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Abstract

The spread in global mean precipitation among climate models is explored in two ensembles using the complementary per-

spectives of surface evaporation and energy budgets. Models with higher global-mean precipitation have stronger oceanic

evaporation, driven by drier near-surface air. The drier surface conditions occur alongside increases in near-surface tempera-

ture and moisture at 925 hPa, which point to stronger boundary layer mixing. Correlations suggest that the degree of lower

tropospheric mixing explains 18%-49% of the intermodel precipitation variance. To test this hypothesis, the degree of mixing

is varied in a single-model experiment by adjusting the relative humidity threshold that controls low-cloud fraction. Indeed,

increasing lower tropospheric mixing results in more global mean precipitation. Energetically, increased precipitation rates are

associated with more downwelling longwave radiation to the surface and weaker sensible heat fluxes. These results highlight

how lower-tropospheric processes must be better constrained to reduce the precipitation discrepancy among climate models.
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Key Points:7

• CMIP5 AMIP simulations disagree on the magnitude of the present-day global8

mean precipitation rate by 13%9

• Lower tropospheric mixing explains as much as 49% of the inter-model variance10

• Up to two-thirds of the atmospheric energy adjustments occur at the surface11
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Abstract12

The spread in global mean precipitation among climate models is explored in two en-13

sembles using the complementary perspectives of surface evaporation and energy bud-14

gets. Models with higher global-mean precipitation have stronger oceanic evaporation,15

driven by drier near-surface air. The drier surface conditions occur alongside increases16

in near-surface temperature and moisture at 925 hPa, which point to stronger bound-17

ary layer mixing. Correlations suggest that the degree of lower tropospheric mixing ex-18

plains 18% - 49% of the intermodel precipitation variance. To test this hypothesis, the19

degree of mixing is varied in a single-model experiment by adjusting the relative humid-20

ity threshold that controls low-cloud fraction. Indeed, increasing lower tropospheric mix-21

ing results in more global mean precipitation. Energetically, increased precipitation rates22

are associated with more downwelling longwave radiation to the surface and weaker sen-23

sible heat fluxes. These results highlight how lower-tropospheric processes must be bet-24

ter constrained to reduce the precipitation discrepancy among climate models.25

Plain Language Summary26

Climate models exhibit a spread in their simulation of the present-day global mean27

precipitation rate; a fundamental climate statistic whose spread is surprisingly under-28

studied. This 13% spread compares with the expected change in the global mean pre-29

cipitation rate in a warmer climate scenario. Complex precipitation physics can make30

understanding what processes control the global mean precipitation rate across climate31

models inherently difficult. We find that the degree of mixing within the lower 1-km of32

the atmosphere (lower-tropospheric mixing) controls a large fraction of the spread in global33

mean precipitation across models. We also show linkages between the lower tropospheric34

mixing and the energy budget framework that is typically used to understand the global35

mean precipitation rate. Our results highlight a local scale process (mixing) that con-36

trols and impacts a global scale climate statistic (global mean precipitation). They also37

suggest that future attempts to bridge satellite observations and climate model output38

can potentially help reduce the existing spread and bias among climate models.39

1 Introduction40

Global climate models participating in the Fifth Coupled Model Intercomparison41

Project (CMIP5) differ on the magnitude of the present-day global mean precipitation42

rate by 13% (orange dots in Fig. S1), a relatively large uncertainty when compared to43

the 8-12% increase expected from a 4K increase in global temperatures (Deangelis et al.,44

2015). Reducing this spread would improve confidence in future projections of the wa-45

ter cycle.46

Previous studies focusing on the hydrologic cycle’s atmospheric energy budget con-47

straint have improved our understanding of how the global mean precipitation may change48

in a warming climate scenario (e.g. Allen & Ingram, 2002; Stephens & Ellis, 2008; Pen-49

dergrass & Hartmann, 2014). Notably, Pendergrass and Hartmann (2014) highlighted50

the importance of surface, downwelling longwave radiation on future changes of the global51

mean precipitation. The atmospheric energy budget has also been used to ascertain the52

flow of energy in the present-day, observed climate (Trenberth et al., 2009; Rodell et al.,53

