentage of high K.  The variation in this trend 576 

is due to the influence of specific structural patterns in the spatial distribution of high and low K 577 

cells among grid realizations.  The maximum degree of variability occurs for materials with 578 

intermediate percentages of high K values. In general, both the trend and the specific variations in 579 

Keff are very well explained by ED-weighted averaging (Figure 4). 580 

Given that the energy dissipation weights carry information regarding the impact of structure on 581 

the effective conductivity of a binary K field, we examined the nature of this weighting as a 582 

function of the percentage of high K material present in the medium.  Specifically, we defined the 583 

minimum area that contains 95% of all of the ED weight, and classified the cells within this region 584 

as being ‘high energy cells’.     585 

At high and low percent high K conditions, the medium is nearly homogeneous, but the energy is 586 

distributed over ~75% of the domain (Figure 6b).  The ED weighting is more highly constricted, 587 

residing in a smaller number of high energy cells, for 60% high K material grids.  The restricted 588 

high K areas centered around 60% high K material tend to form localized regions within which 589 

most of the energy dissipation occurs, indicating the influence of structures that force the flow to 590 

occur through regions of relatively low K, leading to high energy loss.  However, as the percentage 591 

of high K increases to 80%, the high weight areas become concentrated in a small number of 592 

unconnected regions, suggesting a different structural mechanism whereby flow is forced through 593 

a small number of low K cells, rather than being channeled through a continuous structure.   594 
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 595 

4-2- Comparison of Performance 596 

By considering the ML/DL algorithms in order of increasing architectural complexity (DT, vanilla 597 

CNN, UNET) we can assess the value of increased algorithmic complexity and the value of 598 

providing reduced information about the ED weights.  In summary (Table 1), performance 599 

improves with architectural complexity and when ED information is provided.  In terms of RMSE 600 

and R2, all of the ML/DL algorithms, including a simple decision tree provided with only the 601 

percent high K material, performed extremely well.  So, the differences in performance are mainly 602 

due to their abilities to make case-specific use of structural (pattern) information, which manifests 603 

as variations in Keff at any given percentage of high K material (Figure 7).   604 

  605 
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Table 1) Training, validation, and testing performance of all models 606 

  

Energy 

Dissipation 

Weight 

DT (Only 

High K%) 

DT (Only 

High K% + 

Number of 

High 

Energy 

Dissipation 

Cells) 

Vanilla 

CNN 

Vanilla 

CNN with 

High 

Energy 

Disispaiton 

Zones 

No 

Knowledge 

Knowledge  

Keff RMSE (Train) 0 0.0213869 0.01332592 0.0171827 0.00864406 0.00626774 0.00964671 

Keff RMSE (Val) 0 0.0215940 0.01367984 0.0172679 0.00866852 0.01129849 0.01077667 

Keff RMSE (Test) 0 0.0213212 0.01334975 0.0171188 0.00873331 0.01129849 0.01064088 

Keff R (Train) 1 0.9970817 0.99886803 0.9981229 0.99952405 0.99975328 0.99941291 

Keff R (Val) 1 0.9970250 0.99880711 0.9981039 0.99952134 0.99920198 0.99926396 

Keff R (Test) 1 0.9971003 0.99886423 0.9981378 0.99951423 0.99918991 0.99928351 

Energy Dissipation RMSE (Train)  NaN NaN NaN NaN NaN 0.02693278 0.00248980 

Energy Dissipation RMSE (Val) NaN NaN NaN NaN NaN 0.02703661 0.00548620 

Energy Dissipation RMSE (Test)  NaN NaN NaN NaN NaN 0.03300000 0.00695936 

Energy Dissipation R (Train)  NaN NaN NaN NaN NaN -0.04757823 0.99531359 

Energy Dissipation R (Val)  NaN NaN NaN NaN NaN -0.04673303 0.97724645 

Energy Dissipation R (Test)  NaN NaN NaN NaN NaN -0.05657500 0.97722907 

 607 

For all methods, the performance was poorest when Keff values are low (Figure 7).  The 608 

performance was also relatively poor for intermediate percentage levels of high K (Figure 10).  609 

