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Abstract

Projections of the sea level contribution from the Greenland and Antarctic ice sheets rely on atmospheric and oceanic drivers

obtained from climate models. The Earth System Models participating in the Coupled Model Intercomparison Project phase 6

(CMIP6) generally project greater future warming compared with the previous CMIP5 effort. Here we use four CMIP6 models

and a selection of CMIP5 models to force multiple ice sheet models as part of the Ice Sheet Model Intercomparison Project

for CMIP6 (ISMIP6). We find that the projected sea level contribution at 2100 from the ice sheet model ensemble under the

CMIP6 scenarios falls within the CMIP5 range for the Antarctic ice sheet but is significantly increased for Greenland. Warmer

atmosphere in CMIP6 models results in higher Greenland mass loss due to surface melt. For Antarctica, CMIP6 forcing is

similar to CMIP5 and mass gain from increased snowfall counteracts increased loss due to ocean warming.
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Abstract78

Projections of the sea level contribution from the Greenland and Antarctic ice sheets rely79

on atmospheric and oceanic drivers obtained from climate models. The Earth System80

Models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6)81

generally project greater future warming compared with the previous CMIP5 effort. Here82

we use four CMIP6 models and a selection of CMIP5 models to force multiple ice sheet83

models as part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6).84

We find that the projected sea level contribution at 2100 from the ice sheet model en-85

semble under the CMIP6 scenarios falls within the CMIP5 range for the Antarctic ice86

sheet but is significantly increased for Greenland. Warmer atmosphere in CMIP6 mod-87

els results in higher Greenland mass loss due to surface melt. For Antarctica, CMIP688

forcing is similar to CMIP5 and mass gain from increased snowfall counteracts increased89

loss due to ocean warming.90

Plain Language Summary91

The melting of the Greenland and Antarctic ice sheets will result in higher sea level92

in the future. How sea level will change depends in part on how the atmosphere and ocean93

warm and how this affects the ice sheets. We use multiple ice sheet models to estimate94

possible future sea levels under climate scenarios from the models participating in the95

new Coupled Model Intercomparison Project phase 6 (CMIP6), which generally indicate96

a warmer world that the previous effort (CMIP5). Our results show that the possible97

future sea level change due Antarctica is similar for CMIP5 and CMIP6, but the warmer98

atmosphere in CMIP6 models leads to higher sea-level contributions from Greenland by99

the end of the century.100

1 Introduction101

The overall aim of this paper is to assess whether the stronger future warming shown102

by many CMIP6 models (Forster et al., 2019; Meehl et al., 2020) compared with CMIP5103

has a significant impact on future Global Mean Sea Level Rise (GMLSR). We compare104

projections for the sea-level contribution of the Greenland and Antarctic ice sheets (GrIS105

and AIS) under climate forcing from a small group of models from the CMIP6 ensem-106

ble (Eyring et al., 2016) with that of models using forcing from the CMIP5 model en-107

semble (Taylor et al., 2012). Goelzer et al. (2020b) and Seroussi et al. (2020) present de-108

tailed analyses of the latter set of experiments for GrIS and AIS, respectively. In both109

cases, a great deal of attention was paid to sampling the CMIP5 ensemble effectively,110

so that the CMIP5 models used to provide climate forcing both represented the present-111

day climate of the ice sheets well and sampled the range of future projections of the over-112

all ensemble. Details of this procedure can be found in Barthel et al. (2020).113

Global warming as manifested in regional atmospheric and oceanic change can im-114

pact the ice sheet mass budget, and hence contribution to GMSLR, in a number of ways.115

Warming of the atmosphere over the ice sheet promotes increased melt from snow and116

ice surfaces leading to increased mass loss in the form of runoff to the oceans. It may117

also be associated with increased precipitation because of the increased moisture-carrying118

capacity of warmer air. The relationship between global warming and the warmth of Po-119

lar ocean water masses impinging on the ice sheets is likely to be more complex. The warm-120

ing of these water masses is expected to increase GMSLR by increasing mass loss from121

the marine-terminating outlet glaciers of the GrIS, and by processes associated with Ma-122

rine Ice Sheet Instability (Schoof, 2007) for the AIS. An additional complexity for GrIS123

is that marine mass loss is partly controlled by freshwater fluxes from the surface melt124

