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Abstract

Projections of extreme precipitation based on modern climate models suffer from large uncertainties. Specifically, unresolved

physics and natural variability limit the ability of climate models to provide actionable information on impacts and risks at the

regional, watershed and city scales relevant for practical applications. Here we show that the interaction of precipitating systems

with local features can constrain the statistical description of extreme precipitation. These observational constraints can be

used to project local extremes of low yearly exceedance probability (e.g., 100-year events) using synoptic-scale information from

climate models, which is generally represented more accurately than the local-scales, and without requiring climate models to

explicitly resolve extremes. The novel approach offers a path for improving the predictability of local statistics of extremes in

a changing climate, independent of pending improvements in climate models at regional and local scales.
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Abstract 25 

Projections of extreme precipitation based on modern climate models suffer from large 26 
uncertainties. Specifically, unresolved physics and natural variability limit the ability of climate 27 
models to provide actionable information on impacts and risks at the regional, watershed and city 28 
scales relevant for practical applications. Here we show that the interaction of precipitating 29 
systems with local features can constrain the statistical description of extreme precipitation. 30 
These observational constraints can be used to project local extremes of low yearly exceedance 31 
probability (e.g., 100-year events) using synoptic-scale information from climate models, which 32 
is generally represented more accurately than the local-scales, and without requiring climate 33 
models to explicitly resolve extremes. The novel approach offers a path for improving the 34 
predictability of local statistics of extremes in a changing climate, independent of pending 35 
improvements in climate models at regional and local scales. 36 

Plain Language Summary 37 

Climate change impact studies are currently restrained by the limited accuracy of climate models 38 
in resolving precipitation extremes and by the uncertainties characterizing their analysis. We use 39 
here a novel approach which permits to project extreme precipitation for future climatic 40 
scenarios based on the combination of coarse-scale information from climate models with local 41 
observations. Focusing on the south-eastern Mediterranean, we provide projections of 42 
precipitation extremes which could not yet be derived using traditional methods, such as the 43 
events occurring on average once in 100 years. The combined effect of changes in intensity and 44 
average yearly number of two dominant synoptic systems is projected to increase the intensity of 45 
the 100-year events in the coast and in the desert areas of the region, and to decrease it 46 
elsewhere. The novel approach offers a path for improving the predictability of extremes in a 47 
changing climate, independent of pending improvements in climate models. 48 

1 Introduction 49 

In recent decades, natural hazards associated with extreme precipitation, such as floods 50 
and landslides, claimed thousands of lives and billions of US$ in damages every year (NOAA, 51 
2020; Paprotny et al., 2018). These numbers are expected to grow in response to an expansion of 52 
population and wealth towards hazard-prone areas and to modifications in the hydrological cycle 53 
induced by climate change (Ceola et al., 2014; Fischer and Knutti, 2016; Winsemius et al., 54 
2016). Quantifying climate change impact on extremes is thus a major challenge for the research 55 
community (Blöschl et al, 2019). Hydrological design and risk management, particularly relevant 56 
for adaptation efforts, require information on low yearly exceedance probabilities (Chow et al., 57 
1988), such as the events exceeded on average once in 100 years (hereon 100-year return levels, 58 
with 1% yearly exceedance probability). To directly quantify return levels, long data series are 59 
required, several times longer than the exceedance probability timescale. Since observational 60 
records rarely exceed 50-100 years, some form of statistical extrapolation is generally required 61 
(Coles, 2001). 62 
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Earth system models (ESMs) are commonly used to guide impact studies. However, 63 
current ESMs are not able to explicitly resolve convective and microphysical processes critical 64 
for precipitation extremes, and rely instead on parameterizations (Wilcox and Donner, 2007). 65 
Additionally, their output is most relevant at scales which are too coarse for many practical 66 
applications (Fischer et al., 2013; Hausfather et al., 2019). Dynamical downscaling methods can 67 
provide projections for a region of interest, but are sensitive to the boundary conditions provided 68 
by global models (Shepherd, 2014; Keller et al., 2018). Furthermore, their application is limited 69 
by computational requirements so that, currently, only few regions are covered with 10-20-year 70 
simulations (Kendon et al., 2014; Fosser et al., 2020), which are too short to reliably estimate 10-71 
years return levels, let alone 100-year events. Alternatively, statistical models are combined with 72 
variables that are strongly related to extreme precipitation but more reliably reproduced in ESMs, 73 
such as temperature (Snippel et al, 2015; Pfahl et al., 2017).  74 

