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Abstract

Some features in late coda correlations have now been commonly treated as “the inter- station body waves”. In general,

however, large earthquakes releasing coda waves mostly situate at the continental boundaries. It remains unclear as to how

such a discrete and non- uniform distribution of earthquakes influences these features. To understand the impacts, here we

introduce geometric ray theory to explore the body wave cross-correlation. In the stationary phase integral, we show that

the distribution geometry of earthquakes and the dimension of the stationary phase zone significantly influence the correlation

phases. The dimension of the stationary phase zone is inversely proportional to the k-κ coefficient which, as a newly-proposed

terminology, is composed of the seismic wave-number and the coda propagation distance. In late coda correlations, most

of the large earthquakes situate in the stationary phase zone for constructing the inter-station wave due to the small k- κ

coefficient. However, because earthquakes are not always at the stationary points, the correlation signals may appear a little

earlier than their counterparts in Green’s function. We have verified the theoretical analyses with the synthetic and realistic

coda correlations.This theory is also applicable in other physics fields allowing for geometric ray theory. It demonstrates that the

event-receiver geometry can result in the travel time variation up to 1/6 of the body wave correlation period. Thus, researchers

should carefully investigate the impacts when utilizing the correlation signals as inter-station body waves for the future work

of illuminating the Earth’s discontinuities.
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Abstract16

Some features in late coda correlations have now been commonly treated as “the inter-17

station body waves”. In general, however, large earthquakes releasing coda waves mostly18

situate at the continental boundaries. It remains unclear as to how such a discrete and non-19

uniform distribution of earthquakes influences these features. To understand the impacts,20

here we introduce geometric ray theory to explore the body wave cross-correlation. In21

the stationary phase integral, we show that the distribution geometry of earthquakes and22

the dimension of the stationary phase zone significantly influence the correlation phases.23

The dimension of the stationary phase zone is inversely proportional to the k-κ coefficient24

which, as a newly-proposed terminology, is composed of the seismic wave-number and the25

coda propagation distance. In late coda correlations, most of the large earthquakes situate26

in the stationary phase zone for constructing the inter-station wave due to the small k-27

κ coefficient. However, because earthquakes are not always at the stationary points, the28

correlation signals may appear a little earlier than their counterparts in Green’s function.29

We have verified the theoretical analyses with the synthetic and realistic coda correlations.30

This theory is also applicable in other physics fields allowing for geometric ray theory. It31

demonstrates that the event-receiver geometry can result in the travel time variation up32

to 1/6 of the body wave correlation period. Thus, researchers should carefully investigate33

the impacts when utilizing the correlation signals as inter-station body waves for the future34

work of illuminating the Earth’s discontinuities.35

1 Introduction36

With massive retrieval of surface waves in the noise correlation (e.g., Campillo & Paul,37

2003; Shapiro & Campillo, 2004), body wave reflections have also been reported in the last38

over ten years (e.g., Roux et al., 2005; Tonegawa et al., 2009; Zhan et al., 2010; Lin et al.,39

2013). Recent developments have shown that after stacking the interferometric seismograms40

according to the inter-station distance bins, the noise correlation can produce signals like41

the Earth’s deep reflections e.g. the ScS wave reflected from the core-mantle boundary42

(Lin et al., 2013). The application begins with the work of Poli et al. (2012) in retrieving43

the body waves reflections from the mantle transition zones. The later studies show that44

these reflections are mainly contributed by fruitful earthquake codas in seismic noise (Lin45

et al., 2013; Boué et al., 2014), partially because multiple reverberations of seismic body46

waves dissipate plenty of energy within the Earth, and only large earthquakes (approximate47

≥ M7.0) can release sufficiently powerful coda waves to produce such deep reflections.48

The late earthquake coda correlations (approximately 3−10 hours after the origin time of49

earthquakes) have produced a wealth of deep reflections (Pham et al., 2018; Li et al., 2020).50
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These waves provide dense ray path coverage at the discontinuities below seismic networks,51

thus allowing for complementary characterization of the deep layering properties (Poli et52

al., 2015; Huang et al., 2015; Tkalčić & Pham, 2018).53

While one uses the travel times to carry out reliable travel time tomography, the recon-54

structed deep reflections must converge to the counterparts in Green’s function of the prop-55

agation medium. The convenient relationship is likely true, for example, in a homogeneous56

medium with uniform distributions of noise sources (e.g., Snieder, 2004; Sánchez-Sesma &57

Campillo, 2006; Tanimoto, 2008; Tsai, 2009). It is also valid in an inhomogeneous medium58

when even and uncorrelated sources situate in an enclosed surface far from the stations59

(Wapenaar, 2004; Wapenaar & Fokkema, 2006). For the summary, readers can refer to60

(Boschi & Weemstra, 2015; Fichtner & Tsai, 2019). These theories substantially assume a61

uniform distribution of noise sources. However, the assumption is unsatisfied because large62

earthquakes radiating coda waves mostly locate at continental boundaries and the distribu-63

tion is obviously non-uniform. Seismic coda waves are mainly made of strong reverberations64

in the great-circle plane constrained by the earthquake and station (Sens-Schönfelder et al.,65

2015). It is well known that the directionality and non-uniformity of noise sources affect66

phase variations of the inter-station surface waves (Tsai, 2009; Yao & van der Hilst, 2009;67

Froment et al., 2010; Tatiana et al., 2016). The non-uniform earthquake distribution may68

also result in the body wave correlation phase variations, which subsequently biases the69

travel time measurements of the reconstructed deep reflections resorting to the alignment70

of waveform peaks in practice.71

Using sensitivity kernels for the noise correlation can precisely evaluate the correlation72

phases (Tromp et al., 2010). The approach is adapted to even complex scenarios including73

the source distributions, the medium structures, and the data preprocessing (Fichtner et74

al., 2016). Another numerical approach is to synthesize the interferometric seismograms in75

controlled circumstances, for instance, in the radially stratified earth model with preferable76

layouts of earthquakes and stations. Such numerical experiments provide us with intuitive77

knowledge of the phase variations caused by the effective duration of late codas and the78

event-receiver geometries (Sager et al., 2018; Wu et al., 2018; Wang & Tkalčić, 2020). For a79

thorough understanding, it is preferred to conduct a theoretical analysis. For example, Liu &80

Zhang (2018) have shown that for a laterally uniform distribution of noise sources, the travel81

times of interferometric SH body waves are the same as those in Green’s function of the82

radially stratified earth model. Kennett & Pham (2018) have introduced the ray-theoretical83

framework to investigate the phase properties of seismic reflections and the spurious waves84

that extensively appear at the arrival time differences of the conventional deep reflections85

(Boué et al., 2014; Pham et al., 2018; Li et al., 2020). They show that the correlations of86
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coda waves with the same slowness contribute to the two types of features. To investigate87

the phase variations caused by the geometric distribution of earthquakes, we follow the way.88

We establish the correlation theory for body waves in a smooth medium with discon-89

tinuities, comparable to the realistic large-scale earth structure. The geometric ray ap-90

proximation only considers the first term in the series of the ray ansätze (Chapman, 2004,91

chapter 5.1). It provides an appropriate mathematical formula describing the propagation92

of teleseismic body waves in the study. In the second section, based on the stationary phase93

integral of the cross-correlation function (CCF), we show that the distribution geometry94

of earthquakes and the k-κ coefficient affect the correlation phases, and the k-κ coefficient95

decides the dimension of the stationary phase zone. In the third section, we use the k-κ96

coefficient to study the late coda correlations; we validate the theoretical analysis using syn-97

thetic and realistic coda correlations. Finally, we use the current theory to interpret Lobkis98

& Weaver (2001)’s ultrasonic laboratory test that primarily facilitates noise interferometry.99

