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Abstract

We present a new time series PU approach to improve the unwrapping accuracy in this article. The rationale behind is to first

improve the sparse unwrapping by mitigating the phase gradient in a 2D network and then correcting the unwrapping errors

in time based on the triplet phase closure. Rather than commonly-used Delaunay network, we employ All-Pairs-Shortest-Path

(APSP) algorithm in graph theory to maximize the temporal coherence of all edges and to approach the phase continuity

assumption in the 2D spatial domain. Next, we formulate the PU error correction in the 1D temporal domain as a compressed

sensing (CS) problem, according to the sparsity rule of remaining phase ambiguity cycles. We finally estimate phase ambiguity

cycles by means of Integer Linear Programming. The comprehensive comparisons on synthetic and real Sentinel-1 data covering

Lost Hills, California confirm the validity of the proposed 2D+1D unwrapping approach.
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Key Points: 

 We introduce an All-Pairs-Shortest-Path (APSP) algorithm in graph theory to sparse 

spatial phase unwrapping. 

 We present an automatic unwrapping error correction method based on compressed 

sensing. 

 The proposed correction method can correct the unwrapping error nearly 100 % under a 

certain condition. 
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Abstract 

We present a new time series PU approach to improve the unwrapping accuracy in this article. The 

rationale behind is to first improve the sparse unwrapping by mitigating the phase gradient in a 2D 

network and then correcting the unwrapping errors in time based on the triplet phase closure. 

Rather than commonly-used Delaunay network, we employ All-Pairs-Shortest-Path (APSP) 

algorithm in graph theory to maximize the temporal coherence of all edges and to approach the 

phase continuity assumption in the 2D spatial domain. Next, we formulate the PU error correction 

in the 1D temporal domain as a compressed sensing (CS) problem, according to the sparsity rule 

of remaining phase ambiguity cycles. We finally estimate phase ambiguity cycles by means of 

Integer Linear Programming. The comprehensive comparisons on synthetic and real Sentinel-1 

data covering Lost Hills, California confirm the validity of the proposed 2D+1D unwrapping 

approach. 

Plain Language Summary 

The PU errors can degrade performance of Time Series InSAR. Although the state-of-the-art 

techniques can suppress PU errors with varying degrees, the appearance of mis-estimation cannot 

be avoided generally. To further improve phase unwrapping accuracy, we proposed a 2-step 3-D 

PU approach. Different from conventional 3-D unwrapping that first estimates spatial phase 

difference on edge in regular grid or in Delaunay triangle, we maximize the quality of Delaunay 

network by means of APSP (All-Pairs-Shortest-Path) algorithm under the framework of graph 

theory, in which the bad edges are substituted with the better edges. In the second step, we calculate 

the closure phase triplets to check the unwrapping error, and Integer Linear Programming we 

borrowed from Compressed Sensing is used to automatic correct the PU errors. We found ILP can 

correct almost all the PU errors when the number of interferograms with PU errors is less than half 

the number of triangle loops in SBAS graph. 

1 Introduction 

The aim of Phase Unwrapping (PU) is to recover the proper ambiguity number of the phase cycle 

2  from the interferogram, in which the observations are known modulo- 2  [Hussain et al., 2016; 

Yu et al., 2019]. In order to identify the ambiguous phase cycles, a prior phase continuity 

assumption that the local phase gradient between neighboring points should be less than   makes 

this problem tractable. Based on this concept, the 1D+2D method presented by Pepe and Lanari 

[Pepe and Lanari, 2006] integrates the temporal MCF network programming with the spatial PU 

to mitigate phase gradients (local topography and atmospheric turbulence) and therefore approach 

the phase continuity assumption. In 3D-based methods, the phase continuity assumption is 

extended to three dimensions. Costantini [Costantini et al., 2012] first proposed a multi-

dimensional PU procedure, in which redundant phase gradients both in temporal and spatial 

dimensions are utilized in optimizing 3D irrotationality constraints. Hooper and Zebker [Hooper 

and Zebker, 2007] proposed a QUASI-L∞-Norm 3D PU algorithm, which extends the 2D branch-

cut theory to 3D through linking phase residuals to construct a 3D discontinuity surface. Although 

these 3D PU approaches are likely to achieve reliable results, heavy computational burden and the 

error propagation induced by violating the phase continuity may degrade the unwrapping 

efficiency.  