That is, the methods had the most difficulty when localized structures act to impede flow, whether 610 

those structures are organized as a continuous region (intermediate high K percentage) or as 611 

isolated blocks of low K material (low Keff). 612 
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 613 

4-3- Hidden Layer Representation Analysis 614 

The superior performance of the informed UNET is notable because it does not require that the 615 

flow problem be solved to make predictions for the testing set.  Specifically, once trained with ED 616 

weight information (requiring solving the flow problem during testing and validation), the UNET 617 

algorithm uses the learned relationships to infer the values of the ED weights for the test samples 618 

and combines this with the K grid to infer Keff.   619 

The performance of the uninformed UNET, for which ED weight information was never presented, 620 

so the flow problem never had to be solved, is comparable to that of the trained UNET.  Given that 621 

the ED weights are thought to represent a key mechanism linking the K grid to the value of Keff, 622 

this raises the question of whether the uninformed UNET is somehow inferring information 623 

regarding the distribution of ED without being explicitly provided with such information during 624 

training. 625 

Figure10) Difference between inferred and actual fraction of high K cells for each grid. To compare the errors of grids 

at each high k percentage, the values of left y axis is scaled by average of actual number of high k cells at each k 

percentage. The fraction of high K cells for a 95% threshold is presented by blue line.  
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For the informed UNET, the output layer of the lower branch, which is concatenated with the K 626 

grid before the final step of inferring Keff, represents the ED weight distribution.  Examining the 627 

corresponding layer of the uninformed UNET shows no correlation with the true ED weights.  628 

However, a more advanced analysis, based on computing the centered kernel alignment similarity 629 

(CKA) [Kornblith et al., 2019], provides a more complete picture of the information flows through 630 

the informed and uninformed UNETs. These results are visualized as a similarity matrix (Figure  631 

11).  The output of each layer of the informed model is compared to other layers of the uninformed 632 

model to examine the degree of similarity between them while accounting for the presence of 633 

invertible linear transformations. A similarity value of zero between two layers indicates that their 634 

representations are not invertible linear transformations of each other while a similarity value of 1 635 

indicates that the two layers are equivalent up to a linear transformation.  636 

We first compared the results for the informed UNET with that of an untrained network with 637 

random initial weights and the same architecture (Figure 11a).  The values on the diagonal 638 

(representing the same layer in the two networks) have high CKA similarity for the first three 639 

layers; this makes sense given that both networks are being fed the same inputs.  However, the 640 

similarity begins to diminish beyond that point; they show very strong dissimilarity at the output 641 

layer, where the informed UNET is constrained to predict values that correspond to the ED 642 

weights.  They also differ strongly at the final dense layer because the untrained network did a 643 

poor job of inferring Keff.   644 

Comparing the informed and uninformed UNETs gave striking results (Figure 11b).  Namely, 645 

layer similarity remains high for all layers except the output layer, where the informed UNET is 646 

required to predict values that correspond to the ED weights.  Further, the final dense layer is also 647 
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highly similar, reflecting the near-identical skill in predicting Keff achieved by both the informed 648 

and uninformed UNET.  649 

In general, these results and patterns of similarity are consistent with the findings of  Kornblith et 650 

al., [2019b] and Thompson et al. [2019]. They show that there can be many possible intermediate 651 

architectural solutions to achieve the same task, but that the representations learned for the layers 652 

closer to the inputs and the outputs tend to be similar. We interpret this to mean that the untrained 653 

UNET can “learn” some useful information that is related to the ED weights directly from the K 654 

grids.  This information is not a direct map of actual ED weights.  So, when required to produce 655 

such a map (training under-informed conditions), the UNET learns an intermediate relationship 656 

that can provide this map and to the user.  It then uses the ED distribution to infer Keff. However, 657 

when not required to produce an ED map (training under uninformed conditions), the UNET does 658 

not develop a layer to translate the information to a user-readable ED map.  Rather, the latent 659 

information about the ED weights propagates through the UNET, with an associated change in the 660 

final dense layer to produce high-quality inferences of Keff.      661 

 662 



40 | P a g e  
 

 663 

 664 

The CKA analysis cannot uncover relationships between networks in the presence of invertible 665 

nonlinear transformations.  To examine this, we sequentially swapped the weights of the 666 

uninformed UNET with those of the informed UNET. Specifically, at each step of this analysis 667 

