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Abstract

The identification of factors driving the climate extremes have been conventionally driven by the physical models evaluated

using global climate models and/or using statistical analysis.

However, owing to lack of spatial historical records, both of these approaches pose a data insufficiency challenge. Moreover,

identification of primary drivers of climate extremes from a larger set of factors can pose another challenge. Bagging machine

learning models in conjugation of synthetic sampling techniques can address both of these challenges.

Here, I demonstrate the applicability of three synthetically sampling techniques along with Random Forest (RF) to identify the

main drivers and their spatial locations affecting the heatwave days over India for the period of 1979-2013. The three sampling

techniques used to generate balanced data are undersampling, oversampling and synthetic minority oversampling technique

(SMOTE). It was RF model with SMOTE that could identify the most important factors with greater precision and recall

($f1-$score (0.85)) as compared to other sampling techniques. Geopotential height\@500 hPa along with sensible heating fluxes

were identified as important factors characterizing the Indian heatwave days. The work has repercussion for any of the climate

extremes which lacks balanced data along with significantly lesser number of observations than the factors.
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Abstract10

The identification of factors driving the climate extremes have been conventionally driven11

by the physical models evaluated using global climate models and/or using statistical12

analysis. However, owing to lack of spatial historical records, both of these approaches13

pose a data insufficiency challenge. Moreover, identification of primary drivers of climate14

extremes from a larger set of factors can pose another challenge. Bagging machine learn-15

ing models in conjugation of synthetic sampling techniques can address both of these chal-16

lenges.17

Here, I demonstrate the applicability of three synthetically sampling techniques along18

with Random Forest (RF) to identify the main drivers and their spatial locations affect-19

ing the heatwave days over India for the period of 1979-2013. The three sampling tech-20

niques used to generate balanced data are undersampling, oversampling and synthetic21

minority oversampling technique (SMOTE). It was RF model with SMOTE that could22

identify the most important factors with greater precision and recall (f1−score (0.85))23

as compared to other sampling techniques. Geopotential height500 hPa along with sen-24

sible heating fluxes were identified as important factors characterizing the Indian heat-25

wave days. The work has repercussion for any of the climate extremes which lacks bal-26

anced data along with significantly lesser number of observations than the factors.27

Plain Language Summary28

Understanding the factors characterizing the climate extremes is a challenging task29

due to lack of observations of climate extremes and interdependence of multiple factors.30

To address these issues, data can be generated synthetically and bagging methods (a class31

of machine learning models) can be used to identify the main factors driving the climate32

extreme. Here, I have demonstrated the applicability of different sampling technique with33

Random Forest machine learning modeling technique to identify the most important fac-34

tors characterizing the heatwave over India.35

1 Introduction36

The identification of factors driving the climate extremes have been convention-37

ally driven by the climate models(Perkins et al., 2012; Mondal et al., 2020; Krishnan et38

al., 2016; Maharana & Dimri, 2015; Kaufman et al., 2006) and/or statistical analysis (Dave39

et al., 2020; Rohini et al., 2016; Ratnam et al., 2016; Purnadurga et al., 2018; De et al.,40

2005; van Oldenborgh et al., 2018; Kodra et al., 2011). Both of these approaches require41

a priori understanding of the underlying physics which subsequently drives the formu-42

lation of the hypothesis followed by analysis of the factors to validate the hypotheses.43

One of issues with these approaches is that there are large number of inter-dependent44

variables in climate domain and selection of important factors may be subjected to hu-45

man understanding of the phenomena.46

In this regard, purely data driven ML approaches have shown a great potential in47

enhancing our capability of predicting the extremes events as well as farther our under-48

standing of the underlying mechanisms (Jones, 2017; Ganguly et al., 2014). E.g. O’Gorman49

and Dwyer (2018) demonstrated potential use of ML to mimic the parameterization of50
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moist convection and modeling climate extremes. Using deep learning researcher (Ham51

et al., 2019) were able to predict the El-Nino events with over 95% prediction capabil-52

ity. However, application of ML to climate extremes poses its own challenges.53

To being with, one of the prime requirement for ML approaches is the large vol-54

