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Abstract

A coral record of radiocarbon variability in seawater from the Galapagos shows a step change in radiocarbon values across

the 1976 climate shift, associated with a similar rise in sea surface temperature during the season of maximum upwelling. We

present a simple model of water transport and mixing in the equatorial Pacific that is used to simulate radiocarbon variability

to compare with the coral data. The results indicate that the velocity of the Equatorial Undercurrent (EUC) is the dominant

mechanism responsible for the pattern of variability observed in the coral record, suggesting that decadal variability in the EUC

may be an important component of decadal variability in Pacific and global temperature.
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Supplemental Figure 1 Model simulation of the seasonal cycle of DIC and Δ14C in the surface ocean
of the eastern equatorial Pacific using climatological wind stress and EUC velocities derived from Nino3.4
temperatures.

Supplemental Figure 2 Evolution of maximum EUC velocities at 220E from the Nino3.4 empirical rela-
tionship (A), the SODA reanalysis (B), and the ORAS reanalysis (C) from 1955 to 1990.
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Supplemental Figure 3 Monthly maximum EUC velocities and Nino3.4 temperatures from a control
simulation of CESM. A linear fit is shown as a black line, and calculated to bevEUC = TNino34−31.01

−0.037 . The
correlation coefficient is -0.67.

Supplemental Figure 4 Sensitivity analyses of model simulations were performed by holding all other
inputs constant and varying only the parameter of interest. The dark blue line is the model results with the
default parameters, observations are shown in gray, and the light blue uncertainty bounds reflect the model
results from varying DIC of the deep ocean (1.7-2.7 mol/kg) (A), DIC of the EUC (2.0-2.1 mol/kg) (B),
pre-bomb radiocarbon levels in the deep ocean (-110mixed-layer depth (15-50m) (D), and surface biological
uptake (8x10-5molC/m3/day-8x10-3molC/m3/day) (E).
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Key Points 12 

• A model of equatorial transport and mixing simulates radiocarbon 13 
variability, as observed in coral records 14 

• Changes in the velocity of the equatorial undercurrent are a dominant 15 
mechanism of radiocarbon variability on decadal timescales 16 

17 
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 18 
Abstract 19 
A coral record of radiocarbon variability in seawater from the Galapagos shows a step 20 
change in radiocarbon values across the 1976 climate shift, associated with a similar rise 21 
in sea surface temperature during the season of maximum upwelling.  We present a 22 
simple model of water transport and mixing in the equatorial Pacific that is used to 23 
simulate radiocarbon variability to compare with the coral data.  The results indicate that 24 
the velocity of the Equatorial Undercurrent (EUC) is the dominant mechanism 25 
responsible for the pattern of variability observed in the coral record, suggesting that 26 
decadal variability in the EUC may be an important component of decadal variability in 27 
Pacific and global temperature. 28 
 29 
Plain Language Summary 30 
The aboveground testing of nuclear weapons during the 1950s created a sudden increase 31 
of radiocarbon in the atmosphere. The penetration of this signal into the ocean provided 32 
researchers with a novel dataset offering insights into circulation patterns. Here, we focus 33 
on understanding variability in the radiocarbon signal from coral records along the 34 
equatorial Pacific. We find that variations in equatorial circulations may be important to 35 
explaining both the radiocarbon signal as well as decadal variability in Pacific and global 36 
temperature. 37 
 38 
1 Introduction 39 
On interannual and decadal timescales, variability in the equatorial Pacific is strongly 40 
associated with global temperature changes (e.g. Mantua et al, 1997; Zhang et al, 1997; 41 
Cayan et al, 2001; Patt and Gwata, 2002; Kosaka and Xie, 2013; Deutsch et al, 2014). In 42 
particular, a warming of sea-surface temperatures (SSTs) in the equatorial Pacific in 43 
1976, termed the 1976 Pacific climate shift, has been linked to major atmosphere and 44 
oceanic changes sustained for decades (e.g. Graham, 1994; Trenberth and Hoar, 1996; 45 
Rajagopalan et al, 1997; Deser et al, 2004). A number of ideas have been proposed to 46 
explain this shift, ranging from anomalously warm subsurface waters from the North 47 
Pacific (Gu and Philander, 1997), to anomalous water flux transport (Kleeman et al, 48 
1999), and changes in the relative contribution of northern and southern hemisphere 49 
waters (Guilderson and Schrag, 1998; Rodgers et al, 1999).  Identifying the mechanism 50 
behind the 1976 shift remains an important approach to exploring how the Earth system 51 
responds to rising greenhouse gas concentrations (Broecker, 2017). 52 
 53 
Synchronized with the 1976 shift in SSTs, Guilderson and Schrag (1998) noted an abrupt 54 
increase in radiocarbon (14C) content of the surface waters in the equatorial Pacific, 55 
particularly during the season of strongest upwelling (Fig. 1).  They speculated that the 56 
shift was caused by a decrease in contribution of radiocarbon-depleted deeper waters to 57 
the upwelling region, or a change in the structure of the ventilated thermocline.  In this 58 
study, we explore the origin of the 1976 shift in radiocarbon using a simple box model of 59 
the equatorial Pacific. Using winds and velocities in the equatorial undercurrent (EUC) to 60 
drive upwelling and shear-induced mixing respectively, we explore the impact each has 61 
on the climatology and variability of the radiocarbon signal.  We find that changes in 62 
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EUC velocity dominate the radiocarbon signal and discuss the implications for other 63 
climate shifts observed in the equatorial Pacific. 64 
 65 
 66 