2015; Stephens et al., 2012). However, this energetic framework has not, to our knowl-54

edge, been applied to understand the large spread in present-day mean precipitation rate55

among climate models. Meanwhile, we still lack a comprehensive process-oriented the-56

ory of what sets the mean state of the global mean precipitation rate. Therefore, our study57

builds upon past work (e.g. Qian et al., 2015) to better understand what controls present-58

day, global mean precipitation in climate models.59
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We intentionally begin our investigation with the analysis of surface water balance60

to complement an energetic view. In the global average, and on inter-annual or longer61

timescales, precipitation must equal evaporation. This mass balance allows for global mean62

precipitation in climate models to be analyzed through a surface evaporation framework63

(Richter & Xie, 2008; Siler et al., 2019). For example, Waliser and Hogan (2000) noted64

in their surface flux analysis of a climate model that biases in surface evaporation were65

partly due to dry air mixing down into the boundary layer over regions where evapora-66

tion rates are higher than precipitation rates. This highlights that processes occurring67

in non-precipitating regions can control the global mean precipitation rate (e.g. Watan-68

abe et al., 2018).69

We will show that multi-model ensemble analyses focused on evaporation indicate70

the importance of lower-tropospheric mixing and that a single-model sensitivity exper-71

iment that modifies vertical mixing leads to similar qualitative behavior.72

While past work has shown that both the atmospheric energy budget constraint73

on precipitation and the mechanistic, process-level constraint are both valid, the two views74

are typically presented separately and reconciling them is difficult. Macro (energetic) and75

micro (process-oriented) constraints are complementary in the sense that micro-scale pro-76

cesses underlie a macro-scale response. While the energetic framework provides impor-77

tant details about the constraints on global mean precipitation, it does little to offer in-78

sight into what processes increase local-scale precipitation or evaporation rates. This has79

practical implications for attempts to understand how process-scale modeling results, such80

as those from cloud-resolving simulations, will impact the representation of climate phe-81

nomena in global-scale models. Therefore, we focus much of this study on the understud-82

ied view of lower-tropospheric mixing on global precipitation rates.83

Section 2 of the paper introduces the data sets and our strategy for decomposing84

latent heat fluxes. Section 3 presents the results and processes found to exert a control85

on the global mean precipitation rate. We conclude with summary and discussion in Sec-86

tion 4.87

2 Data and Methods88

To allow a robust sample of present day climate data, we examine two community89

archives. The first is the well-studied CMIP5 archive (Taylor et al., 2012), comprising90

monthly output from fifteen simulations spanning 1990 to 2008 (Table S1). In addition91

to the CMIP5 database, we also examine monthly output from sixteen models archived92

by the Madden-Julian Oscillation Task Force (MJOTF) model intercomparison; these93

runs span a comparable time range (1990-2010) (Jiang et al., 2015). We use uncoupled94

atmosphere-only simulations from both archives, i.e. following the Atmospheric Model95

Intercomparison Project (AMIP) protocol (Table S1).96

To address our goal of investigating why models tend to disagree on the magnitude97

of the present-day global mean precipitation rate, we begin by sorting the models within98

both the CMIP5 and MJOTF ensembles by their global-mean precipitation rates and99

forming composite anomalies from the five rainiest minus five driest ensemble members.100

A “bottom-up” analysis of mean precipitation differences is prohibitively compli-101

cated since precipitation is produced by many interacting parameterization schemes, the102

number and nature of which differ from model to model. To sidestep these issues we ex-103

ploit the balance in the atmospheric water budget on annual to interannual timescales.104

That is, global mean precipitation must equal global mean evaporation. Focusing on present-105

day global mean evaporation controls, we look at how different model components and106

representation of physical processes affect latent heat fluxes via the bulk formula (Fairall107

et al., 1996) as108
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HL=ρLvCeV1(q0 − q1), (1)109

where HL, is the turbulent flux of latent heat, ρ is the density of air, Lv is the la-110

tent heat of vaporization (assumed to equal 2.501 ∗ 106 J kg−1), Ce is the transfer co-111

efficient for latent heat fluxes, V1 is the near-surface 10-meter horizontal wind speed, q0112

is the saturation specific humidity based on sea surface temperatures, and q1 is the 2-113

m specific humidity.114

3 Results115

3.1 CMIP5 and MJOTF116

To investigate the model spread in global mean precipitation we examine which vari-117

able exerts a significant control on model spread in evaporation rates, eventually impli-118

cating the near-surface specific humidity q1 as especially interesting. Other factors are119

less obviously important. For instance, the density of air (ρ) varies insignificantly from120

model to model, and hence does not provide insight into the model spread. One reason121

we use AMIP rather than ocean-coupled simulations is because it conveniently controls122

for the term q0: the saturation specific humidity based on the sea surface temperatures123