ume of data, that is used to train the model (Jones, 2017). This may be an important55

issue while we are trying to model extreme events as extremes are not so frequent as com-56

pared to nominal days. For example, over India the recorded heatwave events are avail-57

able for the past 40 years, with sparse heatwave events. The fraction of heatwave days58

as a fraction to total summer days is very small (≈0.05). This makes data (heatwave and59

non-heatwave days) imbalanced with large fraction of majority class (where, majority60

class being non-heatwave days and minority class being heatwave days). This is expected61

to be another recurrent issue while applying ML techniques to analyze any extreme events.62

Another challenge which is faced in modeling climate extreme is small data-big data chal-63

lenge, where data is available spatially but lacks any historical records (Ganguly et al.,64

2018) and identifying the important factors from a vast set of potential factors becomes65

challenging. For example, multiple factors are important to characterize heatwave days66

over India such as geopotential height, latent and sensible heating fluxes, aerosols etc.67

Moreover, each factor can originate from different location. E.g. latent and sensible af-68

fect the heatwave days prediction locally (Rohini et al., 2016) while geopotential height69

all the way over Africa can play a role in prediction of heatwave days (Ratnam et al.,70

2016), and the aerosol effect can be locally as well as non-locally (Dave et al., 2020; Mon-71

dal et al., 2020). In order to account for factors influence from all the spatial locations,72

each factor at each location can be considered as a different factor. This increases the73

total number of factors as compared to the limited available observations.74

One of the ways to address these issues of lack of observations, imbalance data and75

less observations than factors is to increase the minority class data using different sam-76

pling techniques such as oversampling, synthetic minority over sampling (SMOTE) (Nitesh V.77

et al., 2006) etc. Further, using ML techniques such as Random Forest, XGBoost which78

selects randomly a sub-set of factors and observations for training the model issue of less79

observations than factors can be addressed. It has been shown that RF model perfor-80

mance does not deteriorate even if the ratio of observation/variables is less than 1/500th,81

owing to random sub-sampling of features and observations for each tree in RF.82

Here, using the heatwave days data for the period of 1979-2013, I demonstrated the83

use of sampling techniques Undersampling, Oversampling, SMOTE etc. to address the84

issue of imbalanced data along with RF modeling approach to take into consideration85

small observations to factor ratio. Heatwave events are classified as climate extremes and86
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have been witnessed globally(Ding et al., 2010; Perkins et al., 2012) having severe socio-87

economic impacts on daily lives of people. Over India, a prominent increase in frequency88

and intensity of heatwave days has been observed (Pai et al., 2013; Rohini et al., 2016;89

van Oldenborgh et al., 2018). Recently, in the year 2015 one of the rarest and deadli-90

est heatwave events was witnessed across India which resulted in about 2500 deaths (Burton,91

2015; Ghatak et al., 2017). This emphasize the importance to enhancing our understand-92

ing of the factors affecting heatwave days.93

By the analysis, we found that the RF algorithm with SMOTE sampling technique94

showed best f1-score of 0.81 as compared to OVER (0.76) and UNDER (0.49). The RF95

model could discern the regions of geopotential height 500hPa (GP500) along with re-96

gions of latent heat fluxes, sensible heat fluxes, longwave heating and shortwave heat-97

ing which has been identified to characterize the heatwave over India. Apart from this,98

the current work also identified that total aerosol along with their origin that are also99

important factor characterizing the heatwaves.100

The flow of paper is as follows: in the next section I describe the data and method-101

ology used for developing the ML model. In the subsequent section we discuss the re-102

sults and in the last sections I conclude with summarizing the results and repercussion103

of the study to model climate extremes.104

2 Data and Methodology105

In the subsequent subsection, the data used for the analysis and methodology used106

to develop the models has been discussed.107

2.1 Data108

For the analysis, The Modern-Era Retrospective Analysis for Research and Appli-109

cations, Version 2 (MERRA-2) (Gelaro et al., 2017) data were used for the following vari-110

ables for the period of March-May (MAM) of 1979-2013 at 5 × 5 resolution: 1) Geopo-111

tential height500hPa (GP500), 2) Greenness Index (GRN), 3) Latent heating land (LH-112