The methods currently adopted to quantify return levels, however, heavily rely on 75 
extremes, such as the maxima values in each year or the values exceeding high thresholds 76 
(Coles, 2001). As these are rare and subject to large uncertainties, the applicability of these 77 
methods in a changing climate is limited (Serinaldi and Kilsby, 2015). In fact, stochastic climate 78 
variability sets a lower bound on the uncertainty in observed and modelled extremes (Fatichi et 79 
al., 2016). Reliable projections of extreme return levels for future climate scenarios thus 80 
necessarily entail either intensive dynamical downscaling of ESMs with convection-permitting 81 
models, or novel statistical approaches able to better exploit the available information.  82 

It is shown here that the interaction of precipitating systems with local features, such as 83 
coastlines or orography, can constrain the statistical description of precipitation intensity. These 84 
constraints, derived from in-situ observations, permit predicting future extreme return levels at 85 
the local-scales based on coarse-resolution global climate model projections, and without 86 
requiring models to explicitly resolve the extremes. 87 

2 Study area and data 88 

The south-eastern Mediterranean is regarded as a climate change hotspot, highly 89 
vulnerable to water scarcity and precipitation-induced hazards (Alpert et al., 2002; Giorgi, 2006). 90 
Strong spatial gradients in precipitation climatology (Fig. S1 and S2 in the Supporting 91 
Information) emerge from the interactions of two main types of precipitating systems with 92 
coastline and orography (Diskin, 1970): (i) low-pressure systems moving inland along westerly 93 
tracks (Mediterranean cyclones, hereon Type-1), and (ii) low-pressure systems mainly extending 94 
from the south (active Red Sea troughs, Type-2). These are characterized by distinct spatial 95 
patterns and both yield extreme precipitation amounts (Armon et al., 2018; Marra et al., 2019a). 96 
ESMs predict substantial changes in the intensity and occurrence frequency of both systems 97 
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(Hochman et al., 2018a; Hochman et al., 2018b; Zappa et al., 2015), implying non-linear changes 98 
in the compound extremes, which can be further complicated by local effects.  99 

2.1 Precipitation data  100 

Daily precipitation data, summed up to 6:00UTC, were provided by the Ministry of 101 
Water and Irrigation of Jordan (97 stations between 1980-1981 and 2017-2018) and the Israel 102 
Meteorological Service (>1300 stations between 1948-1949 and 2017-2018). Data from Israeli 103 
stations flagged as missing, inaccurate, interpolated or obtained from multi-day accumulations 104 
were excluded from the analysis. Jordanian data were supplied with no quality indicators; we 105 
therefore rely on quality controls by the data provider. Separate records measured in proximity of 106 
up to 1 km distance and 50 m elevation were merged. Records were organized by hydrologic 107 
years (September 1 to August 31). For each station, years with more than 14 unavailable days 108 
and records with less than 30 hydrological years were discarded. The final dataset consists of 459 109 
stations (404 from Israel, 55 from Jordan, average spatial density of ~1/75 km-2) with 30-70 110 
complete years of record (50.1±13.3 years). Stationarity of the annual maxima at each station is 111 
ensured using the Phillips and Perron (1988) test (5% significance level), indicating that the data 112 
adequately represent extremes under present conditions. 113 

2.2 Local groups of stations 114 

Groups of stations in which distinct local features dominate the interaction with the 115 
precipitating systems are identified using a kmeans clustering algorithm based on geographical 116 
(latitude, longitude, elevation) and precipitation (average wet-day amount, and standard 117 
deviation of the wet-day amounts) properties, without any direct use of extreme precipitation 118 
properties or classification of the precipitating systems. The variables are normalized to zero-119 
mean equi-dispersed distributions; the algorithm is iterated 99 times to ensure stable results. 120 
Following the Calinski and Harabasz (1974) criterion, six groups are obtained, roughly 121 
identifiable as: mountains, northern coast, lowlands, coast, deserts west of the Dead Sea rift, and 122 
deserts east of the rift. The last two groups are characterized by similar climatic conditions and 123 
are likely separated primarily due to the geographical distance, although differences in other 124 
aspects may exist, such as elevation and distance from the sea. These two groups, which are 125 
sparsely populated (only 21 stations in one group), were merged. The classification used in the 126 
analysis consists of five groups: mountains, northern coast, lowlands, coast, and deserts (Fig. 1a). 127 