of the model cannot vary due to common boundary conditions. The bulk transfer co-124

efficient of water vapor, Ce, is inherently difficult to disentangle due to its dependence125

on a number of factors including stability and momentum roughness, both of which de-126

pend on the surface fluxes themselves (Neale et al., 2012). Thus, the bulk transfer co-127

efficient is not investigated in this analysis.128

This leaves two variables to investigate, wind speed and low level humidity. Although129

the near surface wind speed V1 is known to have a significant impact on local evapora-130

tion, a preliminary analysis suggests that intermodel variations in wind speed are only131

weakly correlated to the global mean evaporation rate (Fig. S2). Thus, we are left to in-132

vestigate q1; the near surface specific humidity.133

It is logical to expect a drier surface would support more evaporation, and indeed134

we find this to be the case in composite anomaly maps (Fig S3). However, a drier sur-135

face and more evaporation alone do not provide insight into what controls surface hu-136

midity. Is the entire atmospheric column drier in the rainier models? Or are regional ef-137

fects of horizontal advection or lower tropospheric vertical mixing the cause of spread138

in local surface humidity? Such questions motivate unfolding vertical structures, and in139

Figure 1a-c we examine the composite differences of specific humidity profiles at three140

locations over the tropical ocean; a deep convection region (SPCZ), a region of trade cu-141

mulus clouds and an area of persistent stratocumulus clouds in the eastern Pacific Ocean.142

Notably, models that rain more have a consistent departure from the mean verti-143

cal structure compared to those that rain less (Fig. 1a-c). In models that rain more, the144

1000 hPa humidity tends to be lower. However, there also exists a layer of elevated mois-145

ture levels around 950 to 850 hPa. Not only is this canonical vertical anomaly structure146

consistent across different regions, it is also seen in both the CMIP5 and MJOTF datasets.147

Our working hypothesis is that the association between a drier surface and more148

moisture near the top of the boundary layer implies varying levels of lower tropospheric149

mixing, which brings down dry and warm (potential temperature) air to the surface while150

replenishing it aloft. This leads to drier surface air and more evaporation. Consistent151

with this hypothesis, we find near-surface air temperature to not be only drier but also152

warmer in the models that precipitate more (Fig. S4).153

To summarize so far, we speculate that in the models that rain more lower tropo-154

spheric mixing is stronger. The stronger lower tropospheric mixing weakens the verti-155
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Figure 1 (a-c) Time averaged specific humidity anomalies at 3 locations from climate models

participating in the MJO Task Force intercomparison (MJOTF - orange) and in the Atmospheric

Model Intercomparison Project of CMIP5 (CMIP5 - blue). Anomalies represent differences be-

tween the 5 rainiest and 5 driest models in each ensemble. (d) The specific humidity difference

between 1000hPa and 925hPa, averaged over tropical oceans is plotted against the global mean

precipitation rates. Each CMIP5 model is indicated by a blue dot while the MJOTF models are

displayed as orange dots.

cal moisture gradient within the boundary layer and produces anomalous warming and156

drying of the near-surface air. These physical responses then lead to more evaporation157

and because what evaporates must eventually precipitate; the end result is a larger amount158

of precipitation in the global mean.159
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Inspired by the vertical structure of the humidity anomaly in Fig. 1a-c, we use the160

difference between 1000 hPa and 925 hPa humidity as our proxy for mixing. The com-161

posite anomaly maps of this proxy confirm robustness across large fractions of multiple162

tropical ocean basins (Fig. S5). There have been several other metrics that have indi-163

rectly captured lower tropospheric mixing in the context of cloud feedbacks and equi-164

librium climate sensitivity (e.g. Sherwood et al., 2014; Brient et al., 2016). The advan-165

tage of this study’s proxy is its simplicity, its availability across most models, and direct166

connection with mixing. Furthermore, where the models overlap, we have confirmed our167

metric strongly correlates with the specific humidity diffusivity as reported by Brient et168

al. (2016).169

Lower tropospheric mixing is certainly not the only physical mechanism leading170

to the large spread in present-day global mean precipitation rates across climate model171

simulations. However, it explains a significant amount of the variance - as much as 18%172

(49%) of the inter-model variance in precipitation across the MJOTF (CMIP5) datasets173

is explained by our humidity gradient proxy metric averaged over the tropical oceans (Fig. 1d).174