Recent studies have demonstrated that the phase error correction is a powerful compensation after 

PU [Biggs et al., 2007]. After establishing a linear relationship between triplet phase closure and 
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unwrapped phase observations (see 2.2), a correction operator is implemented pixel by pixel to 

compensate PU errors [Fattahi, 2015; Xu and Sandwell, 2020]. In this context, here we reformulate 

this problem of integer ambiguity correction under the mathematical framework of compressed 

sensing (CS) technique and replace the nonconvex discontinuous L0-Norm by the convex 

continuous L1-Norm, leading to an L1-Norm integer linear programming (ILP). We also 

investigate the 2D PU on the sparse grid, with emphasis on the spatial reference network. As a 

result, time series PU becomes the focus of this study. 

2 Method 

2.1 Sparse PU Based on APSP Algorithm 

In Sparse PU (SPU), the Delaunay triangulation is a commonly-used method to connect all sparse 

points. However, the algorithm seeks whether the convex hull of neighboring two triangles 

contains other points and whether triangles overlap, and is independent of the rule of phase 

continuity. This implies many edges may have higher phase difference in a spatial network when 

deformation signals, atmospheric turbulence, and phase noise are present in the interferogram. The 

temporal coherence is a valid measure to quantify the phase difference: 

 , ,

1

1
i p q

M
j

i

e
M





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   (1) 

where 
, ,i p q  is the phase difference between vertex p and q in an interferogram i. The higher values 

of temporal coherence represents that an edge has a smaller phase variation in the temporal 

dimension. Accordingly, it is favorable to select edges with higher temporal coherence to improve 

the unwrapping results for all the interferograms, instead of using the edges obtained from the 

Delaunay triangulation algorithm. To this end, the All-Pairs-Shortest-Path (APSP) algorithm can 

be updated the edge set (Text S1). Once all edges are updated using the APSP algorithm, the total 

temporal coherence of the newly generated network is maximized. Given such an APSP network, 

MCF algorithm can be implemented to obtain the phase ambiguities. Nevertheless, here we use a 

slightly different form of the MCF, based on triangle irrotationality constraint for Delaunay 

triangulations. 

For a Delaunay network of M triangles and N edges, the MCF objective function is formulated as: 
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In (2), K
  and K

  are two slack vectors for edge ambiguities to be computed, f
 and f

 are 

probability cost for those two slack vectors, and A is the design matrix, which is determined by all 

triangles in Delaunay, defined as 
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(3) 

The triangle irrotationality constraint U is defined as follows: 
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s.t. ( / 2 )
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where 
j  is the phase difference of 

jE . When an optimal solution of K
  and K

  is found, 

ambiguities for all edges are calculated by K K
 
 . Next, the ambiguities estimated for connected 

edges are integrated through flood-fill procedure to determine the ambiguity cycles of all points.  

It is worth noting that some triangles are eliminated after APSP, which makes the triangle 

irrotationality constraint infeasible. We solve this issue by converting the constraint from the 

triangle to the edge, using the edgelist phase unwrapping algorithm presented in [Shanker and 

Zebker, 2010]. More specifically, for an APSP network with N edges and P points, the MCF 

objective function is defined as: 
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(5) 

where I is the unit matrix, m
  and m

  are two slack vectors for point ambiguities, and A is the 

design matrix defined as 
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(6) 

Moreover, the edge constraint S of i
E  is defined as ( / 2 )

i i
S round     where i

  is the phase 

difference of i
E . When the MCF method obtains the optimal solution using (5), point ambiguities 

are estimated by m m
 
  and, hence, the flood-fill operation is not required. It, therefore, reduces 

the computational burden for the PU process. 
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In summary, APSP-Based SPU is composed of three steps: (1) generation of the Delaunay 

triangulation, (2) forming the APSP network based on the temporal coherence, and (3) retrieval of 

the phase ambiguities on all the sparse points using the edgelist phase unwrapping algorithm. 