LAND), 4) Sensible heating land (SHLAND), 5) Longwave land (LWLAND), 6) Short-113

wave land (SWLAND), 7) Black carbon columnar mass (BCCMASS), 8) Black carbon114

surface mass (BCSMASS), 9) Dust columnar mass (DUCMASS), 10) Dust surface mass115

(DUSMASS), 11) SO2 columnar mass (SO2CMASS), 12) SO2 surface mass (SO2SMASS),116

13) SO4 columnar mass (SO4CMASS), 14) SO4 surface mass (SO4SMASS), 15) Total117

extinction tau (TOTEXTTAU), 16) Total scattering tau (TOTSCATTAU), and 17) To-118

tal angstrom tau (TOTANGRTAU).119

–4–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

The longitude and latitude varied from 0o to 360o and -90o to 90o, respectively at120

a resolution of 5o×5o. Thus, For each variable for a given longitude and latitude a dif-121

ferent variable is considered for the analysis. So there were total 45288 (17×37×72) vari-122

ables were used for the analysis.123

The heatwave days used for the analysis were obtained as listed in (Dave et al., 2020).124

If a particular day corresponded to heatwave event it was marked to class ’1’ and if the125

day belonged to nominal days it was marked to class ’0’. There were total 239 heatwave126

days out of total 4148 days in the 34 years time period of 1979-2013. The total fraction127

of heatwave days were ≈ 0.05 (239/4148).128

2.2 System configuration129

The analysis was performed on an Intel(R) Core(TM) i5-8250U CPU with 1.60GHz,130

4 Cores and 8 Logical Processors system.131

2.3 Methodology132

Given the small number of heatwave days as compared to total days we either need133

to decrease the majority class observations (undersampling) or increase the observation134

of minority class (oversampling and SMOTE).Further, I used RF to develop ML model.135

The choice of RF methodology was motivated due to less number of observations as com-136

pared to the total number of variables i.e ≈ 0.09 (4148/45288).137

2.3.1 Sampling techniques and evaluation of the model138

For the current analysis, we have compared the performance of the model using un-139

dersampling, oversampling and SMOTE sampling techniques.140

Undersampling (UDNER): In this process random observations from the ma-141

jority class are removed to match the observations in minority class.142

Oversampling (OVER): In this process random observations from the minor-143

ity class are added to match the observations in majority class.144

Synthetic minority oversampling technique (SMOTE): In SMOTE (Nitesh V.145

et al., 2006) sampling technique, synthetic observations from the minority class are gen-146

erated using k-nearest neighbors to match the observations in the majority class.147

–5–
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2.3.2 Modeling methodology, evaluation metrics and factor score148

Once the imbalanced-data was transformed into balanced-data, data were split into149

training data and testing data with 80:20 ratio. Using training data, RF technique was150

used to develop the model with the objective of predicting the heatwave days with high151

f1-score and precision-recall curve. f1−score is the harmonic mean of precision and re-152

call. In case of imbalanced data, f1-score and precision-recall curve are better predic-153

tor of model performance as compared to accuracy and AUC-ROC.154

The RF modeling techniques randomly sub-sample the observations and feature155

for each tree in the forest. Thus, the RF is a suitable technique when the variables are156

more as compared to observations. The RF model was fine tuned using Cross-validation157

(CV) for each of the model developed using data generated with different sampling tech-158

niques. The parameters that were tuned are n estimators: number of trees, max depth:159

maximum depth of tree i.e. maximum depth between root node and minimum samples160

split: minimum number of samples needed at a node for split (Table 1). The following161

other hyper-parameters were kept same for all the three sampling techniques: random state=0;162

min samples leaf=1; n jobs=3; min weight fraction leaf=0; min impurity decrease=0;163

max feature=’auto’.164

Table 1. Hyper-parameters for different sampling techniques

Sampling technique n estimators max depth min samples split

UNDER 2500 20 2
OVER 2400 7 10
SMOTE 900 20 2

Once the model was I identified the most important factors which are playing sig-165

nificant role in increasing the predictive power of the model. These factors are identi-166

fied using the factor score, which is a relative score assigned to all the factors used for167

the modeling. For each factor one score was assigned by each of the three models. In or-168

der to compare the scores across different sampling techniques based RF models scores169

were scaled between 0 and 1 using following transformation equation:170

Scorei =
Scorei − Scoremin

Scoremax − Scoremin
(1)

