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Abstract

Reliable precipitation estimates are a crucial backbone for supporting hydrologic modeling and other geophysical applications.

However, watersheds that extend across international boundaries or those that contain large bodies of water pose particular

challenges to acquiring consistent and accurate precipitation estimates. The North American Great Lakes basin is characterized

by both of these features, which has led to long-standing challenges to water budget analysis and hydrologic prediction. In

order to provide optimal conditions for hydrologic model calibration, retrospective analyses, and real-time forecasting, this study

comprehensively evaluates four gridded datasets over the Great Lakes basin, including the Analysis of Record for Calibration

(AORC), Canadian Precipitation Analysis (CaPA), Multi-sensor Precipitation Estimate (MPE), and a merged CaPA-MPE data

set, in which these products are analyzed at multiple spatial and temporal scales using station observations and a statistical

water balance model. In comparison with gauge observations from the Global Historical Climatology Network Daily (GHCN-

D), gridded datasets generally agree with ground observations, however the international border clearly delineates a decrease

in gridded precipitation accuracy over the Canadian portion of the basin. Analysis reveals that rank in gridded precipitation

accuracy differs for overland and overlake regions, and between colder and warmer months. Overall, the AORC has the lowest

variance compared to gauge observations and has greater performance over temporal and spatial scales. While CaPA and

AORC may better capture atmospheric dynamics between land and lake regions, comparison with a statistical water balance

model suggests that AORC and MPE provide the best estimates of monthly overlake precipitation.
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Key Points: 15 

 Comprehensively evaluated four gridded precipitation datasets over international basins 16 

and large bodies of water. 17 

 Analyzed at multiple spatial and temporal scales using station observations and a 18 

statistical water balance model. 19 

 Results reveal discrepancies between precipitation options and provide insight into 20 

potential downstream impacts to hydrologic modeling. 21 

  22 
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Abstract 23 

Reliable precipitation estimates are a crucial backbone for supporting hydrologic modeling and 24 

other geophysical applications. However, watersheds that extend across international boundaries 25 

or those that contain large bodies of water pose particular challenges to acquiring consistent and 26 

accurate precipitation estimates. The North American Great Lakes basin is characterized by both 27 

of these features, which has led to long-standing challenges to water budget analysis and 28 

hydrologic prediction. In order to provide optimal conditions for hydrologic model calibration, 29 

retrospective analyses, and real-time forecasting, this study comprehensively evaluates four 30 

gridded datasets over the Great Lakes basin, including the Analysis of Record for Calibration 31 

(AORC), Canadian Precipitation Analysis (CaPA), Multi-sensor Precipitation Estimate (MPE), 32 

and a merged CaPA-MPE data set, in which these products are analyzed at multiple spatial and 33 

temporal scales using station observations and a  statistical water balance model. In comparison 34 

with gauge observations from the Global Historical Climatology Network Daily (GHCN-D), 35 

gridded datasets generally agree with ground observations, however the international border 36 

clearly delineates a decrease in gridded precipitation accuracy over the Canadian portion of the 37 

basin. Analysis reveals that rank in gridded precipitation accuracy differs for overland and 38 

overlake regions, and between colder and warmer months. Overall, the AORC has the lowest 39 

variance compared to gauge observations and has greater performance over temporal and spatial 40 

scales. While CaPA and AORC may better capture atmospheric dynamics between land and lake 41 

regions, comparison with a statistical water balance model suggests that AORC and MPE 42 

provide the best estimates of monthly overlake precipitation. 43 

 44 

1 Introduction 45 

Precipitation is a vital component of the water cycle and is the variable most commonly 46 

associated with atmospheric circulation in weather and climate research. Accurate and reliable 47 

precipitation estimates are crucial for a comprehensive understanding of the climate and of the 48 

hydrological cycle, as well as the proper management of water resources, agriculture, and 49 

disaster management (C. Kidd et al., 2012; Sun et al., 2018). 50 

Numerous precipitation datasets are accessible at regional and global scales, and each can 51 

be classified into one of the three categories: gauge-based datasets, satellite estimates or 52 

reanalysis products (Sun et al., 2018; Tapiador et al., 2012). Gauge-based datasets provide 53 

reliable precipitation estimates for specific locations, and provide ground-truth information to 54 

evaluate other precipitation products (Khandu et al., 2016; Salio et al., 2015). The shortcomings 55 

of gauge-based datasets are the poor spatial representation of precipitation patterns (owing to 56 

poor spatial coverage of observation stations, especially in sparsely populated and over large 57 

inland water bodies), and many gauges have not operated continuously or concurrently (Cole & 58 

Moore, 2008; Chris Kidd et al., 2017). Satellite estimates address these limitations, and can 59 

provide precipitation information at high spatial and temporal resolutions, moreover, 60 

precipitation information from different satellite sources (visible/infrared imagery, passive 61 

microwave) are often combined and blended with gauge-based data to improve accuracy (Duan 62 

et al., 2016; Maggioni & Massari, 2018). The final category, reanalysis products, includes 63 

datasets generated from numerical models that combine satellite and ground observations in 64 

order to generate a synthesized precipitation estimate which is consistent with the observations 65 

(Tapiador et al., 2012). Reanalysis products can provide spatially and temporally homogenous 66 
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data that amalgamates all of the available high-quality observations, however, its reliability can 67 

vary substantially across different locations and time periods due to the quality and coverage of 68 

assimilated datasets (Sun et al., 2018). As a result, it is important to assess the accuracy of 69 

satellite and reanalysis datasets prior to any hydroclimatic applications. 70 

Evaluation of precipitation estimates is particularly important in hydrologic modeling 71 

(Henn et al., 2018), as errors and biases in precipitation forcing can significantly impact model 72 

calibration and regionalization (Renard et al., 2010). The need for precipitation evaluation is 73 

even more crucial over watersheds that contain large inland lakes. Developing accurate 74 

precipitation estimates across these watersheds is difficult because simulation of physical 75 

processes across these massive freshwater surfaces is a challenging component in regional 76 

climate models (Xiao et al., 2016), and also because there is a lack of measurements over the 77 

lake (Holman et al., 2012). Moreover, many continental-scale precipitation datasets are 78 

susceptible to variations in monitoring infrastructure and data dissemination protocols when 79 

watershed, political, and jurisdictional boundaries do not align, that may cause unreliable and 80 

discontinuous precipitation data over international basins (Andrew D. Gronewold et al., 2018). In 81 

these regards, the Laurentian Great Lakes basin is a unique representation of the challenges 82 

facing precipitation data development: (i) four of the five Great Lakes and sub-basins are 83 

bisected by the international border between the United States and Canada; (ii) the vast surface 84 

waters represent 32% of the total basin area, equaling 245,310 km
2
 (Hunter et al., 2015). No 85 

other basin in North America poses the same combination of precipitation data development 86 

challenges. 87 

Recent studies by Great Lakes binational ad hoc federal partnerships indicate that the 88 