2.2 Phase Unwrapping Error Correction Using CS 

2.2.1 Phase Ambiguity Correction 

Given a triangle loop of three unwrapped phases 
,m j

 , 
,j k

 
and 

,m k
  obtained from interference of 

three acquisitions m, j and k, the phase closure 
, ,m j k  is defined as [Biggs et al., 2007; Xu and 

Sandwell, 2020] 

 , , , , ,
= +

m j k m j j k m k
    

 
. (7) 

The non-zero 
, ,m j k  represents errors, which may be caused by the decorrelation noise, multi-

looking, filtering, and/or PU errors. Assuming PU errors as the sole cause of non-zero
, ,m j k , he 

residual phase ambiguity in the triangle loop is expressed as 
, , , ,

( / 2 )
m j k m j k

U round     [Fattahi, 

2015; Yunjun et al., 2019] 

 , , , ,
( / 2 )

m j k m j k
U round     (8) 

Based on the concept of phase closure, an L2-Norm [Fattahi, 2015] and a LASSO [Park and 

Casella, 2008; Xu and Sandwell, 2020] method were proposed to handle the PU errors. Their 

objective functions are respectively defined as  

 

 
2

argmin GX U  

 
2 1

argmin AX U X 
.. 

(9) 

where G is the incidence matrix of L2-Norm method, A is the incidence matrix of LASSO method 

and   is the Lagrange multiplier. X and U are ambiguity vector and phase closure, respectively. 

Details of the construction of G and A matrices are described in Text .S2. 

Limited to the global smoothness of L2-Norm, the above mentioned two methods both need a risky 

round operator to obtain the integer solutions. To illustrate, 0.5 would be rounded to 1. Moreover 

for LASSO, the parameterization and selection of   is time-consuming.  

2.2 Compressed Sensing and Integer Linear Programming 

Here we propose to solve the error correction problem based on the CS framework. Compared to 

the conventional recovery techniques [Fowler, 2009; Jain, 1981], CS [Candes and Tao, 2005; 

2006; Duarte and Eldar, 2011; Gribonval and Nielsen, 2003] seeks to recover signals from fewer 

samples than those required by the Nyquist rate. This issue can be effectively resolved only if: 1) 

solutions are sparse and , where k is the number of non-zero elements in the solution 

vector and Spark denotes the smallest rank of columns and rows; 2) the incidence matrix A fulfills 

the Restricted Isometry Property (RIP) condition [Candes and Tao, 2005], meaning the incidence 

matrix and its transform base should be incoherent. It is still an elusive topic in information theory 

to determine which ensembles can satisfy the RIP condition with high probability. 

In the case of redundant SBAS graph, however, it is possible to check whether the incidence matrix 

meets the aforementioned criteria[Zhao et al., 2018]. The Spark of A is T (the number of triangle 

( ) / 2k Spark A
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loop in SBAS graph) [Murty, 2017a; b], and therefore the sparsity must follow . Otherwise, 

the signal recovery degree will be greatly affected. It is reasonable to assume that some pixels in 

the interferograms contain no PU errors, and phase ambiguity of those pixels are zero. In this case, 

compressed sensing can be used to recover the phase ambiguity. For every k-sparse solution vector, 

X is the unique solution to the L0 optimization criterion 

 0
argmin .

. .

X

s t AX U
 (10) 

However, (10) cannot be solved in a polynomial time [26]. To overcome this challenge, a common 

strategy that converts (10) to a convex optimization based on L1-Norm is given by [27] 

 1
arg min

. .