Here, Scorei is the score of the ith factor, Scoremax is the maximum score across of the171

factors and Scoremin is the minimum score across of the factors.172
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3 Results and Discussion173

3.1 Sampling methods174

Figure 1. Comparison of UNDER, OVER and SMOTE sampling techniques

In the Figure 1, precision-recall curves are depicted for the models with three sam-175

pling techniques. In the precision-recall curve, greater the area-under-the-curve larger176

is the discriminatory power of the model. Here, class ’0’ represents no heatwave day and177

class ’1’ represents a heatwave day. “No Skill” is where all the observations in test data178

are classified to either of the class using random guess, therefore each class has the prob-179

ability of 0.5. In Table 2, the threshold used to differentiate between class 0 and 1 is listed180

for each of the sampling techniques. These thresholds are identified from the precision-181

recall curve (Figure 1), where we have largest precision and recall. If the probability is182

below the threshold, class is assigned as 0 (non heatwave day) otherwise 1 (heatwave day).183

The f1-score is listed in Table 2. We see that f1-score for UNDER is lower than OVER,184

which is lower than SMOTE. The SMOTE sampling algorithms shows highest area un-185

der the curve and thus, exhibit largest discriminatory powers. This implies that the SMOTE186

sampling technique can identify the factors that can differentiate between heatwave and187

non-heatwave days to a greater extent as compared to other sampling techniques.188

–7–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Table 2. Classification report for UNDER, OVER and SMOTE sampling technique

Technique Threshold Class precision recall f1-score support

UNDER 0.389
0 0.98 0.98 0.98 787

1 0.60 0.60 0.60 43

OVER 0.657
0 0.99 0.99 0.99 787

1 0.74 0.74 0.74 43

SMOTE 0.476
0 0.99 0.99 0.99 787

1 0.86 0.84 0.85 43

In UNDER sampling there is information loss as the observations from majority189

class are dropped while the OVER sampling does not add any new information as the190

observations from minority class are repeated randomly. However, in SMOTE new sam-191

ples are generated using the nearest neighbor approach that adds variability to the ex-192

isting observations (Nitesh V. et al., 2006). This could be one the reasons for high f1−score193

obtained with SMOTE. Further, the differentiation between heatwave and non-heatwave194

days depends upon the score assigned to different variable and subsequently I present195

and discuss data and score assigned by SMOTE, OVER and UNDER sampling to dif-196

ferent variables.197

In Figures 2(a-c), geopotential height 500hPa anomaly (GP500) averaged across198

heatwave days identified by SMOTE, OVER and UNDER sampling are shown. It can199

be seen that all the three sampling techniques identify a high GP500 anomaly over In-200

dian subcontinent. In Figures 2(d-f) the score assigned to each spatial location by SMOTE,201

OVER and UNDER sampling methods are shown. From the Figures 2(d-f), it can be202

noted that SMOTE sampling technique (Figure 2d)) assigns large weight (>0.75) to GP500203

anomaly as compared to OVER and UNDER sampling techniques over Indian region.204

Further, there is an extension of GP500 anomaly over the African region, which has been205

assigned larger weights in OVER (Figure 2(f)) and UNDER (Figure 2(e)) sampling tech-206

nique as compared to SMOTE ((Figure 2(d))). Studies (Ratnam et al., 2016; Rohini et207

al., 2016) have also identified large positive anomaly of GP500 during heatwave event208

over India. This is owing to development of high pressure conditions with increased at-209

mospheric stability (Ratnam et al., 2016; Rohini et al., 2016). Further, the positive anomaly210

of GP500 was reported to be extended all the way upto Africa, owing to the Rossby wave211

source anomalies(Ratnam et al., 2016).212
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3. Latent and sensible heating fluxes magnitude and score associated with heatwave

days for (a) SMOTE, (b) OVER and (c) UNDER sampling techniques. (It is to be noted that for

simplicity in (a-c) and (g-i) regions corresponding to top hundred score value are presented. In