Canadian Precipitation Analysis (CaPA; Fortin et al., 2015) and Multi-sensor Precipitation 89 

Estimate (MPE) (D. Kitzmiller et al., 2013) data are the two most promising sources of 90 

precipitation for long term application to the region (Andrew D. Gronewold et al., 2018). Both 91 

products combine gauge and radar data to provide a best estimate of precipitation in near-real 92 

time, while CaPA also relies on the Global Environmental Multiscale (GEM) model (Côté, 93 

Desmarais, et al., 1998; Côté, Gravel, et al., 1998). In an effort to leverage the quality of these 94 

products, the Midwestern Regional Climate Center (MRCC) recently led the development of a 95 

binational precipitation product that merges CaPA and MPE data over the Great Lakes basin 96 

(referred to herein as “Merged”), relying on CaPA over Canadian land, MPE over land in the 97 

United States, and an arithmetic average of CaPA and MPE over the lake surface (Andrew D. 98 

Gronewold et al., 2018). These datasets are potentially beneficial for operational applications and 99 

water budget analysis. 100 

Operational hydrologic prediction requires accurate precipitation data for model 101 

calibration and real-time forecasts. The National Oceanic and Atmospheric Administration 102 

(NOAA) National Water Model (NWM) has been deployed operationally as the framework for 103 

water prediction across the United States since 2016 (Alcantara et al., 2018). For version 2.1 of 104 

the NWM, calibration was performed using the Analysis of Record For Calibration (AORC), a 105 

reanalysis high-resolution dataset of near-surface weather based on surface, radar, and satellite 106 

observations (D. H. Kitzmiller et al., 2018). Nevertheless, no precipitation assessment of the 107 

AORC over the international Great Lakes basin exists. In fact, a comprehensive assessment of 108 

available precipitation data sets for the Great Lakes region has not been carried out despite the 109 

importance of overlake precipitation to provide reliable estimates for regional water accounting 110 

(Holman et al., 2012). This study fills in this gap by comprehensively evaluating four gridded 111 
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datasets (AORC, MPE, CaPA, Merged MPE-CaPA), at multiple spatial (overland, overlake, sub-112 

basin, country) and temporal (daily, monthly, annual) scales. The analysis aims to bring new 113 

insights into the performance of various precipitation products over large water bodies and 114 

across international boundaries, and contributes to the guidance of selecting precipitation 115 

products for operational development and for water practitioners across the regions.  116 

In this paper, we first describe the study area and the precipitation datasets that we 117 

compare over the Great Lakes basin (Section 2). We then present the evaluation methods and 118 

statistical metrics used to assess the performance of different precipitation products (Section 3). 119 

Each precipitation product was then compared with gauge-based estimates, overland average and 120 

overlake averages across each of the sub-basins (Section 4). Furthermore, we discuss issues 121 

related to data consistency and accuracy, and make suggestions about data improvement and 122 

operational applications (Section 5). Finally, conclusions and perspectives are summarized in 123 

Section 6. 124 

 125 

2 Study area and precipitation datasets 126 

2.1 Study area 127 

The North American Laurentian Great Lakes collectively constitute the largest freshwater 128 

surface (and second largest volume) on the planet (Andrew D. Gronewold et al., 2013). It 129 

contains nearly 20% of Earth's fresh unfrozen surface water (approximately 23,000 km3), and, 130 

with their surrounding basin, cover an area of about 766,000 km2 across the United States and 131 

Canada (Hunter et al., 2015) (Fig. 1). The Great Lakes basin forms a chain connecting the east-132 

central interior of North America to the Atlantic Ocean. From the interior to the outlet at 133 

the Saint Lawrence River, water flows from Superior to Huron and Michigan, southward to Erie, 134 

and finally northward to Lake Ontario, which outflows to the St. Lawrence River. 135 

Based on hydrological characteristics, the Great Lakes basin can be divided into four 136 

different sub-basins, including Superior, Michigan-Huron, Erie and Ontario (Fig. 1). Moreover, 137 

the sub-basins are divided among the jurisdictions of the Canadian province of Ontario and eight 138 

U.S. states (Michigan, Wisconsin, Minnesota, Illinois, Indiana, Ohio, Pennsylvania, and New 139 

York). 140 

 141 

Table 1.  Lake and land surface area for each hydrologic basin and the entire Great Lakes basin.  142 

The percent contribution of lake and land surfaces to each sub-basin is also indicated (Hunter et 143 

al., 2015). 144 

Sub-basin 
Sub-basin area 

(km²) 

Lake surface area 

(km²) 

Land surface area 

(km²) 

Superior 210,000 82,100  (39%) 128,000 (61%) 

Michigan-Huron 369,400 117,400 (32%) 252,000 (68%) 

Erie 103,510 26,810 (26%) 76,700 (74%) 

Ontario 83,000 19,000 (23%) 64,000 (77%) 

Total 766,010 245,310 (32%) 520,700 (68%) 

 145 

https://en.wikipedia.org/wiki/Saint_Lawrence_River
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 146 
Fig. 1.  The Great Lakes basin, 632 selected rain gauge stations, and delineation of four major 147 

hydrologic sub-basins: Superior (blue), Michigan-Huron (yellow), Erie (green), and Ontario 148 

(red). Lakes (light-blue). The solid black line indicates the USA/CAN border. 149 

 150 

2.2. Datasets 151 

This section briefly describes the four high resolution gridded precipitation products 152 

evaluated in this study (AORC, MPE, CaPA, Merged), and the reference data, which includes 153 

rain gauge observations from the Global Historical Climatology Network Daily database 154 

(hereafter referred to as GHCN-D) and sub-basin scale estimates of overlake and overland 155 

precipitation based on the gauge data (GLM-HMD). The analysis is performed from 2010 to 156 

2019 for evaluating the data performance of recent 10 years. Table 2 summarizes the 157 

characteristics of the different precipitation datasets. 158 
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 159 

Table 2.  Characteristics of the four gridded and two gauge based precipitation datasets over the 160 