2 Theory100

2.1 The Correlation of Body Waves101

We study the cross-correlation of body waves in an inhomogeneous and isotropic medium,102

with the density ρ(x), and the two Lamé moduli λ(x) and µ(x). x = (x1, x2, x3) represents103

a point in the medium. Hereafter we use boldface type to express a vector or matrix. As the104

medium is isotropic, body waves in the medium are in the form of P and S waves in geomet-105

ric ray theory, with the velocity α(x) =
√
[λ(x) + 2µ(x)]/ρ(x) and β(x) =

√
µ(x)/ρ(x),106

respectively. There are two receivers at xa and xb at the surface. The noise sources accu-107

mulate in the region V = V−+V+, with the subscripts − and + designating at the negative108

and positive sides of two stations, respectively (Figure 1).109

𝒙𝑎

𝒙𝑏

𝑽+𝑽− ℒ𝑚

Figure 1. Body wave propagation in the medium. V− and V+ are noise source regions (gray) at

the negative and positive sides of two stations xa and xb (triangles) on the medium surface. Lm is

a ray passing through xa, xb and the source region.
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We assume the source region V is homogeneous and there are point sources in V with

the source spectrum N(ω,x). For a continuous set of the source distribution, N(ω,x) is the

source spectrum density, i.e., the source spectrum per unit volume. The body wave velocity

records at a high angular frequency ω can be represented by the expansion of rays as (in

chapter 5.3, Chapman, 2004)

u(ω,x,xa) =N(ω,x)
∑
m

f(ω,x,xa,Lm)eiωT (x,xa,Lm)

u(ω,x,xb) =N(ω,x)
∑
n

f(ω,x,xb,L′
n)e

iωT (x,xb,L′
n)

, (1)

with i denoting the imaginary unit, and the ray descriptors Lm(x) and L′
n(x) from x to xa

and xb, respectively. f(ω,Lm) and f(ω,L′
n) are the amplitude of individual ray components

from x to xa and xb, respectively, which are related to the geometric spreading, the reflection

and transmission coeffcients, and the attenuation, etc. It varies slowly in comparison with

the phase term. T (x,xa,Lm) and T (x,xb,L′
n) represent the travel time from x to xa and

xb as

T (x,xa,Lm) =

∫ x

xa

p(ξ,Lm) · dξ

T (x,xb,L′
n) =

∫ x

xb

p(ξ,L′
n) · dξ

, (2)

with the slowness vectors p(ξ,Lm) and p(ξ,L′
n) along Lm and L′

n, respectively. We define110

the ray descriptors Lm(x) and L′
n(x) as following: let an imaginary source at xa radiate111

body waves with the wavefront Π1,Π2, . . . sweeping across V , and then, any x on Πm112

corresponds to one ray Lm(x). Similar definitions can be performed to the ray descriptor L′
n113

and the corresponding wavefront Π′
n from an imaginary source at xb (Figure 2). Geometric114

ray approximation is not valid when the caustic is around a ray path. To avoid the emergence115

of caustics, we assume the wavefronts keep convex when overlooked from the source.116

𝒙𝑎 𝒙𝑏

ℒ𝑚

ℒ𝑛
′

Π𝑚
Π′𝑛

Figure 2. The rays Lm and L′
n radiated by imaginary sources at xa and xb, respectively. The

corresponding wavefronts Πm and Π′
n are in the gray source region.
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Similar to Snieder (2004) and Boschi & Weemstra (2015), we assume that the noise

sources are spatially and temporally uncorrelated in V . The assumption yields

⟨N∗(ω,x)N(ω,x′)⟩ = S(ω,x) , (3)

where ⟨·⟩ designates the ensemble average, and the power spectrum density S(ω,x) is a real

function. Under the assumption, the body wave CCF is

⟨C⟩ (ω,xa,xb) =
∫
V

∫
V

u∗(ω,x,xa)u(ω,x
′,xb)d

3xd3x′

=

∫
V

⟨u∗(ω,x,xa)u(ω,x′,xb)⟩ d3x

=
∑
m

∑
n

∫
V

Qmn(ω,x)e
iωψmn(x,xa,xb) d3x ,

(4)

with

Qmn(ω,x) = S(ω,x)f(ω,x,xa,Lm)f(ω,x,xb,L′
n) , (5)

and

ψmn(x,xa,xb) = T (x,xb,L′
n)− T (x,xa,Lm) . (6)

2.2 Two types of features117

The volume integral in Eq. (4) can be computed by stationary phase approximation

if ω is high and Qmn(ω,x) varies smoothly. In stationary phase approximation, the main

contribution to the integral comes from the integral domain in which the phase remains

nearly constant or stationary. If xs is a stationary source for the correlation between seismic

waves along Lm and L′
n, it should satisfy

∇ψmn(x)|x=xs
= 0 . (7)

This yields

p(xs,Lm) = p(xs,L′
n) . (8)

Given the identical initial condition, Lm(x) and L′
n(x) coincide in the smooth medium, any

noise source on the coincident ray path is a stationary source. Because Lm(x) and L′
n(x)

coincide in V , ψmn(xs,xa,xb) is irrelevant to xs. We define a new function as

∆mn(xa,xb) = ψmn(xs,xa,xb) = T (xs,xb,L′
n)− T (xs,xa,Lm) , (9)

and there is

∆mn(xa,xb) = −∆mn(xb,xa) . (10)

∆mn(xa,xb) represents the travel time difference from the stationary sources to xa along

Lm(x) and to xb along L′
n(x), respectively. Particularly, when Lm(x) and L′

n(x) coincide

until arriving xa or xb, ∆mn(xa,xb) is

∆mn(xa,xb) = T (xa,xb,L′
n) . (11)

–6–
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It is the travel time from xa to xb along L′
n, i.e., the travel time of inter-station body waves.118

However, seismic wave reflections and transmissions at the discontinuous interfaces119

can result in bifurcations of ray paths, so Lm(x) and L′
n(x) are not necessarily coincident120

outside V (Figure 3). The two scenarios (with and without ray bifurcations) divide the121

correlation signals into two types of features — resembling the inter-station body waves and122

the spurious waves at the travel time difference between the conventional reflections. The123

dominant contributions of the two types of features are body waves with the same emitting124

slowness vector, which is similar to Kennett & Pham (2018) that coda waves of the same125

slowness contribute to the two types of features. However, here excludes the correlation126

between P and S waves because they do not have the same take-off angle when radiating127

with the same slowness.128

𝒙𝑎 𝒙𝑏

𝑆 𝑃

(a) (b)

Ray bifurcation

𝑆

𝒙𝑎 𝒙𝑏

Figure 3. (a) A ray bifurcation at the discontinuous interface from S (dash) to S and P (solid)

waves; (b) without bifurcations.

2.3 The Stationary Integral129

At xs, the phase term ψmn(x) can be expanded with Taylor’s series as

ψmn(x,xa,xb) = ∆mn(xa,xb) +
1

2
(x− xs)

THmn(xs)(x− xs) + · · · . (12)

In Eq. (12), the Hessian matrix Hmn(xs) is

Hmn(xs) = ∇∇ψmn(x)|x=xs . (13)

In Appendix Appendix A, Hmn(xs) is diagonalizable with real eigenvalues and eigenvectors

as

Hmn(xs) = ET
mn(xs)Λmn(xs)Emn(xs) , (14)

with the superscript T denoting transpose of the matrix. The coordinate transformation

matrix is

Emn(xs) = [η̂1(xs), η̂2(xs), η̂3], (15)

–7–
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with the unit vector η̂3 along the ray path. η̂1(xs) and η̂2(xs) correspond to the steepest

and slowness descent direction of the distance difference at xs, where the distances are from

Πm and Π′
n to the common tangent plane of the two wavefronts, respectively. η̂1(xs) and

η̂2(xs) usually vary in V when the outside is inhomogeneous (Figure 4). In a laterially

homogeneous medium, η̂1 and η̂2 correspond to the SV and SH direction, respectively.