(Slater et al., 2019). Finally, Marine Ice Sheet Instability could also be triggered by at-125

mospheric warming leading to the fracture and collapse of floating ice shelves (Trusel et126

al., 2015). This process may in turn lead to the subsequent rapid retreat of the exposed127
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marine ice cliffs (DeConto & Pollard, 2016). In summary, the range and complexity of128

the ways in which climate affects ice-sheet mass budget suggests that the greater global129

warming found in CMIP6 models may not necessarily lead to increased GMSLR.130

2 The CMIP6 ensemble131

We compare a small ensemble of four Earth System Models (ESMs) submitted to132

the CMIP6 exercise. These models are UKESM1-0-LL, CESM2, CNRM-CM6-1 and CNRM-133

ESM2-1. Because the sample is small and based on availability only, it is important to134

understand the difference between the selected models and the larger CMIP6 model en-135

semble. Effective Climate Sensitivity (ECS)(IPCC, 2013) is a convenient measure of this.136

ECS estimates the global mean temperature response to doubled atmospheric carbon137

dioxide concentration (Flato et al., 2013). The four selected models all have ECS at the138

upper end of the CMIP6 ensemble (CESM2, CNRM-CM6-1, CNRM-ESM2-1 and UKESM1-139

0-LL have ECS of 5.2, 4.8, 4.8 and 5.3 ◦C, respectively). Roughly half of the CMIP6 en-140

semble has an ECS of between 4.6 and 5.6 ◦C, while there is a second similarly-sized group141

with markedly lower ECS in the range 2.3 to 3.2 ◦C (Meehl et al., 2020). In contrast,142

the CMIP5 ensemble exhibited a fairly continuous range of ECS between 2.1 and 4.7 ◦C143

(Flato et al., 2013). The CMIP5 models used in Goelzer et al. (2020b) and Seroussi et144

al. (2020) were typically drawn from the upper end of this distribution (e.g., MIROC-145

ESM, HadGEM2-ES, CSIRO-Mk3-6-0 and IPSL-CM5A-LR with ECS of 4.7, 4.6, 4.1 and146

4.1 ◦C, respectively) or lay close to the median (e.g., CCSM4, NorESM1-M and MIROC5147

with ECS of 2.9, 2.8 and 2.7 ◦C, respectively).148

Summaries of the atmospheric and ocean forcing for the two ice sheets are shown149

in Figures 1 and 2, respectively. Surface warming exhibited over the AIS in CMIP6 lies150

at or above the high end of the CMIP5 range. A similar pattern is evident in projected151

changes in Surface Mass Balance (SMB, the annual difference between mass addition,152

such as snowfall and refrozen rainfall, and mass loss, such as melt and subsequent runoff)153

over the ice sheet. Neither quantity is, however, significantly higher than the CMIP5 range.154

For GrIS, SMB was derived by forcing the MAR regional climate model of Greenland155

(Fettweis et al., 2013) with CMIP6-derived boundary conditions. In this case, the CMIP6-156

forced SMB is significantly more negative (i.e., higher GMSLR rise) than is the case for157

CMIP5 forcing. Indeed, all four SSP585 ESMs fall outside the CMIP5 range and, by 2100,158

anomalies from UKESM1-0-LL and CESM2 approach twice that of largest CMIP5 ESM.159

The oceanic forcing of the AIS is described in detail by Jourdain et al. (2020) and for160

the GrIS by Slater et al. (2020). The thermal forcing derived from the CMIP6 models161

for both ice sheets lies within the range of the CMIP5 models with the exception of UKESM1-162