Great Lakes region analyzed in this study. 161 

Dataset Citation 
Spatial 

resolution 

Finest 

temporal 

resolution 

Coverage 
Precipitation data 

sources
1
 

AORC 

(D. H. 
Kitzmiller et 

al., 2018) 
1km  1-Hourly 

Super-

CONUS
2
 

PRISM, (Livneh et 
al., 2015), 

NLDAS2, CFSR, 

MDR, WSI, NCEP 

(Stage II, IV) 

CMORPH 

 

MPE 
(D. Kitzmiller 
et al., 2013) 

4 km 1-Hourly 
Super-

CONUS 

HADS, MADIS, 

WSR-88D, space-

based estimates 

from NESDIS 

 

CaPA 
(Lespinas et 

al., 2015) 
10 km 6-Hourly 

North 

America  

SYNOP, METAR, 

RMCQ, SHEF, 

GOES, GEM 

 

Merged 

CaPA-MPE 

(Andrew D. 
Gronewold 
et al., 2018) 

10 km Daily 
North 

America  
CaPA, MPE 

GHCN-D 
(Menne et 
al., 2012) 

Stations Daily Global Gauge stations 

                                                           
1
PRISM: Parameter elevation Regression on Independent Slopes Model;  

NLDAS2: North American Land Data Assimilation System Forcing Fields Version 2;  

CFSR: Climate Forecast System Reanalysis; 

MDR: Manually-Digitized Radar;  

WSI: Weather Services International;  

NCEP: National Centers for Environmental Prediction;  

CMORPH: Climate Prediction Center MORPHing technique;  

HADS: Hydrometeorological Automated Data System;  

MADIS: Meteorological Assimilation Data Ingest System; 

WSR-88D: Weather Surveillance Radar-1988 Doppler;  

NESDIS : National Environmental Satellite, Data, and Information Service; 

SYNOP: Manual and automatic synoptic stations; 

METAR: Aviation routine weather report; 

RMCQ: Réseau Météorologique Coopératif du Québec; 

SHEF: Standard Hydrometeorological Exchange Format; 

GOES: Geostationary Operational Environmental Satellites; 

GEM:  Global Environmental Multiscale Model;  
2 “Super-CONUS” domain includes all contributing areas for contiguous U.S. surface waters. 
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GLM-HMD 
(Hunter et 
al., 2015) 

Interpolation 

of stations 

across 

basin-scale 

Daily 
Great Lakes 

basin 
GHCN-D 

 162 

2.2.1. AORC 163 

Developed by the NOAA National Weather Service (NWS), the AORC surface 164 

precipitation is a reanalysis dataset that covers southern Canada, the contiguous United States, 165 

and northern Mexico. The domain includes all contributing areas for contiguous U.S. surface 166 

waters and is also referred to as the “Super-CONUS” region (D. H. Kitzmiller et al., 2018). It 167 

covers the period from 1979, at a time interval of 1 hour, with a grid resolution of approximately 168 

1 km. The dataset was developed based on an approach similar to the North American Land Data 169 

Assimilation System Version 2 (NLDAS2; Xia et al. 2012), using multiple peer-reviewed and 170 

operational inputs to assimilate all weather information for forcing land-surface, snow, and 171 

hydrologic models. In order to decrease the uncertainty associated with national precipitation 172 

datasets, the AORC was officially used as the forcing data for NWM version 2.1 model 173 

calibration (Lahmers et al., 2019). 174 

2.2.2. CaPA 175 

The CaPA is a real-time gridded precipitation product provided by Environment and 176 

Climate Change Canada (ECCC). The grid has a resolution of approximately 10 km and the 177 

domain covers all of North America (Canada, USA and Mexico). It uses gauge data, radar 178 

reflectivity and the Geostationary Operational Environmental Satellite (GOES) imagery to 179 

modify a trial field provided by the GEM numerical weather prediction model using a statistical 180 

interpolation technique. The daily product has been operational since April 2011, but a hindcast 181 

starting in 2002 is available from ECCC. 182 

2.2.3. MPE 183 

The MPE (D. Kitzmiller et al., 2013) is currently used in the NWS to produce rainfall 184 

estimates that cover the 48 contiguous United States (CONUS) as well as portions of Canada and 185 

Mexico. MPE uses radar precipitation estimates from NWS and Department of Defense radars, 186 

hourly rain gage data and satellite precipitation estimates, and several other previously processed 187 

rainfall estimates, such as the NOAA National Severe Storms Laboratory (NSSL) Multi-188 

Radar/Multi-Sensor (MRMS) data. These inputs are then manually analyzed by NWS to produce 189 

the daily best precipitation estimate on a 4 km grid on a 1 hour time step. 190 

2.2.4. Merged CaPA-MPE 191 

This “Merged” dataset (denoted as ‘Mrg’ in figures) is created using both CaPA and 192 

MPE datasets.  Outside of CONUS, the CaPA data are applied at its native resolution.  Within 193 

CONUS, the MPE data is resampled from its original 4 km cell size to a 10 km cell size. For 194 

cross-boundary areas and the Great Lakes, a 10-km buffer polygon was created on either side of 195 

the boundary of CONUS and was extended across the surface of the lakes. From both input 196 

datasets, point features intersecting this polygon are selected and appended into a single point 197 

feature class.  An inverse distance weighted interpolation with a power setting of 0.5 and 10-198 



manuscript submitted to Water Resources Research 

 

point variable search radius is used to create a new raster dataset with a 10-kilometer 199 

resolution.  Finally, the interpolated raster data is mosaicked with the appropriate parts of the 200 

CaPA and resampled MPE data. The daily data is available from 2004. 201 

2.2.5. GHCN-D 202 

NOAA’s GHCN-D data (Menne et al., 2012) are used as the reference station 203 

observations. GHCN-D is comprised of daily climate records from numerous sources that have 204 

been integrated and subjected to a quality control process. A dense network of rain gauge 205 

stations is recorded in the database. A total of 3,262 stations can be identified within and up to a 206 

range of 50 km outside the Great Lakes basin. Among which, 1,284 stations contain records after 207 