The diagonal matrix Λmn(xs) is

Λmn(xs) =diag{ν(mn)1 (xs), ν
(mn)
2 (xs), 0}

=
1

c


κ1(xs,L′

n)− κ1(xs,Lm) 0 0

0 κ2(xs,L′
n)− κ2(xs,Lm) 0

0 0 0

 ,
(16)

with c = α or β. κ1(xs,Lm) and κ1(xs,L′
n) represent the curvature of curves at xs in the130

η1 direction on Πm and Π′
n, respectively, so are κ2(xs,Lm) and κ2(xs,L′

n) except in the η2131

direction.132

In the Frenet frame {xs; η̂1(xs), η̂2(xs), η̂3}, the stationary points are at (0, 0, η3).133

The source region is V = L̃
(mn)
1 (η2, η3)× L̃

(mn)
2 (η3)× L̃

(mn)
3 , with L̃

(mn)
1 , L̃(mn)

2 and L̃
(mn)
3134

representing the geometric intervals of noise source distribution in the η1, η2 and η3 direction,135

respectively.136

𝑥3

𝑥2

𝑥1

𝜂1
𝜂2

𝒙′𝑠

𝜂1

𝜂2

𝜂3

𝒙𝑠

Figure 4. The η1, η2 and η3 direction in the homogeneous source region (gray). η1 and η2 have

rotated around η3 from xs to x′
s.
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We substitute Eq. (12) into (4) and asymptotically compute the CCF as

⟨C⟩ (ω,xa,xb) =
∑
m

∑
n

∫
V

Qmn(ω,x)e
iωψmn(x,xa,xb) d3x

=
∑
m

∑
n

eiω∆mn(xa,xb)

∫
L̃

(mn)
3

Qmn(ω, η3)

∫
L̃

(mn)
2

∫
L̃

(mn)
1

e
iω
2 ηTΛmn(η3)η d3η

=
∑
m

∑
n

eiω∆mn(xa,xb)

∫
L̃

(mn)
3

2Qmn(ω, η3)Γmn(η3)

ω

√
|ν(mn)1 (η3)ν

(mn)
2 (η3)|

dη3 ,

(17)

where

Γmn(η3) =
ω

2

√
|ν(mn)1 (η3)ν

(mn)
2 (η3)|

∫
L̃

(mn)
2

∫
L̃

(mn)
1

e
iω
2 ηTΛmn(η3)η dη1dη2

=

∫
L̃

′(mn)
2

eiη
′2
2 sgn[ν

(mn)
2 (η3)]

∫
L̃

′(mn)
1

eiη
′2
1 sgn[ν

(mn)
1 (η3)] dη′1dη

′
2 .

(18)

with L̃
′(mn)
1 = γ

(mn)
1 L̃

(mn)
1 ,L̃′(mn)

2 = γ
(mn)
2 L̃

(mn)
2 and

γ
(mn)
1 =

√
ω|ν(mn)1 (η3)|

2
=

√
k|κ1(xs,L′

n)− κ1(xs,Lm)|/2

γ
(mn)
2 =

√
ω|ν(mn)2 (η3)|

2
=

√
k|κ2(xs,L′

n)− κ2(xs,Lm)|/2

. (19)

k = ω/c represents the seismic wavenumber in V . We name γ(mn)1 and γ
(mn)
2 as the k-

κ coefficients according to the physical parameters contained. Correspondingly, we name

L̃
′(mn)
1 × L̃

′(mn)
2 as the k-κ interval, in contrast with the geometric interval L̃(mn)

1 × L̃
(mn)
2 .

The comparison of the two intervals is shown in Figure 5. In Eq. (18), the double integral

is related to the Fresnel integral as

F (x) = |F (x)|eiΘ(x) =

∫ x

0

eit
2

dt . (20)

 𝐿1
(𝑚𝑛)

 𝐿3
(𝑚𝑛)

 𝐿1
′(𝑚𝑛)

(a) (b)

 𝐿2
(𝑚𝑛)

 𝐿3
(𝑚𝑛)

 𝐿2
′(𝑚𝑛)

Figure 5. (a) The geometric interval L̃
(mn)
1 × L̃

(mn)
2 × L̃

(mn)
3 ; (b) the k-κ interval L̃

′(mn)
1 ×

L̃
′(mn)
2 × L̃

(mn)
3 . L̃

(mn)
3 is not changed in the two intervals.

–9–
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When x→ +∞, it gives

F (+∞) =

∫ +∞

0

eit
2

dt =

√
π

2
eiπ/4 . (21)

While x is not so large, the amplitude and phase of the Fresnel integral are shown in Figure137

6. The phase of the Fresnel integral is nearly 0 while x → 0, and it converges to π/4138

oscillatorily as x increases. Therefore, Γmn(η3) only results in constrained phase variations139

in Eq. (17), approximately within π/2.140

0 2 4 6 8 10 12 14 16

x

0.0

0.2

0.4

0.6

0.8

1.0

A
m

p
lit

u
d

e

(a)

0 2 4 6 8 10 12 14 16

x

0.00

0.25

0.50

0.75

1.00

P
h

as
e

(b)

0.0 0.5 1.0 1.5 2.0

x

0.0

0.2

0.4

0.6

0.8

1.0

P
h

as
e

(c)

√
π
2

Phase

y=x2/3

Figure 6. The Fresnel integral: (a) the amplitude, (b) the phase, and (c) approximation of the

phase term by the quadratic function y = x2/3.
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2.4 A Large k-κ Interval141

When L̃
′(mn)
1 (η2, η3) × L̃

′(mn)
2 (η3) ⊃ (−1/ϵ, 1/ϵ) × (−1/ϵ, 1/ϵ), with ϵ extremely small,

it gives

Γmn(η3) = πe
iπ
4

{
sgn[ν

(mn)
1 (η3)]+sgn[ν

(mn)
2 (η3)]

}
. (22)

Substituting it into Eq. (17) gives

⟨C⟩ (ω,xa,xb) =
∑
m

∑
n

eiω∆mn(xa,xb)

×
∫
L̃

(mn)
3

2πQ(ω, η3)

ω

√
|ν(mn)1 (η3)ν

(mn)
2 (η3)|

e
iπ
4

{
sgn[ν

(mn)
1 (η3)]+sgn[ν

(mn)
2 (η3)]

}
dη3 .

(23)

When Lm and L′
n coincide before arriving xa or xb, the correlation waves correspond to the

inter-station body waves. For the convex wavefronts Πm and Π′
n, in Appendix B, we obtain

sgn[ν
(mn)
1 (η3)], sgn[ν

(mn)
2 (η3)] =

−1 , xs ∈ V−

1 , xs ∈ V+

. (24)

Substituting it into Eq. (23), we obtain the correlation signals that converge the inter-station

body waves as〈
C(g)

〉
(ω,xa,xb) =

∑
m

∑
n

∫
L̃

(mn)
3−

2πQ(ω, η3)√
ν
(mn)
1 (η3)ν

(mn)
2 (η3)

dη3 ·
eiωT (xa,xb,L′

n)

iω

+
∑
m

∑
n

∫
L̃

(mn)
3+

2πQ(ω, η3)√
ν
(mn)
1 (η3)ν

(mn)
2 (η3)

dη3 ·

{
eiωT (xb,xa,L′

n)

iω

}∗

.

(25)

When the k-κ interval is large, the correlation signals can precisely recover the phase of142

Green’s function for displacement, consistent with the existing theories (Boschi & Weemstra,143

2015; Fichtner & Tsai, 2019). Besides the source and propagation terms, the integrand144

function for the correlation amplitude is inversely proportional to ω
√
ν
(mn)
1 (η3)ν

(mn)
2 (η3)/2,145

i.e., the k-κ coefficients γ(mn)1 × γ
(mn)
2 . Therefore, the dimension of the stationary phase146

zone is also related to the correlation amplitude.147

2.5 A Small k-κ Interval148

For the seismic cross-correlation at nearby stations on the Earth’s surface, direct body149

waves and near-surface reflections travel horizontally, so the η1η2 plane is nearly perpen-150

dicular to the Earth’s surface and is limited at the depth direction due to a near-surface151

distribution of earthquakes; while the reflections from the deep Earth’s discontinuities travel152

vertically, so the η1η2 plane is parallel to the surface (Figure 7). Here, we discuss the situ-153

ation when earthquakes are in a small region.154
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For simplicity, we consider a square geometric η1η2 plane as L̃(mn)
1 (η2, η3)×L̃(mn)

2 (η3) =

{[−η̄1(η3), η̄1(η3)]× [−η̄2(η3), η̄2(η3)]}. We denote η̄′1 = γ
(mn)
1 η̄1 and η̄′2 = γ

(mn)
2 η̄2. It gives

Γmn(η3) = 4|F (η̄′1)F (η̄′2)|ei[Θ(η̄′1)+Θ(η̄′2)] , (26)

Expanding the phase term of the Fresnel integral with Taylor’s series, we can approximate

Θ(η̄′1) and Θ(η̄′2) as

Θ(η̄′1) ≈
η̄′

2
1sgn[ν

(mn)
1 ]

3
=
ων

(mn)
1 η̄21
3

Θ(η̄′2) ≈
ων

(mn)
2 η̄22
3

. (27)

In Figure 6c, the approximation is precise when η̄′21 ∈ (0, π/2) and η̄′2 ∈ (0, π/2). We obtain

Θ(η̄′1) + Θ(η̄′2) ≈ ωτ (mn)(η3) , (28)

with

τ (mn)(η3) =
1

3
[ν

(mn)
1 η̄21 + ν

(mn)
2 η̄22 ] . (29)

Substituting it and Eq. (26) into (17), it gives

⟨C⟩ (ω,xa,xb) ≈
∑
m

∑
n

∫
L̃

(mn)
3

8Qmn(ω, η3)|F (η̄′1)F (η̄′2)|

ω

√
|ν(mn)1 (η3)ν

(mn)
2 (η3)|

eiω[∆mn(xa,xb)+τ
(mn)(η3)] dη3 .