 67 
Figure 1. Galapagos coral Δ14C record (Fig. 1 from Guilderson and Schrag, 1998). 68 
Linear trend lines of upwelling and non-upwelling season extremes pre and post 1976 are 69 
shown (dashed lines). 70 
 71 
 72 
2 Materials and Methods 73 
Our model of the eastern equatorial Pacific consists of two and a half layers of unit width 74 
and length: a surface layer, thermocline layer, and deep ocean layer of infinite depth. The 75 
model calculates the concentration of dissolved inorganic carbon (DIC) and radiocarbon 76 
in the surface and thermocline layers for monthly time steps over the length of the 77 
Galapagos record.  78 

The concentrations of DIC and radiocarbon (Csurf) in the surface ocean evolve as 79 

 80 

The first term on the right hand side reflects the upwelling of thermocline waters (with 81 
concentration Ct) due to both Ekman pumping (vEkman) and shear induced mixing (wmix). 82 
The second term is the export of surface waters due to meridional Ekman divergence 83 
(vEkman) and downward shear induced mixing (wmix). Additional fluxes from air-sea gas 84 
exchange (Finvasion and Foutgas) as well as biological consumption (Fbio) are also included. 85 
We calculate the concentration by normalizing the fluxes by the depth of the surface layer 86 
(Hsurf). Because the zonal gradient in carbon and radiocarbon is minimal in the eastern 87 
equatorial Pacific, the zonal advection of surface water is assumed to have negligible 88 

Csurf (t) =
vEkman +wmix

Hsurf

Ct (t −1)+
1− vEkman −wmix

Hsurf

Csurf (t −1)+
Finvasion (t)−Foutgas (t)−Fbio

Hsurf

"
#
$

%$

&
'
$

($
dt
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impact.  It is possible that during very strong El Niño events, some water from the 89 
Western Pacific moves eastward into the upwelling region, but this is an unusual 90 
occurrence.  As the focus of this paper is on the overall pattern of radiocarbon variability 91 
and especially the minimum values, this assumption is not important to our result. 92 
 93 
In the thermocline, the concentrations of carbon and radiocarbon (Ct) are calculated as 94 

 95 
The first term reflects the replenishment of thermocline waters with waters from the 96 
EUC, accounting for losses due Ekman pumping, and mixing with the surface and waters 97 
at depth (wdeep). The second and last terms account for the mixing of surface waters 98 
downward and deep waters upward respectively. We calculate the concentration by 99 
normalizing the fluxes by the depth of the thermocline layer (Ht). 100 
 101 
The net flux from air-sea gas exchange depends on the partial pressure of CO2 in the 102 
ocean and atmosphere (pCO2) 103 

 104 

Ko is the solubility of CO2, calculated at each time step following the empirical 105 
relationship from Weiss (1974). We calculate the gas transfer velocity, k, using 106 
Wanninkhof’s (1992) parameterization 107 