3.2 A sensitivity test to vary boundary layer mixing in the Community175

Atmosphere Model Version 5.0176

A note on causal ambiguity is appropriate since diagnostics alone are not sufficient177

to fully confirm the hypothesis that lower tropospheric mixing is behind the spread. Thus,178

we perform a sensitivity test aimed at exploring causality. Our strategy is to modulate179

low-cloud fraction in the Community Atmosphere Model Version 5.0 (Neale et al., 2012).180

The reasoning is threefold. First, our mixing proxy suggest model spread associated with181

lower tropopsheric mixing is especially strong in regions of stratocumulus clouds (Fig.182

S5). Second, in those regions, radiative cooling at stratocumulus cloud top significantly183

drives lower atmospheric overturning (Wood, 2012). Third, low clouds have been found184

to be quite important to climate changes in precipitation from the complementary view-185

point of column atmospheric energetics (Watanabe et al., 2018), thus allowing the sen-186

sitivity test to be useful from both the surface-evaporation (mixing) and the radiative187

(energetic) conceptual framework.188

We proceed by targeting a parameter of the Park-Bretherton cloud-fraction param-189

eterization scheme, RHminl, which sets the relative humidity threshold for the forma-190

tion of low-level clouds (Park & Bretherton, 2009). Some prominent effects on the global191

mean precipitation rate have already been linked to this parameter in a perturbed physics192

ensemble experiment by Qian et al. (2015). Does varying RHminl produce the same ver-193

tical humidity structures that we have argued are indicative of vertical mixing in the CMIP5194

and MJOTF model ensemble?195

To find out, five CAM5 model configurations are run for three years, each with a196

different RHminl ranging from 81% to 96.5%. The lowest threshold corresponds to a larger197

cloud fraction and a larger magnitude of lower tropospheric mixing (Fig. 2).198

We then create composite anomalies to investigate the structure of humidity within199

the lowest part of the atmosphere, analogous to what was shown for multi-model inter-200

comparison in Fig. 1a-c. These profiles confirm a familiar vertical structure as seen in201

the analysis of the multi-model ensembles. The signal is weaker than in the CMIP5 and202

MJOTF datasets (see Table S2), but the hallmark of the sensitivity test is that a sim-203

ilar vertical dipole in lower tropospheric moisture occurs across the interference exper-204

iments, which are consistent with more mixing in the lower troposphere (Fig. 2c). Global205

mean precipitation also responds in the direction expected from a leading control by sur-206

face humidity via the evaporation framework (Table S2). Thus, using the same metric207

to quantify lower tropospheric mixing, we find that the CAM5 experiment provides some208

confirmation that tuning the lower tropospheric mixing, even if indirectly, can affect the209

global mean precipitation rate.210

–6–



manuscript submitted to Geophysical Research Letters

c

a b

d

Figure 2 (a) Map of evaporation difference between the simulations with lowest threshold for

the formation of low clouds (rhminl81) and the highest threshold for the formation of low clouds

(rhminl965). (b) Map of the low cloud difference between rhminl81 and rhminl965. (c) Time

averaged mean state specific humidity (red line) and anomaly between rhminl81 and rhminl965

(blue line) over a region of persistent stratocumulus clouds. (d) Map of the specific humidity gra-

dient difference (lower tropospheric mixing metric), quantified as the humidity difference between

1000hPa and 925hPa, between the rhminl81 and the rhminl965 simulations.

3.3 Viewing the sensitivity experiment from the energetic lens211

We now switch conceptual frameworks from the surface evaporation lens, which em-212

phasizes an important role for vertical mixing in modifying global mean precipitation,213

to consider the complementary view of column atmospheric energetics, in which radia-214

tive effects can become very important.215

Conservation of energy requires that an increase in latent heat flux due to increased216

global mean precipitation must be balanced by other energetic fluxes out of or into the217

atmosphere (e.g. Stephens & Ellis, 2008; Pendergrass & Hartmann, 2014) . Mathemat-218

ically,219

dE

dt
=RSW −RLW + L+ S, (2)220

where dE/dt is the atmospheric energy storage rate, RSW is net atmospheric ab-221

sorption of shortwave radiation, RLW is net atmospheric emission of longwave radiation,222
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L is the latent heat flux, and S is sensible heat flux. On annual or longer timescales, we223

can assume little to no storage of energy in the atmosphere and thus224

L=RLW −RSW − S. (3)225

Using Eq. 3, we can investigate which terms balance the latent heat flux when we mod-226

ify lower-tropospheric mixing by changing the amount of low clouds within the CAM5227