(30)

For the correlation signals convergent to inter-station body waves, it gives〈
C(g)

〉
(ω,xa,xb) ≈

∑
m

∑
n

∫
L̃

(mn)
3−

8Qmn(ω, η3)|F (η̄′1)F (η̄′2)|

ω

√
|ν(mn)1 (η3)ν

(mn)
2 (η3)|

eiω[T (xa,xb,L′
n)+τ

(mn)(η3)] dη3

+
∑
m

∑
n

∫
L̃

(mn)
3+

8Qmn(ω, η3)|F (η̄′1)F (η̄′2)|

ω

√
|ν(mn)1 (η3)ν

(mn)
2 (η3)|

{
eiω[T (xb,xa,L′

n)−τ
(mn)(η3)]

}∗
dη3 ,

(31)

with τ
(mn)(η3) < 0 , xs ∈ V−

τ (mn)(η3) > 0 , xs ∈ V+

. (32)

when the k-κ interval is small, the correlation signals can recover the phase of the inter-155

station body waves for velocity, along with a few arrival time advances. The integrand156

function for the correlation amplitude is a little complex. It is inversely proportional to the157

k-κ coefficients, but proportional to the Fresnel amplitude. The Fresnel integral is a function158

of the k-κ interval, so the amplitude is related to the distribution geometry of earthquakes.159

Let η̄′21 ≤ π/2 and η̄′
2
2 ≤ π/2, i.e.,

ω|ν(mn)1 |η̄21 ≤ π

2
and ω|ν(mn)1 |η̄21 ≤ π

2
. (33)
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In the k-κ interval, the correlation phase varies slowly as the quadratic function. On the

contrary, the fitting of the correlation phase requires high-order terms of Taylor’s series,

which means a rapid phase change for earthquakes outside the interval. Therefore, we can

utilize the k-κ interval to determine the stationary phase zone. In practice, the vectors η̂1

and η̂2 are usually difficult to constrain. For simplicity, we disregard the directions and

conservatively define the stationary phase zone as a circle in the η1η2 plane with the center

at the stationary point and the radius of min{
√
π/2/γ

(mn)
1 ,

√
π/2/γ

(mn)
2 }. In the stationary

phase zone, we estimate

|τ (mn)(η3)| ∼
π

3ω
=
T0
6
, (34)

with T0 designating the coda wave period. The travel time variation can reach 1/6 of the160

body wave correlation period. For instance, for coda waves in the period around 10 s, the161

event-receiver geometry can result in a emergence time advance within 1.7 s.162

𝒙𝑎
𝒙𝑏

The 𝜂1𝜂2 plane

A vertical ray path

A horizontal ray path

Figure 7. The horizontally (dash) and vertically (solid) travelling body waves. The triangles

represent two stations xa and xb. The different η1η2 planes are shown.

3 Late Coda Correlations163

3.1 Theoretical Analysis164

In the section, we use the current theoretical results to interpret the correlation signals165

that converge to the inter-station body waves. In theory, these features are constructed166

by correlating coda waves from earthquakes around the extended inter-station ray paths.167

The k-κ interval strongly influences the correlation phase variations. The dimensionless k-κ168

interval contains the geometric interval of earthquake distributions and the k-κ coefficient.169
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The k-κ coefficient is related to the curvature of curves on the coda wavefront, namely the170

coda propagation distance, so it determines the dimension of the stationary phase zone. In171

the realistic coda correlations, large earthquakes are basically discrete in the continental172

boundaries and mostly do not situate at the extended ray paths connecting two stations.173

More seriously, one inter-station ray path may correspond to many extended ray paths, and174

the earthquake situating at one extended ray path may deviate from others (Figure 8a).175

Therefore, the total contribution even from one earthquake is difficult to predict. Here,176

based on the knowledge of the k-κ coefficient, we present a statistical understanding of late177

coda correlations.178

In the k-κ coefficients, the curvature of curves on wavefronts can be approximated as

κ1(xs,Lm) ≈ κ2(xs,Lm) ≈ 1

Ra(xs,Lm)

κ1(xs,L′
n) ≈ κ2(xs,L′

n) ≈
1

Rb(xs,L′
n)

, (35)

where Ra(xs,Lm) and Rb(xs,L′
n) represent the propagation distances along Lm from xs to

xa, and along L′
n from xs to xb, respectively. The approximation is precise when multiple

reflections are confined in a homogeneous medium. Under the approximation, the k-κ

coefficients are

γ
(mn)
1 ≈ γ

(mn)
2 ≈

√
π|Rb(xs,L′

n)−Ra(xs,Lm)|
λRa(xs,Lm)Rb(xs,L′

n)
, (36)

where λ is the seismic wavelength in the source region.179

In the late coda correlations, researchers usually use coda energy in the time interval,

for example, from 20,000 to 40,000 s after the origin of large earthquakes (Lin et al., 2013).

Here, we take the retrieval of the ScS wave as an example. The average S wave velocity ap-

proximates 5 km/s in the mantle. If the coda wave is at the 10 s period and has reverberated

for 20,000 s, we can estimate that

Ra(xs,Lm) ≈ Rb(xs,L′
n) ≈ 100, 000 (km)

|Ra(xs,Lm)−Rb(xs,L′
n)| ≈ 6, 000 (km)

. (37)

It means that the coda correlations are processed at two stations with an inter-station

propagation distance 6,000 km, and the coda waves are radiated by an earthquake 100,000

km away (Figure 8b). Thus, the k-κ coefficients are

γ
(mn)
1 ≈ γ

(mn)
2 ≈ 2× 10−4 (km−1) . (38)

Because the k-κ coefficients are very small, most of the large earthquakes situate in the180

stationary phase zone for the inter-station ray path even if the earthquakes are far from the181

stationary points in geometry. Moreover, a wide spatial distribution of earthquakes may182

correspond to a very narrow k-κ interval. For instance, the coda phase does not have a183
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rapid change at 0.1 Hz for d in the range of 5, 000 − 10, 000 km, as compared with the184

coda phase change at 3.0 Hz (Figure 8c). Due to these effects, the correlation of late codas185

from the earthquakes have a coherent addition for every inter-station ray path. However,186

the correlation signals may appear earlier than the inter-station body waves because the187

earthquakes are not always at the stationary points.188
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(a)

P S

100,000 km

6,000 km

d

(b)

−10000 −5000 0 5000 10000
d (km)

−1.0

−0.5

0.0

0.5

co
s(
ω

t)

(c)
0.1 Hz

3.0 Hz

Figure 8. (a) Two extended inter-station ray paths. The dashed and solid lines represent S

and P waves, respectively. The earthquake (star) is at a stationary point at one extended ray

path, but not at the other. The dashed grey box represents one stationary point. (b) A schematic

configuration of coda correlations. Coda waves have propagated for 100,000 km from earthquakes

(star) to stations (triangle); d represents the distance from earthquakes to the stationary point in

the η1η2 plane; the equivalent inter-station propagation distance is about 6000 km for the ScS

wave. (c) The phase variations around the stationary point for coda correlations in the frequency

of 0.1 Hz (red) and 3.0 Hz (blue).
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3.2 The Simulation Verification189

To verify the theoretical analysis, we carry out a numerical experiment on late earth-190

quake coda correlations, based on the spherically stratified 1-D IASP91 model (Kennett191