2010 and we selected 632 stations that met our 90% temporal coverage threshold for the period 208 

of 2010 – 2019. The spatial distribution of these 632 stations are shown in Fig. 1. Rain gauges 209 

are particularly sparse over the northern part of the Superior and Michigan-Huron sub-basins, 210 

where the population density is low. Moreover, no station records can be found over the lakes 211 

themselves. This highlights the need for reliable alternative precipitation datasets to enhance 212 

understanding of water-related aspects of the whole basin, which is one motivation of this 213 

current study. 214 

2.2.6. GLM-HMD 215 

The NOAA Great Lakes Environmental Research Laboratory (GLERL) 216 

Hydrometeorological Database (GLM-HMD; Hunter et al., 2015) is used as the reference for 217 

evaluation of overlake and overland precipitation at the scale of each sub-basin (hereafter 218 

denoted as HMD in figures). GLM-HMD daily data are available at the site: 219 

https://www.glerl.noaa.gov/ftp/publications/tech_reports/glerl-083/UpdatedFiles/daily/. GLM-220 

HMD uses GHCN-D and applies a modified version of conventional Thiessen weighting 221 

interpolation method (Croley & Hartmann, 1985) to calculate both daily overlake and overland 222 

precipitation estimates for each hydrologic sub-basin. 223 

 224 

3 Evaluation methods 225 

3.1. Comparisons with gauge observations 226 

As described in the above sections, 632 GHCN-D gauge observations (Fig. 1) are used in 227 

this study to evaluate the AORC, MPE, CaPA and Merged products. Since these gauge stations 228 

are highly irregularly distributed over the Great Lakes basin, in order to avoid errors related to 229 

upscaling and interpolation methods (Hofstra et al., 2008), we directly carry out the grid-point 230 

comparisons of the gridded data and point observations. For each data product, we extracted 231 

precipitation from the grid cells that have the centroid closest to the rain gauge geographical 232 

coordinates. Together with gauge-based records, these time series form the product-gauge data 233 

pairs for evaluation. We analyzed biases, errors and correlations of each data product relative to 234 

gauge-based precipitation (from 2010 to 2019) using three experiment settings: (i) overall 235 

performance at the daily resolution across all stations; (ii) performance across different months 236 

of the year across all stations; and (iii) performance over the U.S. and Canadian portions of the 237 

basin over both daily and monthly resolutions. 238 

https://www.glerl.noaa.gov/ftp/publications/tech_reports/glerl-083/UpdatedFiles/daily/
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Three commonly used statistical metrics were applied to analyze these product-gauge 239 

data pairs, including the Mean Absolute Error (MAE) to describe the discrepancies, the Percent 240 

Bias (PBias) showing the relative bias, and the coefficient of determination (R2) to represent the 241 

degree of collinearity. MAE, PBias, and R2 are defined as follows: 242 

𝑀𝐴𝐸 =
1

𝑛
 ∑ |(𝑃𝑖 − 𝐺𝑖)|

𝑛

𝑖=1
                                 (1) 

𝑃𝐵𝑖𝑎𝑠 = 100 ×
∑ (𝑃𝑖 − 𝐺𝑖)𝑛

𝑖=1

∑ 𝐺𝑖
𝑛
𝑖=1

                            (2) 

𝑅2 =
∑ (𝑃𝑖 − �̅�)(𝐺𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝐺𝑖 − �̅�)2𝑛

𝑖=1

              (3) 

 243 

Where 𝑛 refers to the number of product-gauge data pairs; 𝑃𝑖 and 𝐺𝑖 represent the daily 244 

rainfall values of product and gauge, respectively; �̅� and �̅� are the mean value of product and 245 

gauge precipitation, respectively. 246 

3.2. Comparing overland and overlake precipitation at sub-basin scale 247 

As shown in Table. 1, lake surface area represents an important portion of the Great 248 

Lakes basin. We separately compute the daily mean of overland and overlake precipitation 249 

across each of the four hydrologic sub-basins by taking the averaged value of all grid cells within 250 

the polygon of the corresponding lake surface. This average is calculated using the command 251 

line tool (github.com/isciences/exactextract), which handles grid-cell size inconsistency and 252 

grid-cell/polygon intersection in a very precise manner. The GLM-HMD dataset is used as the 253 

reference data. Inter-comparisons of these datasets at sub-basin scales can provide information 254 

for calibration and uncertainty analysis of hydrological models. The same metrics of gauge-255 

based evaluation (described in section 3.1) were then used to assess the performance of each 256 

gridded product over the land and lake portions of each hydrologic sub-basin. 257 

3.3. Overlake precipitation analysis based on water balance closure 258 

Since very few direct measurements of overlake precipitation are available, the accuracy 259 

of precipitation estimates over large lakes is not well understood (Holman et al., 2012; Xiao et 260 

al., 2016). In addition, previous studies also showed that overlake precipitation derived from 261 

existing precipitation datasets may be associated with high uncertainty and thus are not able to 262 

reconcile the water balance over multiple time period (A. D. Gronewold et al., 2016). In this 263 

study, we apply the Large Lake Statistical Water Balance Model (L2SWBM) (Do et al., 2020; 264 

Andrew D. Gronewold et al., 2020) to analyze the fidelity of different overlake precipitation 265 

estimates in the context of closing the water balance. 266 

The L2SWBM assimilates multiple data sources into a Bayesian Marko chain Monte 267 

Carlo routine to infer feasible ranges of the major components (e.g. lake storage, overlake 268 

evaporation, inflow runoffs, overlake precipitation, etc.) of the water balance for each of the 269 

Great Lakes. To ensure the new estimates can reconcile the water balance over multiple periods, 270 

L2SWBM uses a conventional water balance equation to constrain the posterior inference. For 271 

https://github.com/isciences/exactextract
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this study, we run the L2SWBM for all of the Great Lakes from 2010 to 2019, while historical 272 

data from 1950 to 2009 were used to derive the “prior beliefs” of the possible ranges. In addition 273 

to the four datasets being evaluated, GLM-HMD precipitation was also assimilated in our 274 

simulations. For the other components of the water balance (i.e. lake levels, overlake 275 

evaporation, runoff and connecting channel flows), we used a database that was synthesized by 276 

the Coordinating Committee for Great Lakes Basic Hydrologic and Hydraulic Data (Do et al., 277 

2020). The reliability of different gridded datasets (AORC, MPE, CaPA, Merged) can be 278 

assessed by comparing their overlake precipitation with the L2SWBM posterior inference of 279 

precipitation for each lake. 280 

 281 

4. Results 282 

4.1. Comparison of precipitation products with rain gauge observations 283 

4.1.1. Evaluation at daily time steps and transboundary impacts 284 

Across all 632 rain gauges over the entire Great Lakes basin, boxplots of MAE, PBias, 285 

and R2 reveal discrepancies between the four gridded precipitation products and the observed 286 

precipitation for the period 2010 to 2019. The range of median values for these metrics across 287 

different datasets are: MAE around 2 mm/day, PBias in the range of ±5 %, and R2 between 0.6 288 

and 0.8. Compared to existing studies (Duan et al., 2016; Sun et al., 2018), these results indicate 289 

a reasonable agreement between all evaluated products and the GHCN-D gauge observations. 290 