(d-f) and (j-l) all the scores are presented.)
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Other characteristic features of the heatwave events over India are reduced latent213

heating fluxes along with increased sensible heating fluxes (Mondal et al., 2020), which214

can be attributed to low moisture content over the Indian subcontinent during the sum-215

mer months(Mondal et al., 2020). From the Figure 3(a-c), it can be seen that the latent216

heating fluxes are small during the heatwave events predicted by SMOTE and OVER217

sampling techniques while it is larger for the UNDER sampling technique. Also, from218

the Figure 3(d-f), it can be seen that the region which has been identified as playing a219

role in affecting the heatwave events over India is larger for UNDER sampling as com-220

pared to SMOTE and OVER sampling. This implies that although all the three sam-221

pling techniques can identify the region and latent heat flux magnitude, the SMOTE and222

OVER sampling capture the spatio-temporal variability in a better way as compared to223

UNDER sampling. It can also be noted that in Figure 3(a-c), there are some regions over224

North, East and West Africa and Central-South America, showing large magnitude of225

latent heating flux, however these regions are not assigned significant score (Figure 3(d-226

f)) and could be due to numerical artifacts.227

Similar arguments can be presented for sensible heating fluxes magnitude (Figure 3(g-228

i)) and score (Figure 3(j-l)). However, it is to be noted that during heatwave events in-229

creased sensible heating fluxes have been observed over India (Mondal et al., 2020), which230

are also reflected in Figure 3(g-i). Further, it can be seen that in UNDER a larger re-231

gion has been identified (Figure 3(l)), from where sensible heating flux can affect the pre-232

diction of heatwave events, as compared to SMOTE (Figure 3(j)) and OVER (Figure 3(k))233

sampling techniques. Further larger magnitude of sensible heating is predicted by SMOTE234

(Figure 3(g)) and OVER (Figure 3(h)) as compared to UNDER (Figure 3(i)). Further,235

we analyzed the magnitude and score of longwave and shortwave anomaly spatio-temporal236

distribution predicted by SMOTE, OVER and UNDER sampling techniques.237

Heatwave days over India are associated with increased outgoing longwave radi-238

ation spread over the North-Western India (Rohini et al., 2016). Here, SMOTE technique239

identified a large negative (outward direction negative) anomaly in long wave radiation240

over the North-Western India (Figure 4(a)). Along with this although, OVER and UN-241

DER sampling techniques also show a large negative anomaly of longwave radiation fluxes,242

the region is spread all the way to southern India (Figure 4(b-c)). Further, the score as-243

signed to longwave fluxes is higher over North-West India while a lower score is assigned244

as we move away from North-West region by all the three sampling techniques (Figure 4(d-245

f)).246

From the Figure 4(g-i), it can be seen that the positive shortwave heating anomaly247

is found to be associated with predicted heatwave days over the North India. Here, again248

–11–
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the region is found to be spread-out in UNDER (Figure 4(i)). It is to be noted that the249

score assigned to shortwave heating (Figure 4(j-l)) is low as compared to longwave heat-250

ing (Figure 4(d-f)). It implies that long wave heating is a better feature that can dis-251

tinguish between heatwave and non-heatwave days. The shortwave anomaly is high dur-252

ing the whole summer while during the heatwave days persistent clear sky conditions are253

observed (Rohini et al., 2016) leading to large outgoing radiative fluxes (Rohini et al.,254

2016) and this could be the reason behind less importance is given to shortwave heat-255

ing fluxes as compared to longwave fluxes.256
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4. Longwave and shortwave anomaly magnitude and score associated with heatwave

days for (a) SMOTE, (b) OVER and (c) UNDER sampling techniques. (It is to be noted that for

simplicity in (a-c) and (g-i) regions corresponding to top hundred score value are presented. In