& Engdahl, 1991). We virtualize 80 seismic stations on the equator from 80◦ W to 1◦ W192

in every 1◦ interval, and three earthquakes A, B and C at (20◦ E, 0◦ N), (20◦ E, 30◦ N)193

and (20◦ E, 60◦ N), respectively (Figure 9). Due to the spherical symmetry of the struc-194

ture, seismic waves propagating between two stations are confined in the equatorial plane.195

Therefore, the stationary points are in the equator plane which are far from Earthquake B196

and C in geometry. The three earthquakes are at the 500 km depth, with the same focal197

mechanism (Figure 9).198

90°W 60°W 30°W 0° 30°E

0°

15°N

30°N

45°N

60°N

C

B

A

Figure 9. The source-station geometry in the simulation. A linear-shaped seismic array com-

posed of 80 virtual stations is placed on the equator from 80◦ W to 1◦ W in every 1◦ interval

(blue inverted triangle). Three virtual earthquakes A, B and C (the beachball center) locate at

(20◦ E, 0◦ N), (20◦ E, 30◦ N) and (20◦ E, 60◦ N), respectively. The red beachballs indicate the

same focal mechanism of earthquakes A, B and C.
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Figure 10. The synthetic normalized CCFs of coda waves from (a) Earthquake A, (b) Earthquake

B, and (c) Earthquake C. Some correlation signals resembling the Earth’s core phases are labelled

in (a).

In the coda correlation, we adhere to the following steps: firstly, we use the direct199

solution method (Kawai et al., 2006) to synthesize seismograms excited by the three earth-200

quakes, with one sample per second and 65,535-second duration; secondly, we process coda201

correlations closely following the similar procedures suggested by Bensen et al. (2007): cut202

coda wave records from 8,000 to 28,000 seconds after the origin of earthquakes; perform203
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band-pass filtering with the dominant band of 15−50 seconds for retrieving core phases (Lin204

& Tsai, 2013); suppress the records by temporal normalization with the running absolute205

mean rule and spectral whitening. We separately compute the normalized CCFs for every206

earthquake by using late codas in the time window 8,000 − 28,000 s. Finally, for each207

earthquake, we stack the CCFs at every one-degree inter-station distance bin to enhance208

the signal-to-noise ratio of correlation signals.209

Several correlation signals resembling the core phases have been extracted at the neg-210

ative and positive lag time windows, including ScS, PKIKP 2, PcP , PcP (PKP )2 and211

PKPPcP 2 wave (Figure 10). Despite the long distances from earthquake B and C to212

the stationary points, the two earthquakes situate at the stationary phase zone because213

the corresponding k-κ coefficients are sufficiently small for various inter-station ray paths.214

Therefore, late coda correlations from the two earthquakes can also produce the correlation215

features, consistent with the theoretical analysis. Earthquake B and C are further from the216

stationary points in comparison with Earthquake A, so the correlation signals appear ear-217

lier, as in the lag time windows around the ScS arrivals (Figure 11). The large emgerence218

time discrepancy between Earthquake A and C suggests that late coda correlations from219

earthquakes far from the stationary point may result in extensive time devitations.220
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Figure 11. The CCF windows around the ScS arrivals for (a) Earthquake A, (b) Earthquake

B, and (c) Earthquake C. The red vertical lines represent the emergence times near ScS wave from

the correlation of coda waves released by Earthquake A.
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3.3 The Realistic Coda Correlations221

In the theoretical analysis and numerical simulation, we show that most of the large222

earthquakes situate at the stationary phase zone for the inter-station ray path in late coda223

correlations. In applications, researchers usually stack the correlation signals from different224

earthquakes to gain the CCF. Thus, the distribution geometry of earthquakes affect the225

correlation phase in the CCF. When stacking the interferometric seismograms in the net-226

work of dense stations according to the inter-station distance bins, if the used earthquake227

are abandant, the CCF stacked by station-pairs in different azimuth amounts to the CCF228

between one station-pair from earthquakes that rotatably appear in all azimuth. Such a229

created earthquake distribution is similar to the situation in Section 2.5. Here we com-230

pare the theoretical prediction and the realistic time variations caused by the earthquake231

distribution. Because the exact Green’s function arrivals are unknown in practice, here232

we compare the CCFs that have been affected by different source-receiver geometries. we233

collect LHZ component coda waves from 205 large earthquakes (≥ M6.8) recorded by the234

permanent seismic network US from 2010 to 2020 (Figure 12). According to the distances235

from earthquakes to the array center (the geometric mean of station coordinates), we divide236

the 205 earthquakes into the near portion (with distances < 10,000 km, 100 earthquakes)237

and far portion (with distances > 11,500 km, 105 earthquakes). After similar processes as238

in the previous simulation experiment, we also extract several correlation signals resembling239

the core phases (Figure 13).240
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140°W 120°W 100°W 80°W

30°N

40°N

50°N

60°N

Figure 12. The distribution of large earthquakes (star) and stations in the US network (blue

triangle). We divide the earthquakes into the near (red, with distances < 10,000 km) and far portion

(with green, distances > 11,500 km). The upper right map zooms in the station distribution.
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Figure 13. The normalized CCFs from earthquakes in the (a) near portion and (b) far portion.

Some correlation signals resembling the Earth’s deep reflections are labeled. The correlation signals

are relatively weak in the inter-station distance from 1 ◦ to 4 ◦ due to normalizations with their

peaks near the zero-lag times.

In the time window around the ScS arrivals, the correlation signals are not completely241

coincident from earthquakes in the near and far portion (Figure 14). It demonstrates that242

different event-receiver geometries indeed result in the emergence time variations of the243

correlation signals. Furthermore, the emergence time variations are also evident in the244

negative and positive lag time windows (Figure 15), which amounts to being caused by245

different earthquake distributions. The travel time shifts are quite small and are within 1/6246

of the body wave correlation period, consistent with the theoretical prediction.247
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Figure 14. Comparisons between CCFs from near and far earthquakes in the ScS arrival time

windows: (a) negative and (b) positive.
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Figure 15. Comparisons between CCFs in the negative and positive ScS arrival time windows:

(a) near portion and (b) far portion.
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4 Discussion248

Because the dispersion measurements of the correlation signals resemble those extracted249

from earthquake surface waves (e.g. Campillo & Paul, 2003; Shapiro & Campillo, 2004), the250

noise cross-correlation is now commonly recognized to recover impulse responses between251

two stations. Also, researchers have justified the relationship under controlled circumstances252

(e.g. Snieder, 2004; Sánchez-Sesma & Campillo, 2006; Boschi & Weemstra, 2015; Fichtner253

& Tsai, 2019). However, distinct features in coda correlations are not equivalent to Green’s254

function of the propagation medium because the features resemble both the waves of Green’s255

function and the exceptional spurious waves at the arrival time differences beteen the con-256

ventional deep reflections (Boué et al., 2014; Pham et al., 2018). Under the theoretical ray257

framework, we show that the correlations of coda waves with the same emitting slowness258

vector produce the two types of features. The result is similar to (Kennett & Pham, 2018).259

The dimension of the stationary phase zone is inversely proportional to the k-κ coefficient260

composed of the seismic wavenumber and the propagation distance of coda waves. In the261

late coda correlations, coda waves usually propagate for a long distance before arriving at262

two stations, which results in sufficiently small k-κ coefficients. Consequently, the coda cor-263

relations have a wide stationary phase zone, and earthquakes even far from the stationary264

points can, to some extent, contribute to constructive interferences. Indeed, becasue earth-265

quakes are not always at the stationary points for the inter-station ray path, the correlation266

signals emerge earlier than the exact inter-station body waves.267

The justification is under the geometric ray framework. Therefore, it is also applicable268

in other physics fields that allow geometric ray approximation, such as acoustics (Weaver &269