However, differences can be found between precipitation products as well. For instance, CaPA 291 

slightly underestimates the GHCN-D data, while the other datasets overestimate (Fig. 2b). 292 

Furthermore, although the AORC dataset seems to have the poorest performance according to 293 

these median values, its performance is less dispersed across different rain gauge stations (i.e. 294 

AORC has a smaller interquartile range), suggesting a better consistency across spatial scales for 295 

the entire basin. 296 

Spatial variation of the performance of different gridded products is illustrated by maps 297 

of statistical metrics for the entire set of selected rain gauge stations over the period of 298 

evaluation, 2010 – 2019 (Fig. 3, S1, S2). Among these 632 stations, 529 stations are located in 299 

U.S., and 103 stations are situated in Canada. Using this division across the international 300 

boundary, MAE, PBias and R2 are calculated separately for stations located in the U.S. and 301 

Canada (Fig. 4). In general, metrics reveal the datasets perform better in the U.S. portion of the 302 

basin, with lower MAE and R2 relative to evaluation at Canadian stations. Similar to what was 303 

noted above, CaPA tends to underestimate on both sides of the border, whereas the other 304 

products tend to overestimate precipitation on the U.S. side and underestimate on the Canadian 305 

side (Fig. 3, 4b). However, these differences may derive from different protocols for generating 306 

and adjusting GHCN-D data for Canadian stations rather than an indication of poor skill of the 307 

various products; this issue is further discussed in Section 5. 308 

The boxplots of MAE (Fig. 4a) and R2 (Fig. 4c) confirm the consistency of the AORC, 309 

with R2 values from 0.6 to 0.8 for U.S. stations and from 0.4 to 0.6 for Canadian stations. Again, 310 

the other datasets have larger interquartile ranges, varying from 0.4 to 0.8 for U.S. stations and 311 

from 0.2 to 0.4 for Canadian stations. However, the relative higher MAE and lower R2 for the 312 

AORC reported in Fig. 2a, c is driven by higher errors on the U.S. side as compared to the other 313 
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products, whereas it actually outperforms the others on the Canadian side. In terms of PBias, Fig. 314 

4b indicates that CaPA and Merged datasets have the best performance with no considerable 315 

difference found between U.S. and Canadian gauges. Yet, considering the MAE values for CaPA 316 

and Merged datasets, this suggests that large positive and negative biases exist for specific 317 

Canadian rain gauge stations. 318 

 319 

Fig. 2.  Boxplots (median, 25th/75th percentiles, whiskers= represent the 1.5 standard deviation 320 

above and below the mean of the data) of MAE (a), PBias (b), and R2 (c) for daily precipitation 321 

at 632 rain gauge stations in the Great Lakes basin over the 2010 – 2019 period. 322 

 323 

 324 
Fig. 3.  Maps of PBias for AORC (a), CaPA (b), MPE (c), and Merged (d) at 632 rain gauge 325 

stations in the Great Lakes basin over 2010 – 2019.  326 
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 327 

  328 

Fig. 4.  Boxplots (median, 25th/75
th

 percentiles, whiskers = represent the 1.5 standard deviation 329 

above and below the mean of the data) of MAE (a), PBias (b) and R
2
 (c) of 2010 – 2019 daily 330 

precipitation at rain gauge stations located in U.S. (colored boxes) and the Canadian (white 331 

boxes) part of the Great Lakes basin. 332 

 333 

4.1.2. Seasonal and monthly variation 334 

In order to evaluate seasonal variations within gridded datasets, we first compare the 335 

accumulated monthly precipitation of each data product to the values aggregated from GHCN-D 336 

data. As shown in Fig. 5, all gridded datasets generally exhibit a seasonal pattern similar to that 337 

observed in the GHCN-D. Specifically, a lower magnitude of precipitation is observed from 338 

November to March relative to the April – October period. June is the wettest month of the year, 339 
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regardless which dataset being considered, while other summer months (July to September) have 340 

a generally lower precipitation amount relative to other wet months (i.e. April, May and 341 

October). 342 

To explore the seasonal variation of the performance of each gridded product, we also 343 

analyze MAE and PBias relative to the GHCN-D for each month separately (Fig. 6). As shown 344 

in Fig. 6a, the first and third quartiles of MAE across different datasets and gauge stations 345 

are approximately ranged from 1 to 2 mm/day for “dry” months (Nov. – Mar.); and 1 to 4 346 

mm/day for “wet” months (Apr. – Oct.). According to the results of PBias (Fig. 6b), all of the 347 

analyzed products tend to get larger positive bias in cold months (Nov. – Mar.), with higher 348 

variations among stations. Conversely, all products are more likely to have negative bias in 349 

warmer months (Apr. – Oct.), with lower spatial variations. Among these products, CaPA reveals 350 

the most significant seasonal variation. CaPA largely overestimates the GHCN-D data during 351 

Nov. – Mar.; the first and third quartiles of PBias during these months can be up to +10 % and 352 

+50 %, respectively. While CaPA significantly underestimates in summer (Jun. – Aug.), the first 353 

and third quartiles of PBias are approximately at 0 and -20 %, respectively. July is the month that 354 

CaPA records the largest negative bias compared to GHCN-D. Furthermore, the seasonal 355 

variation of AORC is less significant than other gridded products, with the median values of 356 

PBias varied from 0 to +10 % over different months, implying a better consistency at temporal 357 

scales. 358 

 359 

360 
Fig. 5.  Barplots of monthly mean precipitation at 632 rain gauge stations in the Great Lakes 361 

basin over 2010 – 2019. 362 

 363 
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 364 
Fig. 6.  Boxplots (median, 25th/75

th
 percentiles, whiskers= represent the 1.5 standard deviation 365 

above and below the mean of the data) of MAE (a), and PBias (b) for each month at 632 rain 366 

gauge stations in the Great Lakes basin over 2010 – 2019. 367 

 368 

4.2. Comparison of averaged overland/overlake precipitation at sub-basin scales 369 

To explore differences in product performance for overland and overlake regions, we 370 

compare annual, monthly, and daily accumulated precipitation for each sub-basin. Annual 371 

accumulated precipitation for overland and overlake areas of Michigan-Huron are described in 372 