experiments.228

LHF LW SW SHF
200

150

100

50

0

50

100

150

200

W
m

2

CAM5 Atmospheric Energy Budget: Mean State

LHF LW SW SHF
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Sclr

Tclr

S

T

CAM5 Atmospheric Energy Budget: Anomaly

200

150

100

50

0

50

100

150

200

W
m

2

CMIP5Atmospheric Energy Budget: Mean State

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Sclr

TclrS

T

CMIP5Atmospheric Energy Budget: Anomaly

LHF
LW
SW
SHF

LHF
LW
SW

clr-sky LW
clr-sky SW

SHF

LHF
LW
SW

clr-sky LW
clr-sky SW

SHF

a b

c d

LHF
LW
SW
SHF

Figure 3 Atmospheric energy budget means and anomalies for the CAM5 experiments and

CMIP5 ensemble. a) CAM5 mean atmospheric energy budget. Each bar represents mean la-

tent heat flux (blue), all-sky longwave flux (orange), all-sky shortwave flux (green), and sensible

heat flux (red) into the atmosphere. b) Corresponding anomalies between the CAM5 model ex-

periments with the highest and lowest global mean precipitation rate. Orange and green edged

bars indicate clear-sky anomalies for longwave and shortwave anomalies. Anomalies of all-sky

and clear-sky top-of-atmosphere longwave fluxes (T and Tclr) and all-sky and clear-sky surface

longwave flux anomalies (S and Sclr) are also shown. c) Same as a) but corresponding to CMIP5

ensemble means. d) Same as b), but with anomalies between the 5 most-raining models and 5

least-raining models from the CMIP5 ensemble.

In the mean, longwave cooling is largely balanced by latent and sensible heat fluxes229

(Fig 3a). When the threshold for low-cloud formation is lowered and low-cloud fraction230

increases, this leads to greater latent heat flux, which is compensated by stronger long-231

wave cooling out of the atmosphere (Fig 3b). Based on the conventional view of long-232

wave cooling compensating increased latent heat fluxes, we might expect longwave fluxes233
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to have increased at the top-of-atmosphere, but in the CAM5 experiments, this is not234

the case. Instead, the decrease in net longwave flux at the surface explains the increased235

longwave cooling, mostly caused by an increased longwave flux downward in cloudy con-236

ditions (Fig 3b). In hindsight, this strong control of surface longwave fluxes makes sense237

- removing low-lying clouds does not have a major longwave effect at TOA due to lit-238

tle contrast between the cloud top temperature and the sea surface temperature, but does239

have a major effect at the surface due to changes in emissivity affecting downwelling long-240

wave radiation (Wood, 2012).241

Pendergrass and Hartmann (2014) found in a warming climate scenario that in-242

creased lower tropospheric water vapor concentrations leads to increased downward long-243

wave radiative fluxes to compensate the increase in global-mean latent heat fluxes. Some-244

what consistent with this, we find that differences in latent heat flux in the CAM5 ex-245

periments are compensated by changes that occur in the lower-troposphere, rather than246

in the upper troposphere, albeit they are for cloudy scenes.247

In summary, the change in low-cloud cover from adjusting RHminl increases long-248

wave cooling at the top of the boundary layer. This drives increased turbulent mixing249

of warm dry air to the surface to enhance latent heat fluxes but also increases downwelling250

longwave radiation. This is analogous to the finding by Watanabe et al. (2018) who found251

in global warming experiments that models with a stronger decrease in low clouds ex-252

hibited a weaker increase in evaporation with warming.253

3.4 Viewing the CMIP5 experiments from the energetic lens254

We again use Eq. 3, but this time for the CMIP5 simulations, and examine whether,255

as for the vertical mixing signatures, there is consistency between the CAM5 experiments256

test and the multi-model analysis from the energetic lens. As in the CAM5 experiments257

(Sect. 3.3), the CMIP5 model ensemble also shows that most (two-thirds) of the ener-258

getic adjustments occur at the surface (Fig. 3d). A third of the energetic adjustment is259

due to increased longwave cooling at the top of atmosphere. Unlike the CAM5 exper-260

iments, however, the surface longwave differences are mainly from clear-sky radiative dif-261

ferences. The longwave adjustment also only explains half of the excess latent heat flux.262