3 Methods 128 

 Extreme precipitation events were shown to emerge from underlying distributions of 129 
ordinary events (Marani and Ignaccolo, 2015; Zorzetto et al., 2016), whose tails are generally 130 
described by two parameters (e.g., stretched-exponential or power-type) (Cavanaugh et al., 2015; 131 
Papalexiou et al., 2018; Marra et al., 2020b). By relying on ordinary events, for which more data 132 
is available, this approach decreases the stochastic uncertainties inherent in the realization of 133 
extremes (Zorzetto et al., 2016; Marra et al., 2018). Events generated by different types of 134 
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processes and thus described by distinct distributions such as mid-latitude vs. tropical cyclones 135 
(or, in our case, Type-1 vs. Type-2) can be combined to derive a compound distribution for 136 
extreme return levels (Marra et al., 2019a; Miniussi et al., 2020). This distribution quantifies the 137 
yearly exceedance probability 𝜁 associated with the precipitation amount 𝑥 as a function of the 138 
intensity distributions of the ordinary events (𝐹$%&,…,), where 𝑖 represents the type of process) and 139 

the expected value of their yearly number of occurrences (𝑛$) such that: 𝜁(𝑥) ≃ 𝐹&
/0 ⋅ 𝐹2

/3 ⋅ … ⋅140 

𝐹)
/4 (Marra et al., 2019a). In this framework, changes in extreme return levels can be expressed 141 

as functions of the projected changes in the intensity distributions of the ordinary events and in 142 
the expected value of their yearly occurrences. While the occurrence frequency of synoptic 143 
events in the region can be resolved by ESMs (Hochman et al., 2018a; Cavicchia et al., 2020), 144 
precipitation intensity requires information on two degrees of freedom (i.e., the two parameters 145 
describing the distribution).  146 

3.1 Ordinary events distributions and return levels 147 

Ordinary events are defined as non-zero (i.e., ≥ 0.1 mm) daily precipitation amounts 148 
(Zorzetto et al., 2016) associated with a precipitation type based on a semi-automatic, daily-149 
based, synoptic classification (Alpert et al., 2004). Wet days corresponding to systems that are 150 
expected to be dry may have been wrongly classified; for example, synoptic conditions in the 151 
aftermath of Mediterranean cyclones are easily misinterpreted by the semi-automatic method. 152 
These were individually examined and labelled as Type-1 if occurring up to 2 days after a Type-1 153 
day, and as Type-2 in the remaining cases (Table S1).  154 

Previous studies show that a Weibull distribution (stretched-exponential) in the form 155 

𝐹(𝑥; 𝜆, 𝜅) = 1 − 𝑒?@
A
BC
D

, where 𝜆 is the scale and 𝜅 the shape parameter, well describes the tail of 156 
the two types of ordinary events in the region (Marra et al., 2019a). The shape parameter 157 
determines the tail heaviness, with heavier tails for smaller shapes and vice versa. These 158 
parameters are estimated left-censoring the lowest 75% of the observations while keeping their 159 
weight in probability, and using a least-square linear regression in Weibull-transformed 160 
coordinates (Marra et al., 2019a). The left-censoring prevents contaminations from the lower tail 161 
of the distribution, which may require more general formulations (Papalexiou et al., 2018; 162 
Cavanaugh et al., 2015) and is sensitive to the accuracy of the measurement device (Marra et al., 163 
2019a). After left-censoring, the number of data points used for the parameter estimation in each 164 
of the stations is 426 ± 175 for Type-1 (minimum 66), and 153 ± 68 (minimum 30) for Type-2. 165 
The expected number of yearly ordinary events is computed, for each type, as the mean of the 166 
yearly number of wet days. Extreme return levels are computed numerically by inverting the 167 