(i.e., for each layer), we used the weights of the uninformed model for the preceding layers while 668 

maintaining the informed UNET weights for the succeeding layers. The results (Figure 13) are 669 

presented with the deepest layer at the top left, progressing along each row and then downward to 670 

the final layer at the bottom right. There are strong linear correlations between the observed Keff 671 

and that predicted with the ‘swapped’ network until the substitutions reach the conv2d_12 layer. 672 

This is consistent with the high CKA representation similarity to this layer (Figure 12).  There is 673 

a strongly nonlinear relationship for conv2d_13, which corresponds with a low CKA value at this 674 

layer.  In the final layer (i.e, output layer), we see a strong negative linear correlation between the 675 

Figure 12) CKA similarity matrix between A) Informed Unet and untrained Unet b) Informed Unet and Uninformed Unet  
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output of the mixed structure model and that of the informed model. This pattern is consistent with 676 

the high CKA value observed in Figure 12 and suggests that an orthogonal transformation between 677 

the weights was necessary to overcome the changes applied in the deeper layers and recover the 678 

correct Keff values. This analysis suggests that both the informed and uninformed UNET are 679 

implementing similar computational processes, ostensibly extracting information corresponding 680 

to the ED distribution from the K grid, but representing it differently in n-d dimensional space. 681 

Further, that the user-imposed requirement to produce a readable ED map results in a nonlinear 682 

transformation that must be compensated in later layers to produce accurate inferred Keff values. 683 
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 684 

 685 

5-Conclusions 686 

We have investigated the ability of ML and DL algorithms to infer the effective hydraulic 687 

conductivity of binary K grids.  All of the ML/DL methods were able to infer Keff with extremely 688 

Figure 13) Correlation between True Keff and the output of Unet model built up by sequential substitution of Informed 

model weights with Uninformed Unet collectively. 
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high accuracy (R2 > 0.99) when provided with only the binary grid.  But, there was some 689 

improvement in identifying the Keff of outlier realizations, those most strongly affected by 690 

structure, with increasing algorithmic complexity, progressing from a decision tree, to a vanilla 691 

CNN, to a UNET.     692 

Relying on previous work that showed the value of energy dissipation weighting for understanding 693 

and inferring Keff, we examined whether providing such information improved the ML/DL 694 

performance.  While adding information derived from the ED distribution improved the 695 

performance of each algorithm, the improvement was similar to that realized by increasing the 696 

algorithmic complexity.     697 

The UNET architecture could be trained to infer the ED weighting from the K grid. This finding 698 

was supported by a similarity analysis of the hidden layers of UNETs with and without ED 699 

information provided.  The accuracy of the inferred ED weights was lower when the energy 700 

dissipation weights were concentrated into small areas; i.e., the UNET was better able to infer the 701 

impacts of diffuse structures than highly localized structures.  This finding may be due to the 702 

relatively small number of realizations that showed strong structural control in our sample set, 703 

suggesting that future work should examine this possibility.   704 

While the UNET extracted the relevant ED weight information from the K grids, it only translated 705 

this information to a user-readable map if forced to do so.  This may have other implications for 706 

the use of ML/DL techniques in subsurface hydrology.  For example, ML/DL algorithms may be 707 

able to implicitly infer head distribution information ‘naturally’ if they are trained to predict 708 

streamflow; but the head distributions may not be available to the user unless the algorithms are 709 

specifically designed to produce them.  This may be an important consideration if ML/DL 710 
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algorithms are applied to models with multiple calibration data types or if the models will be used 711 

for multi-objective decision support.     712 

 713 
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