 108 

where u is the 10m wind speed, taken as the average over the eastern equatorial Pacific 109 
from the ECMWF twentieth century reanalysis (ERA-20C) (Poli et al, 2016), and Sc is 110 
the Schmidt number (Wang et al, 2006).   The details of the air-sea gas exchange 111 
parameterization are not important to the overall result.  We assume salinity to be 112 
constant at 34.78 per mil, and use temperatures in the Nino 3 region from the Global 113 
Ocean Surface Temperature Atlas (GOSTA) dataset (Bottomley et al, 1990). 114 
 115 
We use measurements from Mauna Loa to prescribe the partial pressure of CO2 in the 116 
atmosphere at each time step (Keeling et al, 2001). These data being in 1958, so we 117 
assume the first year of the simulation (1957) has a partial pressure equal to the average 118 
of the 1958 measurements. Because the air-sea gas exchange is a small carbon flux for 119 
the eastern Pacific compared to the other fluxes, the errors this causes should be minor. 120 
At each time step, we prescribe the partial pressure of radiocarbon in the atmosphere 121 
along the equator as the average of radiocarbon in the Northern Hemisphere (Vermunt, 122 
Austria) (Levin et al, 1994) and Southern Hemisphere (Wellington, New Zealand) 123 
(Manning and Melhuish, 1994). We ignore any fractionation that could occur in the air-124 
sea gas exchange. 125 
 126 
We use zonal wind stress from ERA-20C to calculate Ekman pumping, which drives both 127 
divergence and upwelling. 128 

Finvasion (t)−Foutgas (t) = kKo pCO2
ATM − pCO2

surf( )

k = 0.31u2 660
Sc

!

"
#

$

%
&
2
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 129 

We combined divergence from the northern and southern hemispheres, using the 130 
difference in wind stress along the equator (-5 to 5N, 180 to 240E) and in the subtropics 131 
(25 to 35N/S, 180 to 240E) to calculate the meridional gradient in wind stress. 132 
 133 
The Richardson number, which is a measure of mixing, is proportional to the square of 134 
vertical shear. We parameterize mixing with both the surface and deep water through this 135 
relationship, using the EUC velocity at 220E (where the current is strongest) and 136 
assuming the vertical extent of the current is symmetric and does not change. 137 

 138 
Because there are no direct measurements of the EUC velocity in situ over this period, we 139 
explore 3 different prescriptions: an empirical relationship with Nino3.4 region 140 
temperatures derived from a linear fit of CESM (Community Earth System Model from 141 
NCAR) model simulations, output from the Simple Ocean Data Assimilation reanalysis 142 
(SODA) (Carton and Giese, 2008), and output from the Ocean Reanalysis System 143 
(ORAS) (Mogensen et al, 2012; Balmaseda et al, 2013). For each EUC prescription, we 144 
calculate a constant of proportionality between the undercurrent and mixing by fitting the 145 
model to replicate the magnitude and seasonal variability of carbon and radiocarbon 146 
under pre-bomb, climatological conditions.  147 
 148 
The radiocarbon in the EUC changes over time due to the delayed bomb signal. Surface 149 
waters in the northern and southern subtropics subduct and propagate through the 150 
ventilated thermocline before feeding into the EUC (e.g. Luyten et al, 1983; Tsuchiya et 151 
al, 1989; Rodgers et al, 2003; Kuntz and Schrag, 2018). To reflect this transport, which 152 
both delays and smooths the bomb radiocarbon signal due to advection timescales along-153 
isopycnal mixing respectively, we prescribe the EUC radiocarbon content to be a lagged, 154 
weighted average from northern and southern signals. 155 

 156 
where the over bar reflects a 12 year average, and the weights come from the dominance 157 
of southern hemisphere waters in the EUC (Kuntz and Schrag, 2018). The values of 158 
radiocarbon in each hemisphere come from coral records from Rarotonga (21S, 159W) 159 
(Guilderson et al, 2000) and the French Frigate (24N, 166W) (Druffel, 1987), assuming a 160 
DIC concentration of 2.0 mol/kg. 161 
  162 
We parameterize a number of model values. In the deep ocean, we set the DIC to 2.2 163 
mol/kg (Chai et al, 2002) with a Δ14C of -95‰ to reflect pre-bomb levels (Broecker et al, 164 
1985). The DIC of the EUC is held constant at 2.05 mol/kg and biological uptake in the 165 
surface is fixed to be 8x10-4 mol C/m3/day (Chai et al, 2002). We set the depth of the 166 
surface and thermocline boxes to 25 m.  None of these choices significantly affect the 167 
results presented here.  Detailed sensitivity analyses for variations in surface layer 168 
thickness, DIC content (both in the EUC and in deeper water), pre-bomb radiocarbon, 169 
and biological productivity are shown in the Supplement, but none of these have a 170 
significant influence on the results presented below. 171 
 172 