(d-f) and (j-l) all the scores are presented.)
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Further, the SMOTE predicts high TOTEXT and TOTSCAT over north India and257

Western Africa (Figure 5(a,g)). While, OVER sampling (Figure 5(b,h)) associates West-258

ern Africa and UNDER sampling (Figure 5(c,i)) associates North India, South India and259

Western Africa with TOTEXT and TOTSCAT. This indicates that SMOTE can iden-260

tify regions pertinent to heatwave days. The role of local as well as non-local aerosols261

in exacerbating heatwave conditions over India have been identified by different stud-262

ies (Mondal et al., 2020; Dave et al., 2020). Although the extinction and scattering due263

to aerosols have not been assigned a large score as compared to GP500 anomaly, latent264

and sensible heating fluxes, and longwave and shortwave fluxes, the emergence of region265

all the way to West Africa does require further investigation. The reason behind this ob-266

servation could be associated with the presence of anomalous anti-cyclone conditions as267

a part of a quasi-stationary wave extending all the way upto North-western Africa (Ratnam268

et al., 2016), which increases the dust aerosols anomaly.269

From the Figure 6, we can see that a larger dust anomaly is also identified over the270

West Africa by SMOTE (Figure 6(a)) and OVER (Figure 6(b)) sampling techniques. This271

indicates the accumulation of large dust anomalies over Western Africa which can be the272

result of large TOTEXT and TOTSCAT observed in Figure 5(a-c). This can subsequently273

can be associated with the observed heatwave days over India and can be a discerning274

factor. However, UNDER sampling technique (Figure 6(c)) does not capture any dust275

anomaly over the West Africa.276

There are some regions identified near the Northern Australia exhibiting score in277

the range of 0.1-0.25 (Figure 6(d-f)), which could be an artifact owing to i) small score278

as compared to factors discussed earlier and ii) the presence of dust is very low in this279

region (Figure 6(a-c)). However, this is one the factor that requires further investigation,280

although not focus of this paper.281
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Total extinction and total scattering magnitude and score associated with heatwave

days for (a) SMOTE, (b) OVER and (c) UNDER sampling techniques. (It is to be noted that for

simplicity in (a-c) and (g-i) regions corresponding to top hundred score value are presented. In

(d-f) and (j-l) all the scores are presented.)
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The other factors, i.e. dust surface mass anomaly (DUSMASS, (Figure S1)), Green-282

ness Index (GRN, (Figure S2)), black carbon columnar mass anomaly (BCCMASS, Fig-283

ure S3 (a-c)), black carbon surface mass anomaly (BCSMASS, Figure S3(d-f)), SO2 colum-284

nar mass anomaly (SO2CMASS, Figure S4 (a-c)), SO2 surface mass anomaly (SO2SMASS,285

Figure S4(d-f)), SO4 columnar anomaly (SO4CMASS, Figure S5(a-c)), SO4 surface mass286

anomaly (SO4SMASS, Figure S5 (d-f)) and total angstrom (TOTANGSTR, Figure S6)287

were assigned low score (<0.1) by all the three sampling techniques. The score distri-288

bution for these factors are shown in the supplementary information.289

This highlights of the limitations of the model is that while it can identify the cu-290

mulative effect of aerosol on heatwave days, it could not differentiate between the effect291

of absorbing and scattering aerosols. This could be due to either small effect of aerosols292

as compared to other factors.293

4 Conclusion and discussions294

The analysis of extremes has been constrained by availability of observations. Re-295

cent progress in climate modeling has helped significantly in understanding the factors296

that may play role in characterizing the climate extremes. However, climate models have297

their own limitations such as parameterization schemes, logistics and resources associ-298

ated with running a climate model. Here, we presented an alternate approach that uses299

RF with limited imbalanced observations of heatwave events over India to identify the300

important factors that can characterize the extreme events. The imbalanced data were301

transformed into balanced data using SMOTE, OVER and UNDER sampling techniques.302