Fig. 7 as an example, results for other sub-basins are presented in Fig. S3-5. In general, an 373 

increasing trend of annual precipitation from 2010 to 2019 is observed for all five precipitation 374 

datasets. This increasing trend is more pronounced in the MPE product, resulting in the highest 375 

values in 2018 and 2019. Conversely, the AORC contains the least rise in precipitation overland 376 

and CaPA the least amount of rise overlake for the Michigan-Huron sub-basin (Fig. 7), though 377 

trends are similar across other sub-basins (Fig. S3-5). In general, the interannual change in 378 

precipitation is consistent across products with the exception of the AORC, which has divergent 379 

years in Michigan-Huron, Erie, and Ontario sub-basins. Overall, the annual dynamic patterns of 380 

different datasets are similar for overland and overlake precipitation, suggesting that there is no 381 

substantial difference between overland and overlake precipitation estimates for all the evaluated 382 

products on an annual basis. 383 

 384 
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Fig. 7.  Annual averaged overland/overlake precipitation for Michigan-Huron sub-basin. Solid 385 

lines represent overland precipitation (upper subplot), and dashed lines indicate overlake 386 

precipitation (lower subplot). 387 

 388 

 389 
Fig. 8.  Averaged monthly accumulated overlake-to-overland precipitation ratio for Michigan-390 

Huron sub-basin.  391 

 392 
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Due to lake-atmospheric feedbacks, overlake precipitation across each of the Great Lakes 393 

is generally higher in cold months relative to the that of warm months (Holman et al., 2012). For 394 

testing the suitability of different datasets for this assumption, averaged monthly accumulated 395 

overlake-to-overland precipitation ratio (𝑅𝑝) is compared in Fig. 8. The Michigan-Huron sub-396 

basin is presented as an example, and results from the other sub-basins are shown in Fig. S6-8. 397 

Comparisons of 𝑅𝑝 values from different datasets indicate that CaPA reflect seasonal dynamics 398 

that are not only stronger than any other gridded datasets, but that are also much closer to the 399 

gauge-based estimations and what we might expect from a large lake-dominated system (Holman 400 

et al., 2012). More specifically, we find that the 𝑅𝑝 values for Michigan-Huron sub-basin from 401 

CaPA and GLM-HMD range from a maximum of 1.3 in January to a minimum of 0.9 in July, 402 

and are less than 1.0 from April to October. Whereas, the difference between winter and summer 403 

𝑅𝑝 values from MPE, AORC and Merged datasets are less than 0.2, and the seasonal dynamics 404 

cannot be clearly observed especially for MPE and AORC products.  405 

Table. 3 shows the degree of agreement of daily precipitation between gridded products 406 

and GLM-HMD at overland and overlake portions of each sub-basin. From the MAE and R2 407 

values, AORC fits better with GLM-HMD for most overlake and overland areas of different sub-408 

basins. This finding is consistent to the previous findings (section 4.1). Because fewer Canadian 409 

rain gauge stations are available, Canadian stations tend to carry much more weight in the 410 

interpolation procedures used by the GLM-HMD data at sub-basin scale. Moreover, as AORC 411 

agrees better with Canadian observations (as presented in Fig. 4), a better performance is 412 

observed at the sub-basin scale. In addition, the MAE values show that better agreements 413 

between gridded products and GLM-HMD can be found for Superior and Michigan-Huron than 414 

Erie and Ontario. Nevertheless, in spite of the modest MAE values (1 – 2 mm/day), the PBias 415 

values reveal considerable bias between products and GLM-HMD (up to 70%), particularly for 416 

the overland areas. These results suggest that systematic positive bias may exist between gridded 417 

products and GLM-HMD. 418 

 419 

Table 3.  Summary of MAE (a), PBias (b), and R
2
 (c) for comparing daily averaged precipitation 420 

at overland/overlake areas of each sub-basin over 2010 - 2019. Bolded values indicate the best 421 

performance for each area. Gridded products are evaluated against GLM-HMD dataset.  422 

(a) MAE Overland Overlake 

(mm/day) AORC CaPA MPE Merged AORC CaPA MPE Merged 

Superior 1.65 1.88 1.78 1.85 1.70 2.27 1.90 2.04 

Michigan-

Huron 
1.81 1.97 1.79 1.98 1.71 2.06 1.77 1.89 

Erie 2.03 2.29 2.29 2.32 2.49 3.09 3.09 3.06 

Ontario 2.07 2.59 2.57 2.44 1.93 2.58 2.42 2.46 

 423 
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(b) PBIAS Overland Overlake 

(%) AORC CaPA MPE Merged AORC CaPA MPE Merged 

Superior 17.88 17.24 9.42 16.02 11.71 24.83 -1.80 12.69 

Michigan-

Huron 
70.28 65.53 57.04 70.12 41.99 45.59 28.84 37.86 

Erie 68.77 56.44 62.91 64.54 -3.22 0.28 2.91 1.33 

Ontario 26.49 34.54 30.69 28.21 6.84 18.90 8.95 14.74 

 424 

(c) R
2
 Overland Overlake 

(-) AORC CaPA MPE Merged AORC CaPA MPE Merged 

Superior 0.57 0.51 0.54 0.52 0.60 0.43 0.48 0.46 

Michigan-

Huron 
0.62 0.48 0.57 0.50 0.64 0.51 0.57 0.54 

Erie 0.63 0.44 0.47 0.46 0.43 0.29 0.31 0.30 

Ontario 0.54 0.41 0.40 0.43 0.57 0.43 0.45 0.45 

 425 

4.3. Assessing the reliability of overlake precipitation with L2SWBM 426 

In order to test the reliability of different overlake precipitation data to reconcile lake 427 

water balance dynamics over long time periods, we then compared overlake precipitation 428 

estimates of different products with the posterior distributions of L2SWBM (Fig. 9). To 429 

explicitly demonstrate the accuracy of each data product in the context of lake water balance, the 430 

percentage of monthly precipitation records falling within the 95% credible intervals of 431 