vEkman =
1
ρ f

∂τ x

∂y

wmix = wdeep ∝ vEUC
2

14CEUC (t) = 0.2
14CNP (t − 2years)+ 0.8

14CSP (t − 2years)
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We initialized the model with a DIC in the surface of 2.0 mol/kg, and radiocarbon 173 
equivalent to the start of the Galapagos record. 174 
 175 
3 Results 176 
The model simulation for surface DIC and Δ14C pre-bomb, climatological conditions 177 
shows regular fluctuations with seasonal variations in DIC from 1.98 to 2.01 mmol and 178 
Δ14C from -80‰ to a maximum just over -78‰ (see Supplement), consistent with 179 
minimal variation of pre-bomb Δ14C from Galapagos Corals (Guilderson and Schrag, 180 
1998).   Figure 2 shows the model simulation with the delayed signal of bomb 181 
radiocarbon and using Nino3.4 temperatures to parameterize the EUC velocity. Constant 182 
wind stress and constant EUC velocities recreate the initial increase and post 1976 183 
plateau of radiocarbon but fail to capture the seasonal and interannual variability (Fig. 184 
2A). Adding the climatological winds and EUC velocities creates a seasonal cycle, but 185 
the amplitude is diminished compared to observations (Fig. 2B). Including the time 186 
evolving wind stress has minimal impact on the model simulation of radiocarbon (Fig. 187 
2C). Only when a time evolving undercurrent is included does the simulation display 188 
variability similar to observations (Fig. 2D). In this case, the linear trend in radiocarbon 189 
pre-1976 is greater in the non-upwelling than upwelling season, but both trends decrease 190 
post-1976. There is also a distinct jump in the upwelling season Δ14C values, analogous 191 
to the observations. 192 

 193 
Figure 2. Model simulation of Galapagoes radiocarbon with the delayed signal of bomb 194 
radiocarbon in the EUC and using Nino3.4 temperatures to parameterize the EUC 195 
velocities. Four simulations are shown: constant wind stress and EUC velocities (A), 196 
climatological wind stress and EUC velocities (B), time-evolving wind stress and 197 
climatological EUC velocities (C), and time-evolving wind stress and EUC velocities 198 
(D). As in Guilderson and Schrag (1998) linear trend lines of upwelling and non-199 
upwelling season extremes pre and post 1976 are shown (dashed lines). 200 
 201 
 202 
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Different prescriptions for EUC velocity yield very different radiocarbon results (Fig. 3). 203 
Model calculations taking EUC velocities from each of the reanalysis ocean models 204 
(SODA and ORAS) fail to reproduce the jump in minimum value of D14C observed in the 205 
data.  Only the Nino3.4 empirical relationship fit for EUC velocity reproduces the step 206 
change in minimum radiocarbon values in 1976.  207 
 208 

 209 
Figure 3. Galapagos radiocarbon from model simulations with EUC velocities from the 210 
SODA reanalysis (A), the ORAS reanalysis (B), and the Nino3.4 empirical relationship 211 
(C).  As in Guilderson and Schrag (1998) linear trend lines of upwelling and non-212 
upwelling season extremes pre and post 1976 are shown (dashed, red lines). Observations 213 
are shown in gray. 214 
 215 
4 Discussion 216 
Our simple model for radiocarbon in the eastern equatorial Pacific can be used to 217 
diagnose the importance of different physical mechanisms to the signal observed in the 218 
coral record from the Galapagos.  The magnitude of the pre-bomb radiocarbon seasonal 219 
cycle agrees with the variability seen in the first two years of the Galapagos record, 220 
although the absolute values are slightly more depleted.  The simulations during the 221 
bomb era show the importance of the EUC velocity to reproducing the jump in miminum 222 
D14C values seen in the Galapagos coral.  The variability in seasonal maximum and 223 
minimums stems from changes in EUC strength and shear induced mixing (Fig. 2). 224 