T
f X

s t AX U

 (11) 

where T
f is the reciprocal of the coherence vector, and (11) can be treated as a linear programming 

(LP) problem. Given the integer property of solutions, an integer linear programming (ILP) method 

based on LP is proposed to solve (11), which can directly obtain the integer solution, while (9) can 

only obtain the non-integer solutions. 

In this study, we follow the basic concepts of L1-Norm. The overall features our proposed approach 

is compared with other methods in Table.S1. Notably, obtaining integer solution for phase 

ambiguity correction problem, to the best of our knowledge, is proposed and discussed for the first 

time in this study. 

Before searching for an ILP solution, we need to reformulate the objective function of L1-Norm 

for phase ambiguity correction, (11), in a way that all the parameters to be estimated are non-

negative. In order to do this, we introduce two slack vectors X
  and X

  for phase ambiguity X. 

Rewriting (11) in terms of these slack vectors into 
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with 

 
1

arg min ( )
T

f X X
 
  (13) 

where  is the upper boundary of the solutions. 

It is a difficult task to solve (13) given the extreme computational complexity of ILP. GUROBI 

optimization, which incorporates Branch-and-Cut (BC), heuristic and parallelism techniques is 

used to complete the solving process of (12-13) [Ladányi et al., 2001]. In particular, the subroutine 

“intlinprog.m” in GUROBI has been used as the ILP solver. 

3 Synthetic Data Test 

3.1 Performance of APSP Network in Spatial PU 

Simulated observations provide a great opportunity for testing the performance of APSP and 

comparison with other 2D SPU methods, as the true values are available. Our synthetic observation 

consists of 10,000 sparse points, randomly distributed in a rectangle of size 2000 2000  (Fig.1a). 

/ 2k T

upl
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50 interferorgams are simulated by randomly generated temporal and perpendicular baselines. The 

linear deformation rate is simulated by peaks function of MATLAB, shown in Fig.1a. The 

simulated phase of the atmospheric and noise components of the 50th interferogram are shown in 

Fig.1b and Fig.1c, respectively. In addition, the phase noise is simulated by =0.3  [Hanssen, 2001]. 

Fig.1d shows the 50th simulated interferogram containing deformation, atmospheric, and noise 

elements. In this experiment, we compare the APSP-Based SPU with the original SPU based on 

MCF. 

 

Figure 1. (a) Simulated deformation rate. (b) Simulated atmospheric phase component of the 50th 

interferogram (c) Simulated noise phase component of the 50th interferogram (d) The 50th 

simulated interferogram. (e-h) are the results obtained from Delaunay network: (e) temporal 

coherence, (f) unwrapped phase, (g) unwrapped phase errors, and (h) the sum of absolute 

ambiguity cycles in 50 interferograms. Similarly, (i-l) are results of APSP network. 

First, we investigate the performance of APSP algorithm in updating the Delaunay. Comparing 

Fig.1i with Fig.1e, the temporal coherence of the edges has improved significantly by using the 

APSP. Moreover, the unwrapped phase resulting from implementing these two approaches (Fig.1f 

and 1j) show notable differences. In particular, the unwrapping errors are significantly lower in 

the results obtained from APSP method (Fig.1k) when compared to that from MCF based on the 

Delaunay triangulation (Fig.1g). Errors mainly occur where the deformation gradients are large. 

Therefore, reduction of the unwrapping errors shows that the updated APSP network, which 

considers phase differences through introducing temporal coherence can more easily satisfy the 

phase continuity assumption. Lastly, we compare the sum of absolute values of the ambiguity 

integer cycles in 50 interferograms. One ambiguity integer cycle means an unwrapping error of 
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2π. Results of APSP in Fig.1l indicate a higher accuracy than that of Delaunay in Fig.1h especially 

in the high deformation gradient regions. 