The other half is explained by a decrease in sensible heat flux. This importance of the263

sensible heat flux in balancing latent heat flux is consistent with previous results that264

highlight how variations in sensible heat flux explain the trends in global mean precip-265

itation in historical simulations (Myhre et al., 2018).266

We now ask, what conditions are likely behind a decrease in sensible heat flux and267

an increase in downward surface longwave radiative fluxes in clear-sky conditions? In the268

global warming context, Pendergrass and Hartmann (2014) have noted that an increase269

in near-surface humidity due to a warming explains the increasing downward surface long-270

wave flux in the global warming context. In our case, previous analysis (Fig 1a-c) shows271

that in models that rain more in the present-day climate, the near-surface is actually drier,272

but also warmer.273

If we further ask why the near-surface air temperature is warmer, we arrive at two274

possible explanations. First, the whole temperature profile might be warmer in models275

that rain more. Such a condition can happen just from stronger latent heating in the at-276

mosphere. Second, the surface air temperature might be warmer due to vertical gradi-277

ents in the temperature that allow a warmer surface air. This second explanation is closely278

tied to the vertical mixing in the lower-troposphere, for stronger vertical mixing will drive279

air with higher potential temperature down to the surface. Figure S4 provides some clues280

to their relative importance. In the CMIP5 models, the potential temperature of the air281

column is higher by approximately 0.5 K in models that rain more (Fig. S4). However,282

the surface air temperature difference is consistently higher than the rest of the column.283

Without this difference in the vertical structure, the energetic adjustments would be weaker.284
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In summary, the previous two sections provide the energetic view of what controls285

the global mean precipitation. In both our CAM5 experiments and CMIP5 ensemble,286

it is the surface energetic fluxes that mainly determine how the excess latent heating is287

balanced. In the CAM5 experiments, the increased downward surface longwave flux is288

a direct result of the parameter that was used to change the amount of vertical mixing.289

In the CMIP5 ensemble, two-thirds of the adjustments are in the sensible heat flux and290

the clear-sky, downward, longwave radiative fluxes at the surface. Their cause is likely291

a warmer surface air temperature, part of which is due to a warmer air column but part292

of which is due to a warmer surface air temperature compared to the rest of the column.293

This contribution of the lower tropospheric stability to the energetic adjustments and294

its connection to lower tropospheric mixing provides a glimmer of how we might recon-295

cile a mechanstic and energetic approach to understanding the global mean precipita-296

tion rate.297

4 Discussion and Conclusion298

The spread in global mean precipitation across climate models is a longstanding299

issue. Even in modern climate model simulations, there exists a 13% spread in present-300

day global mean precipitation rates. Analyzing this spread through an evaporation frame-301

work provides some insight into what local-scale mechanisms help produce the spread302

in the global mean precipitation. A metric was constructed to quantify the portion of303

intermodel spread in global mean precipitation rates that can be linked to lower tropo-304

spheric mixing. This is quantified by the specific humidity gradient between 1000hPa305

and 925hPa and can be characterized by bringing down dry and warm air (Fig. 1a-c and306

Fig. S4). We find that models that rain more tend to have stronger lower tropospheric307

mixing. This leads to a warmer and drier surface and subsequently more evaporation.308

Simple linear regressions across each of the CMIP5 and MJOTF ensembles indicate that309

lower tropospheric mixing explain 18% and 49% of the inter-model variance in global mean310

precipitation rates, respectively.311

As a test of cause and effect, we run a model experiment with the CAM5 global312

climate model by tuning a parameter that controls the relative humidity threshold for313

low cloud formation. This tuning in turn modulates the rate of lower tropospheric mix-314

ing, because stratocumulus clouds are not only driven by, but also drive, the subcloud315

turbulence that sustains them, providing a strong lever on lower tropospheric mixing that316

is conveniently co-located with geographic action centers that are especially prominent317

in model spread. In our single-model experiment, we find that the model with more global318

mean precipitation rate exhibits same vertical structures in humidity found in CMIP5319

and MJOTF, namely a drier surface and moister layer right above. Thus, we can say with320

some confidence that disagreements between models on the global mean precipitation321

rate can be partially explained by lower tropospheric mixing.322

This model experiment raises the possibility of a feedback between precipitation323

and lower tropospheric mixing, where greater global mean precipitation rates increases324

tropospheric mixing through changes in low-cloud cover. Increased latent heating in the325

middle troposphere over the convective regions typically increases tropospheric stabil-326

ity, which by itself will not increase mixing. The increased stability, however, might in-327

crease low-cloud cover, driving more lower tropospheric mixing. One can speculate whether328

this is occurring in the CMIP5 and MJOTF ensembles. Two points suggest that it is not.329