Lobkis, 2001) and electrokinetics (Duvall et al., 1993). Here, the theory can interpret the270

emergence of the correlation responses in Lobkis & Weaver (2001)’s ultrasonic laboratory271

test, which is somewhat a milestone of noise seismology. In Lobkis & Weaver (2001)’s test,272

the pulse generator on the specimen surface produces responses recorded by two transducers;273

and the correlation of coda responses produces correlation signals almost convergent to the274

propagating waves from one transducer to the other. Lobkis & Weaver (2001) attributed275

the test success to equipartitioned normal-mode energy produced by multiple reflections of276

acoustic waves in the specimen. However, the assumption may not be fully satisfied because277

in the test, the normal modes are more sensitive to the specimen surface. According to278

current results, the ultrasonic late coda correlations should correspond to sufficiently small279

k-κ coefficients. Thus, the pulse generator situates closely around the extended ray paths280

connecting two transducers, which produces the correlation signals that resemble the inter-281

transducer waves. Therefore, the current theory provides an alternative explanation for the282

emergence of “responses” in the ultrasonic laboratory test.283
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In late coda correlations, the current theory attributes the successful retrieval of “the284

inter-station body waves” to the sufficiently small k-κ coefficient. Exactly, when earthquakes285

situate on the great circle plane constrained by two stations and the coda wave propagates286

for a long distance, the k-κ interval is possibly smaller, and the correlation signals are more287

convergent to the inter-station waves for velocity. However, the current theory does not288

figure out how to retrieve the exact inter-station body waves. In realistic late coda cor-289

relations, it suggests that a time deviation up to 1/6 of the body wave correlation period290

may exist in the correlation signals. Geometric ray approximation and the stationary-phase291

analysis are high-frequency approximation methods that may bring bias into long-period292

coda correlations. Meanwhile, the geometric ray theory is invalid in some situations, e.g.,293

there are caustics around the ray paths, reflections exceed the critical angles in discontin-294

uous interfaces, or the noise sources are near-field. In these situations, this justification is295

inapplicable.296

5 Conclusion297

Based on geometric ray theory, we show that coda waves radiating with the same slow-298

ness vector can interfere constructively and produce the correlation signals at the travel time299

differences between coda waves on two seismic rays to two stations. Besides the distribution300

geometry of earthquakes, the correlation phase variations are also related to the dimension301

of the stationary phase zone which is inversely proportional to the k-κ coefficient composed302

of the seismic wavenumber and the propagation distance of the coda wave. The late seismic303

coda correlations usually correspond to sufficiently small k-κ coefficients, in the order of304

10−4 · km−1. Consequently, most of the large earthquakes situate in the stationary phase305

zone for the inter-station ray path and correlating codas from these earthquakes produces306

the correlation signals. However, the correlation signals may appear earlier than the exact307

inter-station body waves because earthquakes do not always situate at the stationary points.308

The synthetic and realistic coda correlations have validated the theoretical analysis. The309

theory is also applicable in other physics fields allowing for the geometric ray approxima-310

tion. It can explain Lobkis & Weaver (2001)’s pioneering ultrasonic laboratory experiment.311

However, the theory is ineffective in complex media when geometric ray theory is inappli-312

cable. This study demonstrates that in practical applications, the source-receiver geometry313

may result in an emergence time deviation up to 1/6 of the body wave correlation period.314

Thus, researchers should carefully investigate the impacts before using the reconstructed315

inter-station body waves in reliable seismic tomography.316

–25–



manuscript submitted to Journal of Geophysical Research: Solid Earth

Acknowledgments317

This work was supported by the National Natural Science Foundation of China (Grants318

41790465 and U1901602), Shenzhen Offshore Oil and Gas Exploration Technology (Grant319

ZDSYS20190902093007855).320

The facilities of Incorporated Research Institutions for Seismology (IRIS) Data Services,321

especially the IRIS Data Management Center gave us access to real waveforms. IRIS Data322

Services are funded through the Seismological Facilities for the Advancement of Geoscience323

(SAGE) Award of the National Science Foundation under Cooperative Support Agreement324

EAR-1851048. Data were made freely available from the US national seismic network facility325

and downloaded via Obspy (Krischer et al., 2015). We are also thankful to Nozomu Takeuchi326

for providing the DSM software (http://www.eri.u-tokyo.ac.jp/people/takeuchi/software).327

Some figures are created using Generic Mapping Tools (Wessel & Smith, 1998).328

References329

Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P.,330

… Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band331

surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239-332

1260.333

Boschi, L., & Weemstra, C. (2015). Stationary-phase integrals in the cross correlation of334

ambient noise. Reviews of Geophysics, 53(2), 411-451. doi: 10.1002/2014RG000455335

Boué, P., Poli, P., Campillo, M., & Roux, P. (2014). Reverberations, coda waves and336

ambient noise: Correlations at the global scale and retrieval of the deep phases. Earth &337

Planetary ence Letters, 391, 137-145.338

Campillo, M., & Paul, A. (2003). Long-range correlations in the diffuse seismic coda.339

Science, 299(5606), 547–549.340

Chapman, C. (2004). Fundamentals of seismic wave propagation. Cambridge University341

Press.342

Duvall, T. L., Jeffferies, S., Harvey, J., & Pomerantz, M. (1993). Time–distance helioseis-343

mology. Nature, 362(6419), 430–432.344

Fichtner, A., Stehly, L., Ermert, L., & Boehm, C. (2016). Generalized interferometry –I:345

theory for interstation correlations. Geophysical Journal International, 208(2), 603-638.346

doi: 10.1093/gji/ggw420347

Fichtner, A., & Tsai, V. C. (2019). Theoretical foundations of noise interferometry. In348

(p. 109-143). Cambridge University Press, Cambridge, UK. doi: 10.1017/9781108264808349

.006350

Froment, B., Campillo, M., Roux, P., Gouédard, P., Verdel, A., & Weaver, R. L. (2010).351

–26–



manuscript submitted to Journal of Geophysical Research: Solid Earth

Estimation of the effect of nonisotropically distributed energy on the apparent arrival352

time in correlations. Geophysics, 75(5), SA85-SA93. doi: 10.1190/1.3483102353

Huang, H.-H., Lin, F.-C., Tsai, V. C., & Koper, K. D. (2015). High-resolution probing of354

inner core structure with seismic interferometry. Geophysical Research Letters, 42(24),355

10,622-10,630. doi: 10.1002/2015GL066390356

Kawai, K., Takeuchi, N., & Geller, R. J. (2006). Complete synthetic seismograms up to 2 hz357

for transversely isotropic spherically symmetric media. Geophysical Journal International,358

164(2), 411-424. doi: 10.1111/j.1365-246X.2005.02829.x359

Kennett, B., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and360

phase identification. Geophysical Journal International, 105(2), 429-465. doi: 10.1111/361

j.1365-246X.1991.tb06724.x362

Kennett, B., & Pham, T.-S. (2018). The nature of Earth’s correlation wavefield: late coda363

of large earthquakes. Proceedings of the Royal Society A: Mathematical, Physical and364

Engineering Sciences, 474, 20180082. Retrieved from https://royalsocietypublishing365

.org/doi/abs/10.1098/rspa.2018.0082 doi: 10.1098/rspa.2018.0082366

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wasser-367

mann, J. (2015). Obspy : a bridge for seismology into the scientific python ecosystem.368

COMPUTATIONAL SCIENCE & DISCOVERY , 8(1), 17.369

Li, L., Boué, P., & Campillo, M. (2020). Observation and explanation of spurious seismic370

signals emerging in teleseismic noise correlations. Solid Earth, 11, 173-184. doi: 10.5194/371

se-11-173-2020372

Lin, F.-C., & Tsai, V. C. (2013). Seismic interferometry with antipodal station pairs.373

Geophysical Research Letters, 40(17), 4609–4613.374

Lin, F.-C., Tsai, V. C., Schmandt, B., Duputel, Z., & Zhan, Z. (2013). Extracting seismic375

core phases with array interferometry. Geophysical Research Letters, 40(6), 1049-1053.376

Liu, T., & Zhang, H. (2018). Asymptotic analysis for dispersion relations and travel times377

in noise cross-correlations: spherically symmetric case. Proceedings of The Royal Society378

A Mathematical Physical and Engineering ences, 474(2218).379

Lobkis, O. I., & Weaver, R. L. (2001). On the emergence of the green’s function in the cor-380

relations of a diffuse field. The Journal of the Acoustical Society of America, 110(6), 3011-381

3017. Retrieved from https://doi.org/10.1121/1.1417528 doi: 10.1121/1.1417528382

Pham, T.-S., Tkalčić, H., Sambridge, M., & Kennett, B. (2018). Earth’s correlation383

wavefield: Late coda correlation. Geophysical Research Letters, 45(7), 3035-3042. doi:384