0-LL SSP585, which is occasionally higher. In many cases, the forcing lies towards the163

centre of the CMIP5 range despite the higher ECS of the CMIP6 models. As would be164

expected thermal forcing from CNRM-CM6-1 SSP126 is less than that from CNRM-CM6-165

1 SSP585, however the difference is similar to the difference between the four SSP585166

models.167

3 Summary of ISMIP6 experimental procedure168

The procedures used to convert the climate information summarised in Figures 1169

and 2 into forcing imposed on ice sheet models are summarised in a series of papers for170

Antarctic ocean (Jourdain et al., 2020; Favier et al., 2019), Greenland ocean (Slater et171

al., 2019, 2020) and Greenland atmosphere (Fettweis et al., 2013; Goelzer et al., 2020a).172

Details of the experimental protocols employed can be found in Nowicki et al. (2016) and173

Nowicki et al. (2020).174

These protocols were primarily employed by ice sheet modelling groups to gener-175

ate projections using forcing from the CMIP5 ensemble, which are reported in Goelzer176

et al. (2020b) for GrIS and Seroussi et al. (2020) for AIS, however groups also conducted177
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Figure 1. Atmospheric forcing used in CMIP6-forced experiments. (a) and (b) mean annual

surface air temperature and Surface Mass Balance (SMB) anomalies over AIS. (c) and (d) mean

annual surface air temperature and SMB anomaly for GrIS. Individual CMIP6 experiments are

as shown as coloured lines (legend in panel (d)). Grey shading reflects range of CMIP5 forcing

encompassed by all of the CMIP5 experiments used by ISMIP6 (i.e., highest and lowest CMIP5

forcing for each year).
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Figure 2. Ocean thermal forcing used in CMIP6-forced experiments for AIS sectors (a) Pine

Island and Thwaites Glaciers, (b) Filchner-Ronne ice shelf, (c) Ross ice shelf and (d) for GrIS.

Individual CMIP6 experiments are as shown as coloured lines (legend in panel (d)). Grey shading

reflects range of CMIP5 forcing encompassed by all of the CMIP5 experiments used by ISMIP6

(i.e., highest and lowest CMIP5 forcing for each year).
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Table 1. Overview of experiments and modelling groups participating in the CMIP6-forced

exercise for AIS. Please refer to Seroussi et al. (2020) for model and group details. Symbols are

those used in Figure 3.

Group Model Open Standard Symbol

AWI PISM 1-5 1-5 ◦
ILTS PIK SICOPOLIS 1-5 /
JPL ISSM 1-5 .
NCAR CISM 1-5 1-5 4
LSCE GRISLI 1-5 �
UCIJPL ISSM 1-5 5
VUB AISMPALEO 1-3 ♦

Total 2 7

Table 2. Overview of experiments and modelling groups participating in the CMIP6-forced

exercise for GrIS. Please refer to Goelzer et al. (2020b) for model and group details. Symbols are

those used in Figure 4. ‘f’ refers to filled symbol.

Group Model Open Standard Symbol

AWI ISSM1 1-5 ◦
AWI ISSM2 1-5 /
AWI ISSM3 1-5 .
BGC BISICLES 1-3 ∗
GSFC ISSM 1-2 �
ILTS PIK SICOPOLIS1 1-5 4
ILTS PIK SICOPOLIS2 1-5 5
IMAU IMAUICE2 1-3,5 ♦
JPL ISSM 1-5 ◦ f
JPL ISSMPALEO 1-3,5 / f
LSCE GRISLI 1-5 . f
NCAR CISM 1-5 � f
UAF PISM1 1-3,5 4 f
UAF PISM2 1-3,5 5 f
UCIJPL ISSM1 1-3 ♦ f
VUB GISM 1-5 +

Total 2 14

experiments using forcing from the CMIP6 ensemble as summarised in Tables 1 and 2.178

Both tables refer to experiments using the following numbering: 1) The CNRM-CM6-179

1 model run with scenario SSP585 (roughly equivalent to RCP8.5 of CMIP5), 2) CNRM-180

CM6-1 with SSP126 (roughly equivalent to RCP2.6 of CMIP5), and SSP585 with 3) UKESM1-181