First, a look at the potential temperature differences in Fig. S3 does not indicate more330

lower-tropospheric stability between 700 hPa and 1000 hPa over the trade cumulus and331

stratocumulus regions. Second, a cross-model correlation between the global mean pre-332

cipitation rate and local cloud fractions below 680 hPa in the CMIP5 ensemble do not333

show a strong positive correlation over the tropical oceans (not shown).334

–10–



manuscript submitted to Geophysical Research Letters

Acknowledging that an energetic framework also provides insight into the reasons335

behind the inter-model spread in global mean precipitation rate, we examine which of336

the surface and top-of-atmosphere energetic fluxes balance the difference in latent heat337

flux. In both the CAM5 experiments and CMIP5 ensemble, the energetic adjustments338

mainly occur at the surface and the downward, longwave flux at the surface plays a sub-339

stantial role. Because the relative humidity threshold for low-cloud cover was changed340

when we modulated the lower-tropospheric mixing in the CAM5 experiments, decreas-341

ing the threshold, which increased global mean precipitation rates, also increased low-342

cloud cover and increased the downward, surface longwave fluxes. In contrast, the en-343

ergy flux adjustments in the CMIP5 ensemble do not involve cloud-radiative changes.344

Instead, the increased latent heat flux is mainly balanced by a stronger clear-sky, down-345

ward, longwave radiative fluxes at the surface and a weaker sensible heat flux. Both are346

consistent with a warmer surface air temperature, and hence with increased lower-tropospheric347

mixing. Note that the energetic framework is complementary to the mechanistic approach348

that we have taken in this study and the fact that we can explain the precipitation rate349

using one framework does not negate or diminish the importance of understanding the350

other framework. A full understanding of the spread in the global mean precipitation351

rate requires understanding the reasons for the spread using both frameworks.352

Given their importance to the mean-state climate, our result highlights how future353

attempts to constrain climate sensitivity of global mean precipitation can benefit from354

including arguments about lower tropospheric mixing. Much progress has been made in355

the attempt to explicitly resolve boundary layer and cloud processes (Pressel et al., 2014;356

Schneider et al., 2017; Parishani et al., 2018) at the global scale but it is still computa-357

tionally cumbersome at long timescales. Furthermore, the higher precipitation rates in358

climate models, when compared to observational estimates (e.g. Terai et al., 2018), sug-359

gest that climate models might be overestimating lower tropospheric mixing. These are360

at odds with a recent study of Hourdin et al. (2015), which conclude that in coupled model361

simulations, a persistent warm bias in sea surface temperatures is likely due to models362

not mixing enough in the lower troposphere. It brings attention to the much needed ob-363

servations to validate lower-tropospheric turbulent processes in next-generation climate364

models.365

We can speculate on the use of instruments and methods that provide highly re-366

solved, in both time and space, boundary layer measurements of moisture and temper-367

ature. As an indirect method of measuring lower tropospheric mixing, active lidar or pas-368

sive microwave sensors could be deployed to measure low-level moisture fields. Great promise369

in obtaining continuous moisture and temperature profiles, which provide a way of mea-370

suring instability and fluxes of temperature and moisture in the boundary layer, have371

been made in recent years (e.g. Froidevaux et al., 2013). Beyond the speculation of a372

deploying lidar and radar sensors across the global oceans, we can make use of obser-373

vational data already available to the scientific community (e.g. NASA’s Atmospheric374

Infrared Sounder retrievals - AIRS). AIRS does not provide a direct method of measur-375

ing turbulent fluxes but has proved useful as a measure of stability in the lower tropo-376

sphere (e.g. Yue et al., 2011).377

Our analysis provides insight into local scale processes that impact global scale evap-378

oration and thus, precipitation within the confines of climate simulations. However, more379

work is needed to be done to bridge the gap between models and observational data that380

is readily available, highlighting the need to identify whether current observations are381

adequate in coverage, resolution, and accuracy to constrain local-scale processes, which382

have impacts on global-scale climate statistics.383
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Figure S1. The global mean precipitation rate from atmosphere-only climate model simulations 
participating in the MJO Task Force intercomparison (MJOTF - green), the Atmospheric Model 
Intercomparison Project of CMIP5 (CMIP5 - orange), and from five configurations of the CAM5 
model where the threshold relative humidity for stratiform low clouds (rhminl) is perturbed 
(blue). 