10.1002/2018GL077244385

Poli, P., Campillo, M., & Pedersen, H. (2012). Body-wave imaging of Earth’s mantle386

discontinuities from ambient seismic noise. Science, 338(6110), 1063 - 1065.387

–27–



manuscript submitted to Journal of Geophysical Research: Solid Earth

Poli, P., Thomas, C., Campillo, M., & Pedersen, H. A. (2015). Imaging the D” reflector388

with noise correlations. Geophysical Research Letters, 42(1), 60-65.389

Roux, P., Sabra, K. G., Geostoft, P., & Kuperman, W. A. (2005). P-waves from cross-390

correlation of seismic noise. Geophysical Research Letters, 32(19), 312-321.391

Sager, K., Boehm, C., Ermert, L., Krischer, L., & Fichtner, A. (2018). Sensitivity of seismic392

noise correlation functions to global noise sources. Journal of Geophysical Research: Solid393

Earth, 123(8), 6911-6921. doi: 10.1029/2018JB016042394

Sánchez-Sesma, F. J., & Campillo, M. (2006). Retrieval of the Green’s Function from Cross395

Correlation: The Canonical Elastic Problem. Bulletin of the Seismological Society of396

America, 96(3), 1182-1191. doi: 10.1785/0120050181397

Sens-Schönfelder, C., Snieder, R., & Stähler, S. C. (2015). The lack of equipartitioning in398

global body wave coda. Geophysical Research Letters, 42(18), 7483-7489. doi: 10.1002/399

2015GL065108400

Shapiro, N. M., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from401

correlations of the ambient seismic noise. Geophysical Research Letters, 31(31), 07614.402

Snieder, R. (2004). Extracting the Green’s function from the correlation of coda waves:403

a derivation based on stationary phase. Physical Review E Statistical Nonlinear & Soft404

Matter Physics, 69(2), 046610.405

Tanimoto, T. (2008). Normal-mode solution for the seismic noise cross-correlation method.406

Geophysical Journal International, 175(3), 1169-1175.407

Tatiana, Y., Tatiana, K., & Eugenia, L. (2016). Effect of earthquakes on ambient noise408

surface wave tomography in upper-mantle studies. Geophysical Journal International,409

205, 1208-1220.410

Tkalčić, H., & Pham, T.-S. (2018). Shear properties of Earth’s inner core constrained by a411

detection of J waves in global correlation wavefield. science, 362(6412), 329-332.412

Tonegawa, T., Nishida, K., Watanabe, T., & Shiomi, K. (2009). Seismic interferometry413

of teleseicmic S-wave coda for retrieval of body waves: An application to the Philippine414

Sea slab underneath the Japanese Islands. Geophysical Journal International, 178(3),415

1574-1586. doi: 10.1111/j.1365-246X.2009.04249.x416

Tromp, J., Luo, Y., Hanasoge, S., & Peter, D. (2010). Noise cross-correlation sensitivity417

kernels. Geophysical Journal International, 183(2), 791-819. doi: 10.1111/j.1365-246X418

.2010.04721.x419

Tsai, V. C. (2009). On establishing the accuracy of noise tomography travel-time measure-420

ments in a realistic medium. Geophysical Journal International, 178(3), 1555-1564. doi:421

10.1111/j.1365-246X.2009.04239.x422

Wang, S., & Tkalčić, H. (2020). Seismic event coda-correlation: Toward global423

–28–



manuscript submitted to Journal of Geophysical Research: Solid Earth

coda-correlation tomography. Journal of Geophysical Research: Solid Earth, 125(4),424

e2019JB018848. (e2019JB018848 2019JB018848) doi: 10.1029/2019JB018848425

Wapenaar, K. (2004). Retrieving the elastodynamic Green’s function of an arbitrary inho-426

mogeneous medium by cross correlation. Physical Review Letters, 93(25), 254301.427

Wapenaar, K., & Fokkema, J. (2006). Green’s unction representations for seismic interfer-428

ometry. Geophysics, 71(4), SI33-SI46. doi: 10.1190/1.2213955429

Weaver, R. L., & Lobkis, O. I. (2001). Ultrasonics without a source: thermal fluctuation430

correlations at MHz frequencies. Physical Review Letters, 87(13), 134301.431

Wessel, P., & Smith, W. H. F. (1998). New, improved version of generic mapping tools432

released. Eos, Transactions American Geophysical Union, 79(47), 579-579. doi: 10.1029/433

98EO00426434

Wu, B., Xia, H. H., Wang, T., & Shi, X. (2018). Simulation of core phases from coda435

interferometry. Journal of Geophysical Research: Solid Earth, 123(6), 4983-4999. doi:436

10.1029/2017JB015405437

Yao, H., & van der Hilst, R. D. (2009). Analysis of ambient noise energy distribution and438

phase velocity bias in ambient noise tomography, with application to SE Tibet. Geophys-439

ical Journal International, 179(2), 1113-1132.440

Zhan, Z., Ni, S., Helmberger, D. V., & Clayton, R. W. (2010). Retrieval of Moho-reflected441

shear wave arrivals from ambient seismic noise. Geophysical Journal International, 182(1),442

408-420. doi: 10.1111/j.1365-246X.2010.04625.x443

Appendix A Eigenvalue Decomposition of the Hessian Matrix444

The Hessian matrix Hmn(xs) is diagonalizable with real eigenvalues and eigenvectors

as

Hmn(ω,xs) = ET
mn(xs)Λmn(xs)Emn(xs) ,

where E(xs) represents the coordinate transformation matrix, with det[Emn(xs)] = 1. We

represent the diagonal matrix Λmn(xs) as

Λmn(xs) = diag[ν
(mn)
1 (xs), ν

(mn)
2 (xs), ν

(mn)
3 (xs)] .

Here, we prove that

(i) Emn = [η̂1(xs), η̂2(xs), η̂3], with η̂3 along Lm(xs) in the source region. η̂1(xs) and

η̂2(xs) correspond to the steepest and slowness descent direction of the distance difference

at xs, where the distances are from Πm and Π′
n to the common tangent plane of the two

wavefronts, respectively.

(ii) η̂1 and η̂2 correspond to the SH and SV direction in a radially homogeneous medium.
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(iii) Λmn(xs) is

Λmn(xs) =diag[ν
(mn)
1 (xs), ν

(mn)
2 (xs), ν

(mn)
3 (xs)]

=
1

c


κ1(xs,L′

n)− κ1(xs,Lm) 0 0

0 κ2(xs,L′
n)− κ2(xs,Lm) 0

0 0 0

 ,

with the velocity c = α or β. κ1(xs,Lm) and κ1(xs,L′
n) represent the curvature of curves

at xs in the η1 direction on Πm and Π′
n, respectively. κ2(xs,Lm) and κ2(xs,L′

n) are the

same except in the η2 direction.

Proof:

(i) In the homogeneous source region, we establish the Frenet frame as {xs; η̂1, η̂2, η̂3}, with

the unit vector η̂3 along the ray, and the two orthogonal unit vectors η̂1(xs) and η̂2(xs)

perpendicular to η̂3. η̂3 is irrelevant to xs because Lm is straight in V . At any xs along

the ray, as in Eq. (7), it satisfies

∇ψmn(x)|x=xs
= 0 . (A1)

We obtain
∂2ψmn(x)

∂ηi∂η3
|x=xs = 0 , (A2)

with i = 1, 2, 3. It means that η̂3 is a eigenvector in Emn(xs), and the corresponding eigen

value

ν
(mn)
3 (xs) = 0 . (A3)

Now we determine the other two eigen vectors. We represent Πm as η3 = ϕm(η1, η2).

The unit normal vector of Πm is

n̂ =
1√

(∂ϕm/∂η1)2 + (∂ϕm/∂η2)2 + 1
(
∂ϕm
∂η1

,
∂ϕm
∂η2

,−1) . (A4)

For a point (ξ1, ξ2) in the tangent plane, the travel time function T (ξ1, ξ2;xa,Lm) is

T (ξ1, ξ2;xa,Lm) =− ϕm
cn̂ · η̂3

=
ϕm
c

√
(∂ϕm/∂η1)2 + (∂ϕm/∂η2)2 + 1 .