0-LL, 4) CESM2, 5) CNRM-ESM2-1. Within the ISMIP6 design, experiments could be182

performed under ‘standard’ or ‘open’ configurations (see Nowicki et al., 2020). The for-183

mer refers to the full implementation of ISMIP6 protocols for converting climate forc-184

ing into the mass fluxes experienced by the ice sheets, while in the latter individual groups185

used their own previously existing methods to do this.186
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4 GMSLR projections187

Figure 3 shows projections for the AIS from the seven participating ice sheet mod-188

els for each CMIP6-forced experiment along with ranges from the equivalent CMIP5-forced189

experiments (Seroussi et al., 2020). Figure 3 b to d compares these projections with ranges190

derived for the CMIP5 ensemble at 2100. The equivalent ranges for the whole AIS are191

-14 to 155 mm for RCP2.6, and -76 to 300 mm for RCP8.5. The regional contributions192

from West and East AIS are within or below the ranges reported for CMIP5 forcing. In193

many cases, they sit in the lower half of this range. This, however, is likely to reflect the194

high GMSLR associated with one ESM in CMIP5 ensemble of six (HadGEM2-ES), whose195

projected GMSLR was typically much higher (roughly twice that of the other ESMs for196

West AIS and positive rather than negative for East AIS). The projected GMSLR for197

all three AIS regions for CMIP6 and CMIP5 is very compatible if HadGEM2-ES is ex-198

cluded from the latter.199

Comparing projections for SSP126 (one ESM only) and SSP585 (four ESMs) sug-200

gests that there is little impact of emission scenario on projected GMSLR for AIS. This201

is, again, most likely to be related to the contrasting impacts for global warming on the202

ice sheet’s mass budget through increases in both mass loss by ice-sheet discharge and203

gain by snow accumulation.204

The relationship between forcing and GMSLR for each CMIP6 ESM is complicated.205

For instance, ocean thermal forcing (Figure 2), air temperature anomalies (Figure 1) tend206

to be larger for UKESM1-0-LL; however, this is not reflected in their projected GMSLR.207

This is most likely to be associated with the compensatory effect of increased precipi-208

tation (Figure 1) in these ESMs.209

Figure 4 shows projections for the GrIS from the fourteen participating ice-sheet210

models for each CMIP6-forced experiment along with ranges from the equivalent CMIP5-211

forced experiments (Goelzer et al., 2020b). Projected GMSLR is either at the upper end212

of the CMIP5-forced range or well above it. Indeed, both CESM2 and UKESM1-0-LL-213

based projections do not overlap with the CMIP5 range at all and, in the latter case, are214

almost double. In contrast to the AIS, projections for SSP126 (one ESM) are consider-215

ably lower than SSP585 (four ESMs) such that the ranges for CMIP6 SSP126 and SSP585216

do not overlap. The trajectory of GMSLR associated with SSP126 starts to become dis-217

tinct from SSP585 around 2060 but is not entirely separate until 2090. There is also a218

suggestion that GMSLR may stabilise (or at least increase at a far reduced rate) beyond219

2100 for SSP126, which is certainly not the case for SSP585.220

5 Discussion221

We present the first comparison between CMIP5 and CMIP6-based projections of222

the contribution of ice sheets to future GMSLR up to 2100. This comparison is partic-223

ularly interesting because many CMIP6 ESMs have higher climate sensitivity than their224

CMIP5 counterparts (Forster et al., 2019; Meehl et al., 2020) and their projections of225

future global warming are therefore higher. The comparison is hampered by the use of226

a relatively small ensemble of available CMIP6 ESMs, which are all at the upper end of227

CMIP6’s range of climate sensitivity.228

The comparison between CMIP5 and CMIP6 is markedly different for the two ice229

sheets, reflecting the very different ways in which the ice sheets are impacted by and re-230

spond to changes in the global climate system. For the GrIS, our results suggest that231