It was found that SMOTE sampling technique performs better (high f1−score))303

as compared to OVER and UNDER sampling approaches. This can be attributed to gen-304

eration of new samples in SMOTE using nearest neighbor as compared to repetition of305

information from minority class (OVER) and of loss of information from majority class306

(UNDER) sampling. The SMOTE algorithm could identify the important spatial po-307

sition of factors, e.g. geopotential height, latent and sensible heating, longwave and short-308

wave fluxes etc., that can delineate between heatwave and non-heatwave days to a larger309

extent.310

In future, the machine learning model performance can be further improved/compared311

with boosting approaches (such as XGBoost), which have shown better predictive power312

than RF, as bagging techniques generate trees sequentially using information from pre-313

vious trees. Overall, the analysis has shown an alternate method to understand the cli-314

mate extremes with limited data using RF approach with synthetically generated sam-315
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ples. Along with this, such type of modeling does not take much cpu time in identify-316

ing drivers of climate extremes along with their spatial distribution and therefore can317

be easily scaled up.318
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Kaufman, Y. J., Boucher, O., Tanré, D., Chin, M., Remer, L. A., Takemura, T.,361

. . . Schubert, G. (2006). Sensitivity of precipitation extremes to radiative362

forcing of greenhouse gases and aerosols. Geophysical Research Letters, 32 (7),363

1–4. Retrieved from http://doi.wiley.com/10.1002/2016GL070869 doi:364

10.1002/2016GL070869365

Kodra, E., Chatterjee, S., & Ganguly, A. R. (2011). Exploring Granger causal-366

ity between global average observed time series of carbon dioxide and tem-367

perature. Theoretical and Applied Climatology , 104 (3-4), 325–335. doi:368

10.1007/s00704-010-0342-3369

Krishnan, R., Sabin, T. P., Vellore, R., Mujumdar, M., Sanjay, J., Goswami, B. N.,370

. . . Terray, P. (2016). Deciphering the desiccation trend of the South Asian371

monsoon hydroclimate in a warming world. Climate Dynamics, 47 (3), 1007–372

1027. doi: 10.1007/s00382-015-2886-5373

Maharana, P., & Dimri, A. P. (2015). Study of intraseasonal variability of Indian374

summer monsoon using a regional climate model. Climate Dynamics, 46 (3),375

1043–1064. doi: 10.1007/s00382-015-2631-0376

Mondal, A., Sah, N., Sharma, A., Venkataraman, C., & Patil, N. (2020). Absorb-377

ing aerosols and high-temperature extremes in india: A general circulation378

modelling study. International Journal of Climatology , n/a(n/a), 1-20. Re-379

trieved from https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/380

joc.6783 doi: 10.1002/joc.6783381

Nitesh V., C., Kevin W., B., Lawrence O., H., & W. Philip, K. (2006). snopes.com:382

Two-Striped Telamonia Spider. Journal of Artificial Intelligence Research,383

2009 (Sept. 28), 321–357. Retrieved from https://arxiv.org/pdf/1106.1813384

.pdf{\%}0Ahttp://www.snopes.com/horrors/insects/telamonia.asp doi:385

10.1613/jair.953386

–19–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

O’Gorman, P. A., & Dwyer, J. G. (2018). Using Machine Learning to Parame-387

terize Moist Convection: Potential for Modeling of Climate, Climate Change,388

and Extreme Events. Journal of Advances in Modeling Earth Systems. doi:389

10.1029/2018MS001351390

Pai, D., Nair, S. A., & Ramanathan, A. (2013). Long term climatology and trends of391

heat waves over India during the recent 50 years (1961-2010). Mausam, 64 (4),392

585–604.393

Perkins, S. E., Alexander, L. V., & Nairn, J. R. (2012). Increasing frequency, in-394

tensity and duration of observed global heatwaves and warm spells. Geophysi-395

cal Research Letters, 39 (20), 1–5. doi: 10.1029/2012GL053361396

Purnadurga, G., Lakshmi Kumar, T. V., Koteswara Rao, K., Rajasekhar, M., &397

Narayanan, M. S. (2018). Investigation of temperature changes over India in398

association with meteorological parameters in a warming climate. International399