formulation 𝜁(𝑥) ≃ 𝐹&
/0 ⋅ 𝐹2

/3. Sample uncertainty in parameters and return levels is quantified 168 

via bootstrap with replacement (103 repetitions) among the years in the record (Overeem et al., 169 
2008). The resulting return levels (Fig. 1; Fig. S2) are consistent with traditional methods based 170 
on the observed annual maxima (Fig. S3), but have significantly smaller uncertainty (22%, as 171 
opposed to 39%, median uncertainty on 100-year return levels). 172 
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 173 
Figure 1. Extremes emerge from the interaction of precipitation systems with local features. (a) Map of 174 
the study region showing the local terrain elevation, the main precipitating systems tracks, and the 175 
location of the daily precipitation stations used in the study, coloured according to groups in which 176 
different local features dominate the interaction with the precipitating systems. (b) Distribution of 2-year 177 
and 100-year return levels (50% and 1% yearly exceedance probability, respectively) of the five groups 178 
shown in panel a (with matching colours) displayed as transposed cumulative distributions. The 179 
respective uncertainty (shading) is calculated as the 90% confidence interval from 103 bootstrap samples 180 
with replacement among the years in the record. The median uncertainty across all groups is 14% (22%) 181 
for 2-year (100-year) return levels. (c, d) Map of the 2-year (c) and 100-year (d) return levels (colours 182 
indicate daily precipitation intensity). 183 

3.2 Local constraints of the intensity distributions 184 

A robust relationship between the scale 𝜆 and shape 𝜅 parameter of the ordinary events 185 
distributions would reduce the representation of precipitation intensity to one degree of freedom, 186 
enabling us to provide projections of extremes based only on changes in the mean intensity of 187 
ordinary events. The significance of the relationship between the parameters describing the two 188 
types of ordinary events at each of the five groups of stations is tested using the rank correlation 189 
(104 Monte Carlo reshuffling realizations). The coefficient 𝛼 of the relations in the form 𝜅 = 𝛼 ⋅190 
log	 𝜆 + 𝐶 is derived for each of the five groups and the two event types using a linear regression 191 
model based on a χ2 minimization and considering parameter estimation errors in a Monte Carlo 192 
framework (103 realizations).  193 

The coefficients 𝛼, calculated for each group, represent the local constraints on the 194 
intensity distribution. Higher 𝛼 implies a stronger decrease in tail heaviness in response to an 195 
increase in the median intensity, and vice versa. Under these constraints the distribution has one 196 
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degree of freedom, meaning that any quantity not orthogonal to the constraint (e.g., mean, 197 
median, standard deviation, etc.) is sufficient to describe the distribution. Here, we use the 198 
median intensity, hereon denoted 𝐼, as it is less sensitive than the mean to the stochastic 199 
uncertainty in the realization of extremes: 𝐹$(𝑥; 𝜆$, 𝜅$) = 𝐹(𝑥; 𝐼$). The return level 𝑥 associated 200 
with the yearly exceedance probability 𝑝 can be written as a function of median intensity and 201 
expected number of yearly occurrences of the two types of ordinary events by inverting the 202 

extreme value distribution 𝜁(𝑥): 𝑥(𝑝) = 𝜁(?&)(𝑝; 𝐼&, 𝑛&; 𝐼2, 𝑛2). 203 
We assume that temporal changes in the distribution of ordinary events will preserve 204 

these local observational constraints. This resembles the assumptions behind regionalization 205 
approaches in which spatial information is traded for record length (Buishand, 1991), but extends 206 
its meaning in that (i) temporal changes are allowed, and (ii) the information on the interaction 207 
between precipitating systems and local features provided by each individual station is fully 208 
exploited (e.g. Marra et al., 2020a). To support our assumption, we test the significance of the 209 
constraints in historical observations in a Monte Carlo framework by examining groups of non-210 
consecutive years with consistently different median intensity (see Fig. S4) along the following 211 
steps: (1) at each station and precipitation type, years are ranked according to the median 212 
ordinary events intensity; (2) six 5-year subsets of non-consecutive years are created by selecting 213 
three groups (15 years) from the largest intensity years and three from the smallest intensity; (3) 214 
Weibull parameters are estimated at each station for the 5-year subsets; (4) 103 m-elements 215 
synthetic samples, where m is the number of wet-days in the observed 5-year subsets, are 216 
generated according to the obtained distributions and the parameters describing the samples are 217 
estimated to quantify the impact of parameter estimation uncertainty; (5) logarithmic relations 218 
between the parameter pairs are derived for each subset; (6) the 𝛼 coefficient representing the 219 
local constraint is compared to the distribution of coefficients of the logarithmic relations at (5).  220 