(A5)

The point (ξ1, ξ2) is projected by (η1, η2) along Lm as (Figure A1)

ξ1 = η1 + ϕm
∂ϕm
∂η1

ξ2 = η2 + ϕm
∂ϕm
∂η2

. (A6)

Noting that

ϕm(0, 0) = 0,
∂ϕm
∂η1

(0, 0) = 0 and
∂ϕm
∂η2

(0, 0) = 0 , (A7)
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we obtain  ∂ξ1
∂η1

∂ξ1
∂η2

∂ξ2
∂η1

∂ξ2
∂η2

 |(0,0) =

1 0

0 1

 . (A8)

Based on the chain rule, we have

c
∂T

∂ξ1
(0, 0;xa,Lm) =

∂ϕm
∂η1

(0, 0)

c
∂T

∂ξ2
(0, 0;xa,Lm) =

∂ϕm
∂η2

(0, 0)

, (A9)

and

c
∂2T

∂ξ21
(0, 0;xa,Lm) =

∂2ϕm
∂η21

(0, 0)

c
∂2T

∂ξ22
(0, 0;xa,Lm) =

∂2ϕm
∂η22

(0, 0)

c
∂2T

∂ξ1ξ2
(0, 0;xa,Lm) =

∂2ϕm
∂η1η2

(0, 0)

, (A10)

At the same xs, we can represent Π′
n as η3 = ϕ′n(η1, η2), and obtain similar results. Let

that

χmn(η1, η2) = ϕ′n(η1, η2)− ϕm(η1, η2) , (A11)

which represents the difference between the distances from Πm and Π′
n to the common

tangent plane of the two wavefronts. We have

∇ψmn(xs) =
1

c
∇χ(0, 0) = 0

Hmn(xs) =
1

c
∇∇χ(0, 0) .

(A12)

In the η1η2 plane, we represent a small circle around xs as

r = xs + ϵ(cosθη̂1 + sinθη̂2) , (A13)

where the angle θ is between r and η̂1. At xs, χmn(r) can be expanded by Taylor series as

χmn(r) =ϵ
2(cos2θ

∂2χ

∂η21
+ sin2θ

∂2χ

∂η22
)|(0, 0) +O(ϵ4)

=ϵ2[
∂2χ

∂η21
+ sin2θ(

∂2χ

∂η22
− ∂2χ

∂η21
)]|(0, 0) +O(ϵ4)

. (A14)

χmn(r) has two extreme values at θ = 0 and θ = π/2. Thus, η̂1 and η̂2 correspond to the445

steepest and slowest descent direction of χmn(η1, η2) at xs, respectively.446
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𝜂1

𝜂2

𝜂3

(𝜉1, 𝜉2)

𝜙𝑚(0, 𝜂2)

 𝒏
𝒙𝑠

Figure A1. Ray propagation from Πm to the tangent η1η2 plane within V .

(ii) In V , at any η1η2 plane with respect to xs + hη̂3, where h represents the distance

to the tangent plane at xs (Figure A2), the point (ξ1, ξ2) is projected by (η1, η2) along Lm
as

ξ1 = η1 + (ϕm + h)
∂ϕm
∂η1

ξ2 = η2 + (ϕm + h)
∂ϕm
∂η2

, (A15)

We obtain

∂ξ1
∂η1

(0, 0) = 1,
∂ξ2
∂η2

(0, 0) = 1,
∂ξ1
∂η2

(0, 0) =
∂ξ2
∂η1

(0, 0) = h
∂2ϕm
∂η1∂η2

(0, 0) . (A16)

Therefore, for any curve on Πm passing through xs, to ensure that the projection direction

are the same at the point, it requires

∂2ϕm
∂η1∂η2

(0, 0) = 0 . (A17)

For the curve on Π′
n, it similarly requires

∂2ϕ′n
∂η1∂η2

(0, 0) = 0 . (A18)

The condition is usually invalid when the medium outside the source region is inhomoge-447

neous, so η̂1 and η̂2 vary at different xs.448
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𝜂1

𝜂2

𝜂3

(𝜉1, 𝜉2)

𝜙𝑚(0, 𝜂2)

 𝒏
𝒙𝑠

ℎ

Figure A2. Ray propagation from Πm to the η1η2 plane with a distance of h to the tangent

η1η2 plane.

Specially, in a laterally or radially homogeneous medium, Πm and Π′
n are cylindrically

symmetric. Let η̂1 and η̂2 in the SV and SH direction. According to symmetry, we can

obtain

∂2ϕm
∂η1∂η2

(0, 0) = 0, and
∂2ϕ′n
∂η1∂η2

(0, 0) = 0 , (A19)

and moreover,

∂χ2
mn

∂η1∂η2
(0, 0) = 0 . (A20)

Therefore, the two eigenvectors η̂1 and η̂2 are at the SV and SH direction. They are certainly449

constant in the laterally or radially homogeneous medium.450

(iii) In the η1η3 plane, the two curves on Πm and Π′
n are (η1, ϕm(η1, 0)) and (η1, ϕ

′
n(η1, 0)),

respectively. For the two curves at xs, by definition (in the situation that η̂3 points to the

curve direction), we obtain the curvature

κ1(xs,Lm) =
∂2ϕm/∂η

2
1√

[(1 + (∂ϕm/∂η1)2]3
(0, 0) =

∂2ϕm
∂η21

(0, 0)

κ1(xs,L′
n) =

∂2ϕ′n/∂η
2
1√

[(1 + (∂ϕ′n/∂η1)
2]3

(0, 0) =
∂2ϕ′n
∂η21

(0, 0)

, (A21)

Similarly, for Πm and Π′
n in the η2η3 plane, we have

κ2(xs,Lm) =
∂2ϕm
∂η22

(0, 0)

κ2(xs,L′
n) =

∂2ϕ′n
∂η22

(0, 0)

. (A22)
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Finally, there is

Λmn(xs) =
1

c


∂2χmn/∂η

2
1(0, 0) 0 0

0 ∂2χmn/∂η
2
2(0, 0) 0

0 0 0



=
1

c


κ1(xs,L′

n)− κ1(xs,Lm) 0 0

0 κ2(xs,L′
n)− κ2(xs,Lm) 0

0 0 0

 .

(A23)

This is the desired result.451

Appendix B The Sign of the Eigenvalues452

We investigate the sign of ν(mn)1 (xs) and ν
(mn)
2 (xs) when Lm and L′

n coincide. At

any xs, still, we build the Frenet frame as {xs; η̂1, η̂2, η̂3}, and represent Πm and Π′
n as

η3 = ϕm(η1, η2) and η3 = ϕ′n(η1, η2), respectively. At a noise source xs + ϵr̂ on Πm in V−

(Figure B1), based on Fermat’s principle, there should be

δT (xb,xs + ϵr̂,L′
n) = 0 , (B1)

with r̂ denoting a unit vector and δ denoting the variation. In the η1η3 coordinate system,

because Πm is convex, it is easy to prove that T (xb,xs+ϵr̂,L′
n) corresponds to the minimum

travel time in the path variation of L′
n. Then, we have

T (xb,xs + ϵr̂,L′
n) < T (xb,xa,L′

n) + T (xa,xs + ϵr̂,Lm) = T (xb,xs,L′
n) . (B2)

This inequality means that the seismic wave along L′
n first arrive Πm and then Π′

n, as shown

in Figure B1. We have

χmn(η1, η2) = ϕ′n(η1, η2)− ϕm(η1, η2) < 0 . (B3)

Because at the stationary point xs, χmn(0, 0) = 0 which is the maximum value, based on

the extreme value theorem,

∂2χmn
∂η21

< 0 and
∂2χmn
∂η22

< 0 , (B4)

i.e.

ν
(mn)
1 (xs) < 0 and ν

(mn)
2 (xs) < 0 . (B5)

Similarly, in V+, we can prove

ν
(mn)
1 (xs) > 0 and ν

(mn)
2 (xs) > 0 . (B6)

–34–



manuscript submitted to Journal of Geophysical Research: Solid Earth

𝒙𝑏

𝒙𝑎

𝒙𝑠

𝒙𝑠+𝜀 𝒓
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 𝜼3

 𝜼1

Π′𝑛

Figure B1. (a) The comparison of travel time T (xb,xs,L′
n) and T (xb,xs + ϵr̂,L′

n), with xs

and xs + ϵr̂ on Πm.
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