Journal of Climatology , 38 (2), 867–877. doi: 10.1002/joc.5216400

Ratnam, J. V., Behera, S. K., Ratna, S. B., Rajeevan, M., & Yamagata, T. (2016).401

Anatomy of Indian heatwaves. Scientific reports, 6 , 1-11. Retrieved from402

http://dx.doi.org/10.1038/srep24395 doi: 10.1038/srep24395403

Rohini, P., Rajeevan, M., & Srivastava, A. K. (2016). On the variability and404

increasing trends of Heat waves over India. Scientific Reports, 6 , 26153.405

Retrieved from http://www.nature.com/articles/srep26153 doi:406

10.1038/srep26153407

van Oldenborgh, G. J., Philip, S., Kew, S., van Weele, M., Uhe, P., Otto, F., . . .408

AchutaRao, K. (2018). Extreme heat in india and anthropogenic climate409

change. Natural Hazards and Earth System Sciences, 18 (1), 365–381. Re-410

trieved from https://www.nat-hazards-earth-syst-sci.net/18/365/2018/411

doi: 10.5194/nhess-18-365-2018412

–20–



JAMES

Supporting Information for ”Climate extremes factor

attribution: a small data challenge in ML realm”

Prashant Dave

1Center for Climate Studies, Indian Institute of Technology Bombay

Contents of this file

1. Figures S1 to S6

Introduction This file contains score assigned by SMOTE, OVER and UNDER sampling

techniques to following variables:

1. DUSMASS

2. GRN index

3. BCCMASS

4. BCSMASS

5. SO2CMASS

6. SO2SMASS

7. SO4CMASS

8. SO4SMASS

9. TOTANGSTR

October 13, 2020, 9:26am



X - 2 :

(a
)

(b
)

(c
)

F
ig

u
re

S
1
.

D
U

S
M

A
S
S

an
om

al
y

sc
or

e
fo

r
S
M

O
T

E
,

O
V

E
R

an
d

U
N

D
E

R
sa

m
p
li
n
g

te
ch

n
iq

u
es

October 13, 2020, 9:26am



: X - 3

(a
)

(b
)

(c
)

F
ig

u
re

S
2
.

G
R

N
In

d
ex

sc
or

e
fo

r
S
M

O
T

E
,

O
V

E
R

an
d

U
N

D
E

R
sa

m
p
li
n
g

te
ch

n
iq

u
es

October 13, 2020, 9:26am



X - 4 :

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

F
ig

u
re

S
3
.

B
C

C
M

A
S
S

an
om

al
y

an
d

B
C

S
M

A
S
S

an
om

al
y

sc
or

e
fo

r
S
M

O
T

E
,

O
V

E
R

an
d

U
N

D
E

R
sa

m
p
li
n
g

te
ch

n
iq

u
es

October 13, 2020, 9:26am



: X - 5

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

F
ig

u
re

S
4
.

S
O

2C
M

A
S
S

an
om

al
y

an
d

S
O

2S
M

A
S
S

an
om

al
y

sc
or

e
fo

r
S
M

O
T

E
,

O
V

E
R

an
d

U
N

D
E

R
sa

m
p
li
n
g

te
ch

n
iq

u
es

October 13, 2020, 9:26am



X - 6 :

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

F
ig

u
re

S
5
.

S
O

4C
M

A
S
S

an
om

al
y

an
d

S
O

4S
M

A
S
S

an
om

al
y

sc
or

e
fo

r
S
M

O
T

E
,

O
V

E
R

an
d

U
N

D
E

R
sa

m
p
li
n
g

te
ch

n
iq

u
es

October 13, 2020, 9:26am



: X - 7

(a
)

(b
)

(c
)

F
ig

u
re

S
6
.

T
O

T
A

N
G

S
T

R
sc

or
e

fo
r

S
M

O
T

E
,

O
V

E
R

an
d

U
N

D
E

R
sa

m
p
li
n
g

te
ch

n
iq

u
es

October 13, 2020, 9:26am