3.3 Climate projections 221 

Projected changes in median intensity and expected number of yearly occurrences of the 222 
two precipitation types are obtained by examining the difference between the ends of the 21st 223 
century (~2080-2100) and the 20th century (~1980-2005) under the RCP8.5 emission scenario 224 
(Riahi et al., 2011). We estimated these differences using the data presented in Hochman et al. 225 
(2018a) and Zappa et al. (2015), calculated for 8 and 17 CMIP5 models, respectively. We choose 226 
the changes in occurrence and median intensities from these two studies, as they are produced for 227 
the desired time period and emission scenario, and because these parameters are considered more 228 
robust than the changes in extremes that can be derived from the CMIP5 models themselves 229 
(Fatichi et al., 2016). In particular, the changes in synoptic circulation over the study region 230 
derived from CMIP5 ensembles were shown to be robust (Hochman et al., 2017; Hochman et al., 231 
2018a; Zappa et al., 2015).  232 

The acquired changes we used are: Type-1: expected number of yearly occurrence is 233 
projected to decrease by 15-35% (−25 ± 10	%); median intensity is projected to decrease by 20-234 
25% (+22.5 ± 5	%); Type-2: expected number of yearly occurrence is projected to increase by 235 
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13% (+13 ± 5	%); annual Type-2 precipitation amounts are projected to remain unchanged, 236 
which leads to a 12% decrease in the median intensity (−12 ± 5	%). These numbers result in a 237 
20-30% decrease in mean annual precipitation, which is consistent with the AR5 IPCC report 238 
(IPCC, 2014). As based on relative differences between historic and future simulations, we 239 
expect these projections to be less sensitive to systematic biases in the quantification of wet days 240 
from CMIP5 models (e.g., too many drizzle days). 241 

Changes in extreme return levels are computed in a Monte Carlo framework considering 242 
uncertainties in the projections and in the local constraints (i.e., the 𝛼 coefficients), as follows. 243 
At each station, 103 projections are created by (1) sampling the projected change in number and 244 
median intensity of the two ordinary events types from normal distributions, and (2) sampling 245 
the 𝛼 coefficient of the local constraint relations from the Monte Carlo realizations. Note that, 246 
since the ratio between median and mean of Weibull distributions smoothly depends on the 247 
shape parameter 𝜅 and is independent from the scale 𝜆, one can safely assume a one-to-one 248 
correspondence between projected changes in the mean and in the median (e.g., a 5% change in 249 
the mean corresponds to ~5% change in the median). This is useful since the median is a better 250 
descriptor for observed data whereas the mean is commonly provided by ESMs output.  251 

4 Application to the south-eastern Mediterranean 252 

4.1 Local constraints on the distribution of ordinary events 253 

While relations between scale 𝜆 and shape 𝜅 parameters of the ordinary events 254 
distributions are not expected a priori, statistically significant relations (>3σ significance level) 255 
are found for the given data when focusing on local groups of stations in which distinct local 256 
features dominate the interactions with precipitation systems (Fig. 2a-c; Fig. S4). Dependence of 257 
the form 𝜅 = 𝛼 ⋅ log	 𝜆 + 𝐶, where 𝛼 and	𝐶 are empirically-determined, was found to 258 
approximate these relations in each group, generally explaining most of the observed variance 259 
(Fig. S4). The hypothesis of a local constraint 𝛼 being significantly different from the 260 
coefficients obtained from temporally splitting the records is rejected in all the cases (5% 261 
significance level). Thus, the local values of 𝛼 indeed reflect historical changes in the median 262 
intensity of ordinary events at each station, supporting the validity of the approach under 263 
changing conditions (Fig. 2c; Fig. S4). It is worth noting that these relations are based on 264 
historical observations and thus comprise observed changes in both dynamics and 265 
thermodynamics. 266 

The observed constraints imply that changes in the median intensity are linked to 267 
contrasting changes in extremes, i.e., decreasing median intensity decreases the precipitation 268 
amount yielded by typical ordinary events (Fig. 2d, e) but increases the probability associated 269 
with the largest events, and vice versa (Fig. 2f). This counter-intuitive behaviour is consistent 270 
with previous theory and observations of extreme precipitation, and supports the local constraints 271 
approach as a framework for quantifying changes in extremes (O’Gormann and Schneider, 2009; 272 
Pendergrass, 2018; Pendergrass and Knutti, 2018; Myhre et al., 2019; Wasko et al., 2018).  273 
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 274 
Figure 2. Local constraints on the intensity distribution of ordinary precipitating events. (a, b) Scatter 275 
plots of the shape (𝜅) and scale (𝜆) parameters of the observed distributions for the two types of ordinary 276 
events; colours refer to the five groups of stations as in Fig. 1a. (c) Example of the local constraint (Type-277 
1, northern coast); triangles represent the median (among stations) parameters obtained in the split-sample 278 
test using, for each station, groups of five non-consecutive years with increasing median intensity of the 279 
ordinary events; triangles thus represent historical variations of intensity. Local constraints for all cases 280 
are shown in Fig. S4. (d) Schematic of the projection of changes in the intensity distribution of the 281 
ordinary events along the constraints (𝛼 = 0.3, 𝜆 = 11.0, 9.0, 7.0 mm day-1 and 𝜅 = 0.8, 0.74, 0.66; 282 
black, blue and cyan, respectively); (e) event exceedance probability distributions associated with the 283 
three pairs of scale and shape parameters shown in (d); (f) the largest 1% of the events in these 284 
distributions.  285 