 
Figure S2. Correlation map of the global mean precipitation rate from climate models 
participating in the Atmospheric Model Intercomparison Project of CMIP5 vs time averaged near 
surface winds. Correlations with magnitudes below 0.51 are in gray because they are not 
significant at the 95\% level for a sample size of fifteen. 
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Figure S3. Time averaged surface specific humidity anomalies derived from climate models 
participating in the MJO Task Force intercomparison (MJOTF - left) spanning 1991 to 2010, and 
from climate models participating in the Atmospheric Model Intercomparison Project of CMIP5 
(CMIP5 - right ) spanning 1991 to 2005 
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Figure S4. Time averaged potential temperature anomalies over the SPCZ, a region of 
persistent stratocumulus clouds and a region characterized by trade cumulus clouds (oriented 
from left to right). They are derived from climate models participating in the MJO Task Force 
intercomparison (MJOTF - top) spanning 1991 to 2010, and from climate models participating in 
the Atmospheric Model Intercomparison Project of CMIP5 (CMIP5 - Bottom) spanning 1991 to 
2005. 
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Figure S5. Time averaged anomalies of the lower tropospheric mixing metric, defined as the 
specific humidity gradient between 1000hPa and 925hPa, derived from climate models 
participating in the MJO Task Force intercomparison (MJOTF - left) spanning 1991 to 2010, and 
from climate models participating in the Atmospheric Model Intercomparison Project of CMIP5 
(CMIP5 - right ) spanning 1991 to 2005. 
 

 
 
Figure S6. The global mean precipitation rate from climate models participating in the 
Atmospheric Model Intercomparison Project of CMIP5 plotted against global precipitable water. 
A consistent ocean mask is used across the MJOTF and CMIP5 models to compute these 
averages. 
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CMIP5 GMP/	𝝈	(𝒎𝒎	𝒅!𝟏) MJOTF GMP/	𝝈 
Miroc5 3.23 CWB-GFS 3.45 
ACCESS1-3 3.20 GISS-E2 3.31 
GISS-E2-R 3.15 MIROC5 3.22 
ACCESS1-0 3.09 NCEPCPC-CFS2 3.23 
Hadgem2-A 3.08 MetUM-GA3 3.12 
Top 5 Multi-Model 
Mean 

3.15 Top 5 Multi-Model 
Mean 

3.27 

Top 5 Model 𝝈 0.06 Top 5 Model 𝝈 0.11 
IPSL-CM5A-LR 2.81 NavGEM1 2.61 
CanAM4 2.80 ECGEM 2.63 
IPSL-CM5B-LR 2.85 BCC-AGCM2.1 2.67 
NORESM1-M 2.88 FGOALS-s2 2.76 
CCSM4 2.96 ISUGCM 2.89 
Bottom 5 Multi-
Model Mean 

2.86 Bottom 5 Multi-
Model Mean 

2.71 

Bottom 5 Model 𝝈 0.06 Bottom 5 Model 𝝈 0.10 
CESM1-CAM5 3.04 GMAO_GEOS5 2.94 
CNRM-CM5 3.04 MRI-AGCM 3.01 
GFDL-CM3 3.04 NCAR-CAM5 3.04 
MPI-ESM-LR 2.98 CNRM-AM 3.04 
MPI-ESM-MR 3.01 LLNL-CAM5 3.07 
  SMHI-ecearth3 2.95 

 
Table S1.: Global mean precipitation rate (GMP), 5 model mean and 5 model standard 
deviation from the top 5 and bottom 5 CMIP5(left column) and MJOTF(right Column) AMIP 
ensemble members. The rest of the ensemble members, from each ensemble, are also listed below 
the bottom 5 model standard deviation. 
 

CAM5 Model Experiment 
Model 
Configuration 

RH Threshold for 
the Formation of 
Low-Clouds 

GMP(𝒎𝒎	𝒅!𝟏) ∆𝒒 Averaged over 
Tropical Oceans 
(𝒈	𝒌𝒈!𝟏) 

Rhmin81 81% 3.03 1.74 
Rhmin85 85% 3.00 1.83 
Rhmin8875 88.75% 2.97 1.92 
Rhmin925 92.5% 2.94 2.06 
Rhmin965 96.5% 2.91 2.15 

 
Table S2. Five CAM5 model experiment configurations, relative humidity thresholds for the 
formation of low-level clouds(rhminl), global mean precipitation rate and the lower tropospheric 
mixing metric (∆q) averaged over tropical oceans. 