L2SWBM outputs are illustrated in Fig. 9 as well. 432 

The results clearly indicate that across all lakes, AORC and MPE are the most reliable 433 

overlake precipitation datasets for reconciling lake water balance, with up to 80 % of monthly 434 

precipitation records falling within the 95% credible intervals of L2SWBM posterior 435 

distributions. While AORC is slightly better for Lake Superior and Michigan-Huron, and MPE is 436 

lightly better for Lake Erie and Ontario. Overall, the performance for Lake Ontario is inferior to 437 

other lakes, as less than of 60% of all monthly precipitation records is within the 95% credible 438 

intervals. Although GLM-HMD is used as the input for L2SWBM for both prior and analysis 439 

periods, AORC and MPE fit better with the L2SWBM outputs, suggesting closer estimates to the 440 

actual overlake precipitation. Whereas no significant enhancement can be observed with CaPA 441 
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and Merged, meaning these datasets are not better than gauge-based overlake precipitation 442 

estimates. According to the timeseries plots, we can find that MPE is below the 95% credible 443 

intervals for 2010 – 2012, particularly for Lake Superior and Michigan-Huron; and AORC is 444 

above the 95% credible intervals for 2012 – 2013, more obviously for Lake Michigan-Huron and 445 

Erie. These findings are in accordance with our previous results shown in Fig. 7. 446 

 447 

 448 
Fig. 9.  Time series of monthly precipitation at the four lakes of L2SWBM posterior distributions 449 

(as 95% credible intervals, grey bars), GLM-HMD (red points), AORC (blue lines), CaPA 450 

(orange lines), MPE (green lines), and Merged (brown lines). Barplots represent the percentage 451 

of monthly precipitation from each product that fall within the 95% credible intervals of 452 

L2SWBM posterior distributions. 453 

 454 

5. Summary and discussion 455 

Accurate precipitation estimates over international basins and large bodies of water can 456 

be a challenge to weather and hydrologic forecasting. The North American Great Lakes basin 457 

combines these issues and poses a unique challenge for hydrologic science. In this study, we 458 

evaluate four leading gridded precipitation data sets used for hydrologic model calibration and 459 

simulation to understand differences across many spatial and temporal scales. For the period 460 

2010-2019, the AORC, MPE, CaPA, and Merged MPE-CaPA products are compared with 632 461 

gauged observations (GHCN-D), analyzed for overland and overlake sub-basins, and evaluated 462 

against a Bayesian statistical analysis framework (L2SWBM) used for water budget accounting. 463 

Comparisons with gauge observations indicate a generally good agreement between all 464 

evaluated products and the GHCN-D dataset, however, a large difference is found between U.S. 465 

and Canadian precipitation accuracy. In addition, based on comparisons at sub-basin scales and 466 

the analysis with L2SWBM model, the ability of different gridded precipitation products to 467 

capture overlake precipitation, and the effects of large lakes on overlying atmospheric stability, 468 
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varies dramatically between products. In all, these results reveal the discrepancies between 469 

precipitation options for international basins and those containing large bodies of water, and 470 

provide insight into potential downstream impacts to hydrologic model development and 471 

prediction. 472 

5.1. Poor agreement with GHCN-D data of Canadian stations  473 

From Fig. 5-6, a sudden change of performance of gridded datasets can be observed 474 

between U.S. and Canadian regions of the Great Lakes basin. In contrast to the relatively higher 475 

performance at U.S. stations, gridded datasets poorly agreed with precipitation observations at 476 

Canadian stations. This phenomenon may be because of the differences in data collection and 477 

adjustment protocols of GHCN-D for rain gauge stations between the two countries. 478 

In GHCN-D, the U.S. collection contains daily data from a dozens of separate datasets 479 

archived by NOAA. Precipitation data for U.S. rain gauge stations are corrected for the resulting 480 

archive-quality data. However, for Canadian rain gauge stations, GHCN-D does not contain 481 

adjustments for biases resulting from historical changes in instrumentation and observing 482 

practices, thus systematic bias for certain stations might be important for applications of GHCN-483 

D. For example, GHCN-D Canadian stations record daily total precipitation as the sum of daily 484 

rainfall and daily Snow Water Equivalent (SWE) from snowfall. Daily ruler measurements of 485 

snowfall are automatically converted to daily SWE using a constant conversion ratio that 486 

assumes 10 mm of snowfall to be equivalent to 1 mm of SWE. On the contrary, SWE conversion 487 

ratio varies substantially (ranges from AAA to BBB) across all U.S. stations archived within the 488 

GHCN-D. The constant SWE conversion ratio across Canada was found to potentially 489 

underestimate up to 15 % of the total precipitation for most stations of Southern Canada (Wang 490 

et al., 2017), leading to a remarkably low values of GLM-HMD (derived from GHCN-D 491 

precipitation) at sub-basin scales relative to other gridded products as shown in Fig. 7. 492 

Another reason underlying the poor agreement between gridded precipitation and GHCN-493 

D records is the potentially inaccurate geographical positions (longitudes, latitudes) of rain 494 

gauges reported in their metadata. Meta-data of U.S. stations in GHCN-D are regularly updated 495 

and users have access to the latest information. Whereas, this information should be further 496 

analyzed for GHCN-D Canadian stations. For example, in Great Lakes basin, a total of 373 497 

GHCN-D Canadian stations contain data after 2010, 61 duplicated Lat-Long coordinates can be 498 

identified for these stations. Moreover, we compared the location of these 373 stations with 3346 499 

ECCC rain gauge stations extracted from the latest version (2016) of the Adjusted Daily Rainfall 500 

and Snowfall (AdjDlyRS) datasets (https://open.canada.ca/data/en/dataset/d8616c52-a812-44ad-501 

8754-7bcc0d8de305), only 4 among them have identical Lat-Long coordinates. This 502 

phenomenon suggests that the location of Canadian stations in GHCN-D might should be 503 

checked and updated. 504 

5.2. Precipitation estimates over large lakes 505 

According to historical measurements and studies (Holman et al., 2012), realistic basin-506 

wide precipitation estimates could have higher relative overlake precipitation in cold months, 507 

and lower overlake precipitation in warm months. A common hypothesis for this phenomenon is 508 

that the relatively cool air over the lakes (water temperature lower than air temperature, resulting 509 

relatively lower near surface air temperature) during warm season will inhibit the growth of 510 

convective storms resulting in less rain over the lakes; conversely, the relatively warm lake 511 

https://open.canada.ca/data/en/dataset/d8616c52-a812-44ad-8754-7bcc0d8de305
https://open.canada.ca/data/en/dataset/d8616c52-a812-44ad-8754-7bcc0d8de305
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during the winter (water temperature higher than air temperature, resulting relatively higher near 512 

surface air temperature ) will initiate convective instability through the flux of heat and moisture 513 

into the cold air advecting over the lakes. 514 

However, this phenomenon is rarely considered by existing hydro-meteorological studies 515 

at lake and sub-basin scales. For sub-basins which feature large freshwater surfaces, these 516 

processes may significantly impact the prediction of lake water budget and water balance at sub-517 

basin scales. Since one-third of the Great Lakes basin water budget is derived from precipitation 518 

falling directly on the lake surface (Table 1), particularly for Lake Superior (39 %) and Lake 519 