4.2 Projections of future extremes  286 

The sensitivity of extreme return levels to changes in the ordinary events (Fig. S5; Fig. 287 
S6) highlights that different return levels can have different responses, and that the local 288 
sensitivities associated with each event type can differ significantly. For example, in most of the 289 
region return levels are tied to changes in intensity and number of Type-1 events, while changes 290 
in Type-2 are crucial drivers for extreme return levels in the desert areas (Fig S5). Local changes 291 
in extreme return levels are thus related to mean (or median) changes in precipitation in a 292 
complex manner. 293 
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The projected changes in occurrence frequency of the two types (25% decrease and 13% 294 
increase, respectively) and intensity (20-25% and 12% decrease, respectively), yield the changes 295 
in the extreme return levels shown in Fig. 3 (see Fig. S7 for more details). An overall 5-20% 296 
decrease of the 2-year return levels is seen, driven by the decrease in the occurrence frequency of 297 
Mediterranean cyclones and in the median intensity of both types of systems. Since in the 298 
climatological setting of the region 2-year return levels roughly correspond to 99th wet-day 299 
percentiles, this is consistent with previous results based on downscaling methods (Hochman et 300 
al, 2018b). The picture is drastically different for the 100-year return levels which could not be 301 
assessed in previous studies. Along the coast and in the southern desert, the negative sensitivity 302 
to changes in the median intensity (Fig. S5; Fig. S6) dominates, and the rarest extremes are 303 
projected to increase, consistently with Fig 2f. These results imply two adverse effects: (i) 304 
amplified water scarcity and reduced flood and landslide risks in most of the region (Alpert et al., 305 
2002; Samuels et al., 2009; Peleg et al., 2015); and (ii) increased intensity of the most severe 306 
events along the coast and southern deserts, associated with augmented risk of extreme pluvial 307 
flooding in coastal cities, and of flash floods, debris flows and geomorphic responses in the 308 
southern deserts (Shmilovitz et al., 2020; Rinat et al., 2020).  309 

 310 

 311 
Figure 3. Projected changes in extreme precipitation return levels. Projected changes in 2-year and 100-312 
year return levels (50% and 1% yearly exceedance probability, respectively) for the end of the century 313 
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(difference between ~2080-2100 and ~1980-2005) under the RCP8.5 emission scenario. (a) Distribution 314 
of the projected change and relative uncertainty (90% confidence interval considering uncertainties both 315 
in climate projections and local constraints) shown as transposed cumulative distributions; colours refer to 316 
the five groups of stations as in Fig. 1a. (b-c) Map of the projected changes for the 2-year (b) and 100-317 
year (c) return levels. 318 

5 Discussion and conclusions 319 
In the south-eastern Mediterranean, the dominance of two precipitating systems and the 320 

availability of high-density local data makes it possible to simplify the statistical description of 321 
ordinary precipitation events, and therefore of extreme events that emerge as the tails of their 322 
distributions. Previous studies on the water resources of the region projected a “less rainfall, 323 
more extremes” situation, with increased extremes insufficient to impact water resources in 324 
generally drying conditions. However, these previous studies could not quantify changes in 325 
extreme return levels and therefore risk (Alpert et al., 2002; Peleg et al., 2015). Combining 326 
information on the occurrence frequency and intensity of the two dominant precipitation types 327 
from ESM projections and observational constraints from rain stations, we show that the changes 328 
in extreme return levels strictly depend on the sought probability. A tendency towards a general 329 
decrease in the intensity of the 2-year events is found, together with an increase of the most 330 
severe (100-year) events along the coast and in the desert areas.  331 