Using the simulated interferograms, we conducted a statistical test to evaluate how much PU errors 

are reduced through APSP. In this statistical test, the coherence is set to different values ranging 

from 0.05 to 0.95. The simulation is repeated 1000 times and the percentages of points containing 

PU error are recorded in each simulation. The averaged results are shown in Fig.S1. In most 

coherence cases, PU errors of APSP are about half of that from Delaunay, which further shows the 

effectiveness of APSP for reducing PU errors in the spatial domain. 

3.2 Performance of ILP in PU Ambiguity Correction 

To validate the phase ambiguity correction using ILP, a Monte-Carlo test is carried out. The 

simulated SBAS pairs and their associated spatiotemporal baselines are shown in Fig.3b, following 

[Xu and Sandwell, 2020]. The phase components consist of a linear trend of 50 mm/a, a seasonal 

signal with the amplitude of 20 mm and a noise component with standard deviation of 10 mm. In 

addition to these three components, ±4π  phase ambiguities are randomly added to different 

percentages of the SBAS interferograms. This Monte-Carlo experiment is repeated 8000 times. 

Fig.2a shows the statistical results. 

 

Figure 2. Statistical results of three methods in phase ambiguity correction and simulated TP plane 

in the test. (a) The statistical results, and (b) the simulated TP plane. 

In this test, the three PU methods are evaluated from two different aspects: 1) how many 

interferograms with PU errors are corrected (“Wrong to Right”); 2) how many interferograms 

without PU errors are unwrapped incorrectly (“Right to Wrong”). It can be seen from Fig. 2a that 

L2 is the least effective correction method with highest percentage of “Right to Wrong” across 

different percentages of interferograms with PU error introduced. The Lasso solver achieves a 

better result compared to the L2 in terms of both percentage of corrected and the “Right to Wrong” 

interferograms. ILP solver, on the other hand, achieves the best results compared to both the L2 

and Lasso solvers, regardless of the percentage of interferograms with PU errors. The test results 

also show that ILP corrects almost all the PU errors when the number of interferograms with PU 

errors is less than half the number of triangular loops in SBAS interferograms. This region is 
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highlighted with a green rectangle in Fig. 2a for this simulation. This is mainly due to the fact that 

the sparsity of 
T

X X
     in this region is less than , as mentioned in Section 2.2. 

Although the accuracy of ILP decreases when the number of interferograms with PU errors exceed 

this threshold, its performance is still superior to the other two methods. Also, the APSP network 

can provide a SPU results with less PU errors. Therefore, the integration of APSP in SPU and ILP 

in temporal correction can make the final PU results more reliable. 

4 Real Data Test 

A stack of Sentinel-1 TOPS images over Lost Hills in south California is chosen as the test data. 

The data set includes 57 SLCs during January 2017 to November 2018, acquired from a descending 

orbit. The temporal network we used in this experiment is the sequential network [Fattahi et al., 

2016], in which the neighboring 4 acquisitions of each acquisition are interconnected. 

4.1 Performance of APSP Network 

To highlight the performance of APSP, Fig.3 presents a comparison between unwrapped 

interferorgams based on Delaunay and APSP. It can be clearly seen that points in isolated regions 

of farmland (inside dashed rectangle of Fig.3) are clearly unwrapped incorrectly, while the results 

associated with APSP network (Fig. 3b) are almost error-free. 

To further investigate the effectiveness of APSP network, the number of non-closing triplets in 

unwrapped interferorgams is shown in Fig.3c-d. The smaller the proportion of the non-closing 

triplets in the total number of interferogram triplets, the higher the reliability of the unwrapped 

results. 

 

([ ]) / 2spark A A
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Figure 3. Unwrapped Interferograms (20180806-20180830) based on different networks and 

percentages of non-closing loops in all interferogram triplets. (a) and (b) are respectively the 

unwrapped Interferogram of Delaunay network and APSP network. (c) and (d) are percentages of 

non-closing loops in all interferogram triplets respectively. 