Manuscript submitted to JGR: Oceans 
 

 

Changes in wind stress do not appear to be a primary control on the radiocarbon signal, 225 
as climatological winds and observed winds show similar results (Figs. 2B and 2C).  226 
Only the calculation with EUC velocities tied to Niño3.4 temperature (Fig. 2D) is able to 227 
reproduce the shift in minimum D14C seen across the 1976 transition, although the 228 
amplitude of the seasonal and interannual variability in the model is greater than what is 229 
seen in the coral record.  Prior to 1976, a faster EUC induced greater mixing with deeper, 230 
radiocarbon-depleted water along the EUC pathway, resulting in lower seasonal minima. 231 
After 1976, a reduction in average EUC velocity led to less mixing and lower dilution of 232 
the bomb signal, leading to a jump in the seasonal minima in D14C. Such a shift in EUC 233 
velocity is also consistent with the jump in SST minima in the Nino3 region post-1976 234 
(Guilderson and Schrag, 1998), although the sensitivity to EUC velocity is greater for 235 
radiocarbon because of the large contrast in vertical distribution of radiocarbon.  236 
 237 
 238 
An interesting feature of this analysis is that neither of the two reanalysis products shows 239 
EUC variability compatible with the radiocarbon record.  Only the Niño3.4 empirical 240 
parameterization of EUC velocities reproduces the 1976 shift.  The empirical relationship 241 
between Niño3.4 temperature and EUC velocity comes from a linear correlation of 242 
monthly EUC velocity in the CESM model (r=-0.67; see Supplement), and may capture 243 
decadal variability better than the reanalysis products. 244 
 245 
Our simple model indicates that the critical features of the Galapagos radiocarbon record 246 
are driven primarily by EUC velocity, in particular that the shift in 1976 represents a 247 
reduction in the EUC strength.  Around the turn of the 21st century, the eastern equatorial 248 
Pacific temperatures experienced a shift in the opposite direction, reversing the 1976 shift 249 
(e.g. Ding et al, 2013; Trenberth et al, 2014). If our analysis of the radiocarbon record is 250 
correct, this implies an acceleration of the EUC around 2000. Observations confirm this, 251 
revealing an acceleration of the EUC around the transition of the eastern equatorial 252 
Pacific to a cold phase (Amaya et al, 2015; Coats and Karnauskas, 2018).  We see this 253 
even more clearly in an analysis of the TAO array data from 220°E (ref) that show a 254 
significant jump in average EUC velocity around the time of the transition to more stable 255 
global temperatures (Figure 4).  Combined with the radiocarbon evidence from the 1976 256 
shift, these data emphasize the importance of understanding controls on EUC velocity to 257 
explaining and predicting decadal changes in tropical Pacific and global temperature. 258 
 259 
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 260 
Figure 4 Zonal velocity along the equator from the TAO buoy at 140°W, using both 261 
acoustic Doppler current profilers and current meter data (TAO Project Office, 2000). To 262 
focus on the EUC, only positive (eastward) zonal velocities are shown in the contour plot. 263 
An increase in current strength is evident post 1999. The line plot highlights this change, 264 
showing average flow rate per unit width above 80 cm/s before and after 1999, as well as 265 
the 5-year running mean (black). The record from the 110°W buoy shows a similar 266 
signal, but the records from the other TAO buoys are not complete enough to perform 267 
this analysis. 268 
 269 
5 Conclusions 270 
A simple model for radiocarbon in the eastern equatorial Pacific shows that the velocity 271 
of the Equatorial Undercurrent (EUC) is the dominant mechanism behind the evolution of 272 
radiocarbon in the sea surface, as recorded by a Galapagos coral.  Using an empirical 273 
estimate for EUC variability based on eastern equatorial Pacific sea surface temperatures, 274 
the model successfully recreates the jump in radiocarbon during the maximum upwelling 275 
season across the 1976 climate shift.  After 1976, the average velocity of the EUC is 276 
reduced, leading to higher radiocarbon values and less cold water in the eastern equatorial 277 
Pacific.  A similar shift but in the opposite direction around 1999 to 2001 is observed 278 
through direct measurements of EUC velocity from a TAO mooring, suggesting that such 279 
decadal variability in EUC velocity may be an important mechanism for modulating 280 
Pacific and global temperature. 281 
 282 
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