The robustness of the synoptic variations in the RCP8.5 scenario in the region (Hochman 332 
et al., 2018a; Zappa et al., 2015) and of the local constraints (Fig. S6), demonstrate the reliability 333 
of the proposed approach and the local projected response. Nevertheless, our predictions may be 334 
refined by analysing additional scenarios and local data. It is plausible that similar improvements 335 
in the projection of extremes can be made in other regions, even though projected changes in the 336 
synoptic circulation systems might me less robust (Shepherd, 2014), calling for specific efforts to 337 
narrow this source of uncertainty. Additionally, future climate might reach some tipping point 338 
after which the observational local constraints may no longer hold, a possibility that could be 339 
tested using long simulations from convection-permitting models. For example, new synoptic 340 
systems could be introduced in the region (such as tropical-like cyclones), or the track of existing 341 
systems could change to such a degree that the interactions with local features might change 342 
substantially, thus deviating from the observed constraints (e.g. northward shift of Mediterranean 343 
cyclones track). Our results, which pertain to daily precipitation, assume no change in the spatial 344 
structure of precipitation events at scales smaller than the resolutions of the used climate models. 345 
Improvements in the statistical description of the precipitating systems at multiple temporal and 346 
spatial scales derived from observations and/or convection permitting models could fill this gap 347 
by quantifying their structural response to external forcing (Cannon and Innocenti, 2019; Wasko 348 
et al., 2016; Peleg et al., 2018; Marra et al., 2020b).  349 

In contrast to traditional methods, the local constraints approach does not require long 350 
records; rather, it only requires local observations of ordinary events to constrain the intensity 351 
distributions. To this end, remotely sensed precipitation datasets represent a promising source of 352 
information for ungauged areas (Marra et al., 2019b). While uncertainty in ESMs remains a 353 
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significant challenge to the community (Palmer and Stevens, 2019), our results point to increased 354 
investment in local measurements as an actionable and promising path to reduced uncertainty in 355 
the projection of extremes, independent of climate modelling efforts. 356 

The framework can be extended to other processes whose extremes emerge from 357 
underlying distributions of ordinary events, such as extremes emerging from the combination of 358 
different physical phenomena, e.g. winds and storm surges from different types of cyclones 359 
(Miniussi et al., 2020; Cavicchia et al., 2020)0. Similarly, it can be applied to phenomena whose 360 
intensity and occurrence may change independently, e.g. occurrence and maximum lifetime 361 
intensity of tropical cyclones (Knutson et al., 2010). In regions where local constraints can be 362 
obtained, the approach proposed here can improve the predictability of climate change impact on 363 
extremes at scales relevant for impact studies, whose uncertainty was previously considered 364 
irreducible due to modelling uncertainty and natural variability. 365 
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Code Alpert et al. (2004) Precipitation type in this study 

1 Red Sea Trough with the Eastern axis 2 
2 Red Sea Trough with the Western axis 2 
3 Red Sea Trough with the Central axis 2 
4 Persian Trough (Weak) 3 
5 Persian Trough (Medium) 3 
6 Persian Trough (Deep) 3 
7 High to the East 3 
8 High to the West 3 
9 High to the North 3 

10 High over Israel (Central) 3 
11 Low to the East (Deep) 1 
12 Cyprus Low to the South (Deep) 1 
13 Cyprus Low to the South (Shallow) 1 
14 Cyprus Low to the North (Deep) 1 
15 Cyprus Low to the North (Shallow) 1 
16 cold Low to the West 1 
17 Low to the East (Shallow) 1 
18 Sharav Low to the West 2 
19 Sharav Low over Israel (Central) 2 