Michigan-Huron (32 %), this study preliminarily addresses this issue by analyzing the overland-520 

overlake precipitation patterns of different products. 521 

As illustrated in Fig. 8, and S6-8, the overland-overlake seasonal variation is more 522 

significant for Lake Superior and Michigan-Huron than Lake Erie and Ontario. This order 523 

follows the rank of lake surface areas of sub-basin, indicating that stronger seasonal variations 524 

can be observed for sub-basins with larger lake surface proportions. On the other hand, it can be 525 

noted that CaPA and AORC reflect stronger seasonal dynamics than MPE, particularly for Lake 526 

Superior and Michigan-Huron. Since no rain gauge measurement is available over the water 527 

surfaces, there is no “ground truth” for calibrating satellite images on these overlake areas. 528 

Products only derived from rain gauge observations and satellite data might not well capture 529 

these overland/overlake seasonal variations. Results in section 4.2 reaffirm this assumption that 530 

CaPA and AORC, which are reanalysis products relying on meteorological models, can better 531 

represent the seasonal variations of the ratio of overland to overlake precipitation. Whereas, 532 

these variations are less represented by MPE and GLM-HMD, which are satellite-gauge blended 533 

and gauge based datasets. 534 

On the other hand, results from analysis with L2SWBM suggest that AORC and MPE 535 

could have closer estimates to the realistic overlake precipitation based on a long-term water 536 

balance aspect. That underscores AORC for both correctly estimating overlake precipitation, and 537 

properly representing differences between overland and overlake precipitation. 538 

5.3. Applications of precipitation products for hydrological modeling of the Great Lakes 539 

basin  540 

For the four evaluated gridded datasets, CaPA and MPE are available for nowcast and 541 

hindcast simulations, while AORC and Merged can be only used for hindcast simulations. For 542 

nowcasting applications, according to results shown in Table 3, MPE is better than CaPA for 543 

sub-basins of Lake Superior, Lake Michigan-Huron and Lake Ontario, while CaPA performs 544 

better for the sub-basin of Lake Erie. As for hindcasting applications, since the performance of 545 

AORC is less dispersed at spatial and temporal scales (Fig. 2, Fig. 6), and AORC fits better with 546 

GLM-HMD for most sub-basins (Table 3), AORC could be the appropriate choice of climate 547 

forcing for hydrological modeling for the entire Great Lakes watershed. Whereas, for some 548 

specific sub-basins (i.e. overland areas of Michigan-Huron), other products (i.e. MPE) might be 549 

preferred. In addition, it is informative to notice that in Table 3, overland and overlake 550 

consistently favors AORC for MAE (under 2 mm/day) and R2 (above 0.6), however, important 551 

PBias values can be noted (20 % - 70%). This result implies that consistent bias may exist with 552 

AORC dataset and should be considered for model calibration and uncertainty analysis. 553 
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On the other hand, hydrological processes across overland areas and in the lake are often 554 

simulated by different models. Land surface hydrological models commonly use simple routing 555 

schemes for computing in-lake processes (i.e. NWM (Lahmers et al., 2019), SWAT (Arnold et 556 

al., 1998)); while lake models usually do not include land surface processes (i.e. FVCOM (Chen 557 

et al., 2003), Delft3D (Deltares, 2016)). Therefore, when performing land surface modeling, the 558 

correctness of precipitation products on overland areas is important; where gridded products can 559 

be evaluated by comparing with the ground observations. On the contrary, for lake water 560 

modeling, appropriate estimates of overlake precipitation are crucial. Considering seasonal 561 

variations of the ratio of overland to overlake precipitation, and using L2SWBM to infer reliable 562 

overlake precipitation range, can help modeler to select proper products for overlake 563 

precipitation. For large lake basins like the Great Lakes, a reasonable approach would be to 564 

couple land surface hydrology models (e.g. WRF-Hydro), with sophisticated lake hydrodynamic 565 

models (i.e. FVCOM), in which each approach could benefit from the most appropriate 566 

precipitation forcing. 567 

 568 
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Figures S1 to S8 
 

Introduction  

In addition to Fig. 3, Fig. S1-2 represent maps of MAE and R2 for different gridded 
products. 

Fig. S3-5 illustrate annual accumulated precipitation for overland and overlake areas of 
Superior, Erie and Ontario, which complement the Fig. 7 (Michigan-Huron). 

Fig. S6-8 describe averaged monthly accumulated overlake-to-overland precipitation 
ratio (𝑹𝒑) for Superior, Erie, and Ontario. Results for Michigan-Huron are presented in 
Fig. 8. 
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Fig. S1.  Maps of MAE for AORC (a), CaPA (b), MPE (c), and Merged (d) at 632 rain gauge 
stations in the Great Lakes basin over 2010 – 2019.  
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Fig. S2.  Maps of R2 for AORC (a), CaPA (b), MPE (c), and Merged (d) at 632 rain gauge 
stations in the Great Lakes basin over 2010 – 2019.  
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Fig. S3.  Annual averaged overland/overlake precipitation for Superior sub-basin. Solid 
lines represent overland precipitation (upper subplot), and dashed lines indicate overlake 
precipitation (lower subplot). 
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Fig. S4.  Annual averaged overland/overlake precipitation for Erie sub-basin. Solid lines 
represent overland precipitation (upper subplot), and dashed lines indicate overlake 
precipitation (lower subplot). 
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Fig. S5.  Annual averaged overland/overlake precipitation for Ontario sub-basin. Solid 
lines represent overland precipitation (upper subplot), and dashed lines indicate overlake 
precipitation (lower subplot). 
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Fig. S6.  Averaged monthly accumulated overland-to-overlake precipitation ratio for 
Superior sub-basin. 
 
 
 

 

 

Fig. S7.  Averaged monthly accumulated overland-to-overlake precipitation ratio for 
Lake Erie sub-basin. 
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Fig. S8.  Averaged monthly accumulated overland-to-overlake precipitation ratio for 
Lake Ontario sub-basin.  
 
 