GMSLR contributions under CMIP6 are much higher than for CMIP5 perhaps by a fac-232

tor of two. They also suggest a significant difference between SSP585 and SSP126, with233

the former experiencing accelerating rates of mass loss in marked contrast to the ten-234

dency towards stabilization of the latter.235
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Figure 3. GMSLR contribution from the AIS to 2100. (a) Time series of contribution be-

tween 2015 and 2100 (in mm) for whole ice sheet as a function of ice sheet model (symbol) and

experiment (see legend). Contribution at 2100 for (b) West AIS, (c) East AIS and (d) Antarctic

Peninsula. Symbols refer to ice sheet models and are given in Table 1. Filled symbols refer to

‘open’ experiments and unfilled for ‘standard’. Boxes in panels (b) to (d) refer to ranges from

equivalent CMIP5-forced experiments (see Seroussi et al. (2020)).
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Figure 4. GMSLR contribution from the GrIS to 2100. (a) Time series of contribution be-

tween 2015 and 2100 (in mm) for whole ice sheet as a function of ice sheet model (symbol) and

experiment (see legend) and (b) contribution at 2100. Symbols refer to ice sheet models and are

given in Table 2. Boxes in panel (b) refers to ranges from equivalent CMIP5-forced experiments

(see Goelzer et al. (2020b)).
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Goelzer et al. (2020b) demonstrate that in excess of 80% of GrIS’ contribution to236

GMSLR can be explained by changing SMB (primarily by surface melt and subsequent237

runoff), which is mostly controlled by atmospheric processes. The link between global238

warming and mass loss from the ice sheet is therefore fairly direct and a strong relation-239

ship between the two should be expected. The higher climate sensitivity of the sampled240

CMIP6 ESMs will therefore manifest itself as a larger GMSLR contribution in compar-241

ison to CMIP5. It should also be noted that for GrIS (in contrast to AIS), global warm-242

ing is likely to favour increased mass loss by both atmospheric (i.e, SMB) and ocean forc-243

ing (i.e., discharge). However it appears that, at least within the ISMIP6 experimental244

design, ocean forcing plays a secondary role to the atmosphere.245

For AIS, our results up to 2100 suggest little difference between CMIP6 and CMIP5-246

forced projections. This reflects the more complex interactions between this ice sheet and247

the global climate system. Global warming is likely to favour mass loss through changes248

in discharge resulting from increased ocean thermal forcing; however, the opposite is ex-249

pected of the atmospheric forcing where warming is likely to favour mass gain (as a con-250

sequence of increased snow accumulation). The higher climate sensitivity of the sampled251

CMIP6 ESMs is therefore associated with both increased mass gain (snowfall) and mass252

loss (discharge) resulting in little net change in comparison to CMIP5 forcing. The com-253

plicated regional nature of interactions between ocean thermal forcing and AIS’ discharge254

(e.g., Jenkins et al., 2018) is also likely to weaken any link between global warming and255

AIS mass loss.256

The experimental design of the CMIP6-forced experiments reported here does not257

include the fracture and collapse of AIS’ floating ice shelves resulting from meltwater pond-258

ing due to significant atmospheric warming (Trusel et al., 2015). This process has been259

cited as a necessary precursor to rapid ice loss by the retreat of marine ice cliffs (DeConto260

& Pollard, 2016). As ice shelf fracture was included in the CMIP5-forced experiments,261

an initial assessment can be made by comparing the amount of atmospheric warming pro-262

jected to occur under CMIP5 and CMIP6. Figure 1 suggests that CMIP6 ESMs lie close263

to or above the maximum CMIP5 surface temperature warming for AIS. For CMIP5 forc-264

ing, this process is limited to the Antarctic Peninsula and areas around George V ice shelf265

and Totten glacier and its impact on GMSLR is ∼28 mm (Seroussi et al., 2020). Ice-shelf266

fracture and associated processes may therefore be important under some CMIP6 forc-267

ing, in particular for CESM2 and UKESM1-0-LL, and likely be enhanced beyond 2100.268
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