Table S1. Synoptic systems in the semi-automatic classification by Alpert at al. (2004) and 
corresponding precipitation types used in this study, as follows: (1) Type-1 (Mediterranean 
cyclones), (2) Type-2 (other type of systems), (3) individually examined and labelled as Type-1 if 
occurring up to 2 days after a Type-1 wet day, and as Type-2 in the remaining cases 
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Figure S1. Mean annual precipitation. (a) Mean annual precipitation in the south-eastern 
Mediterranean. Precipitation is mainly contributed by Mediterranean cyclones (Type-1) as 
shown in the other panels. (b) Relative contribution to the mean annual precipitation from Type-
2 events. Average yearly number of Type-1 (c) and Type-2 (d) wet days. 
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Figure S2. (a) Distribution of return levels and relative uncertainty (90% confidence interval from 
103 bootstrap samples with replacement among the years in the record) shown as transposed 
cumulative distributions; colors refer to for the five groups of stations in Fig. 1a. (b, c) Map of 
the 10-year (c) and 50-year (d) return levels (10% and 2% yearly exceedance probability). 
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Figure S3. Extreme return levels computed using traditional approaches. Two-year and 100-year 
return levels (50% and 1% yearly exceedance probability) for daily precipitation amounts 
computed using traditional methods based on extreme value theory: a Generalized Extreme 
Value distribution is fitted to the annual maxima series using the method of the L-moments 
(Hosking, 1990). (a) Distribution of return levels and relative uncertainty (90% confidence 
interval from 103 bootstrap samples with replacement among the years in the record) shown as 
transposed cumulative distributions; median uncertainty of 17% (39%) for 2-year (100-year) 
return levels. The colors of the five groups of stations are as in Fig. 1a. (b, c) Map of the 2-year 
(c) and 100-year (d) return levels (50% and 1% yearly exceedance probability). Note the larger 
spatial variability (noise) of the return levels relative to Fig. 1, reflecting the largely increased 
uncertainty characterizing traditional methods based on the analysis of observed extremes 
(here, the annual maxima). 
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Figure S4. Local constraints of the parameters of the intensity distribution of the ordinary 
events. Scatter plot of the scale (λ) and shape (κ) parameters of the observed Weibull 
distributions for the two types of ordinary events and for the five groups of stations; colors as in 
Fig. 1a. The regressions used to define the local constraints (α coefficients) are shown as dashed 
lines. Triangles represent the median (among stations) parameters obtained using, for each 
station, groups of five non-consecutive years with increasing median intensity of the ordinary 
events. 
  



 
 

7 
 

 
Figure S5. Sensitivity of extreme return levels to changes in the average characteristics of 
ordinary events. Sensitivity of 2-year (a-d) and 100-year (e-h) return levels (50% and 1% yearly 
exceedance probability) to changes in median intensity (𝐼) and expected number of yearly 
occurrence (𝑛) of the two types of ordinary events. The sensitivity or extreme return levels 𝑥(𝑝) 
to changes in the median intensity and in the expected number of ordinary events is computed 
numerically using the partial derivatives of 𝑥(𝑝) = 𝜁()*)(𝑝; 𝐼*, 𝑛*; 𝐼-, 𝑛-) with respect to the 
four variables, i.e., ./(0)

.12
, ./(0)
.13

, ./(0)
.42

	, and ./(0)
.43

. Units of change in 𝑥 per 1% change in the 

predictor are quantified. The figure highlights two important points. First, different return levels 
can have different responses. Since practical applications rely on different return levels, this 
implies that the potential impact of climate change strongly depends on the application of 
interest. For instance, sewer systems are generally designed to be overtopped not more than 
once in 2-5 years. In contrast, dams, bridges and river dikes are designed for much lower 
probabilities of failure (e.g., 100- or even 1000-year). Second, the local sensitivities associated 
with each type of event can differ significantly. Therefore, local changes in extremes are related 
to mean (or median) changes in precipitation in a complex manner. 
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Figure S6. Sensitivity of extreme return levels to changes in the ordinary events. Distribution of 
the sensitivity of 2-year and 100-year return levels to changes in the average characteristics of 
the two types ordinary events shown as transposed cumulative distributions; uncertainties in 
the sensitivity to the median intensities are computed as 90% confidence interval of the local 
constrains (90% confidence interval of the 𝛼 coefficients). (a) Sensitivity to the Type-1 intensity. 
(b) Sensitivity to the Type-1 yearly number of events. (c) Sensitivity to the Type-2 intensity. (d) 
Sensitivity to the Type-2 yearly number of events. 
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Figure S7. Projected changes in extreme precipitation return levels (RCP8.5 emission scenario; 
10-year and 50-year return levels). Projected changes in 10-year and 50-year return levels (10% 
and 2% yearly exceedance probability) for the end of the century (difference between ~2080-
2100 and ~1980-2005) under the RCP8.5 emission scenario. (a) Distribution of the projected 
change and relative uncertainty (90% confidence interval considering uncertainties in climate 
projections and local constraints) shown as transposed cumulative distributions; colors as in Fig. 
1a. (b-c) Map of the projected change for the 10-year (b) and 50-year (c) return levels. 
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