It can be seen in Fig.3c-d that the non-closing loops in the results obtained from Delaunay by far 

exceed that of APSP network, indicating the superior performance of the APSP. Moreover, since 

only the networks are different in the PU process, we expect to see further improvement in the PU 

results by incorporating SPU. As shown in the simulation test (Fig.2a), lower spatial unwrapping 

errors would be beneficial in the temporal correction step using every phase ambiguity correction 

methods discussed in this study. 

 



Submitted to Geophysical Research Letters 

 

Figure 4. Temporal coherence of all interferograms after correction and corrected interferograms 

(20180806-20180830) of three methods based on different networks. (a-e) are respectively the 

temporal coherence of Delaunay and L2, Delaunay and Lasso, Delaunay and ILP, APSP and L2, 

APSP and Lasso, APSP and ILP method. (g-l) are unwrapped interferograms of them. 

4.2 Performance of ILP in Phase Ambiguity Correction 

To highlight the ILP’s performance in correcting phase ambiguity, Fig.S2 presents a comparison 

of uncorrected proportions for all the interferogram triplets between different solvers. The 

percentage of non-closing triplets by using the Delaunay is larger than that based on APSP, 

regardless of the PU error correction method. Using the Delaunay, error percentages of ILP is 

centered at ~1%, while L2 and Lasso are at 11% and 3%, respectively. However, using the ASPS 

further reduces error percentages to near zero for ILP, and down to 2% and 8% for the results 

obtained from Lasso and L2, respectively. 

To quantitatively demonstrate the effect of ambiguity correction methods, we calculate the 

temporal coherence  for each pixel, by replacing the wrapped phases with the unwrapped result 

in (1) as: 

 
ˆ( )
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1
= i i

M
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i

e
M
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

  (14) 

where ̂  is the unwrapped phase of interferogram i=1,…,M. 

Since the SBAS network of interferograms is fully connected, the remaining unwrapping errors 

can be considered as the principle source of noise compared to the magnitude of decorrelation 

noise. With this assumption,  indicate no remaining unwrapping errors in the interferogram set, 

while  implies the occurrence of uncorrected phase ambiguity.  

Fig. 4a-c respectively show the temporal coherence of the three temporal correction methods after 

spatial ambiguity correction using Delaunay triangulation. Fig.4d-f demonstrate the associated 

results by using the APSP network. As expected from Fig. 3a, the coherence map associated with 

the results obtained from APSP network are overall higher than that of Delaunay triangulation. 

This is mainly resulting from the effectiveness of APSP network in reducing spatial PU errors. 

Moreover, the coherence maps by using ILP results in values close to 1 in both APSP and Delaunay. 

Whereas, the maximum coherence of L2 and Lasso are close to 0.4 and 0.7. The superior 

performance of ILP results is expected from our simulation test (Fig. 2a).  

For further validation of the performance of ILP, several corrected interferograms are presented in 

Fig.4g-i for visual inspection. It can be seen that, regardless of the choice of the networking method 

used, the isolated regions with unwrapping errors are mostly corrected by using the ILP solver 

(Fig. 4i&l). In the results based on Delaunay triangulation (Fig. 4g&j), L2 and Lasso failed to 

correct those unwrapping errors. For the results based on APSP network (Fig.4h&k), although 

Lasso corrected most of the unwrapping errors, it still failed to correct the errors in some very 

small areas. These results further validate the performance of our proposed 2D+1D framework. 

4.3 Processing Time 

For APSP, an additional time is required to search for the shortest paths between all the initial 

edges provided by the Delaunay triangulation. This is the most time-consuming step in our method. 

With a Matlab 2018b software and an Intel i7 3.2GHz processor, the generation of APSP network 

for 259361 sparse points takes 3452s. However, in the following PU step in spatial domain, APSP 



1 

1 
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network consisting of 781075 edges takes less time than Delaunay network with 776399 edges. 

APSP network operates 9892s to solve ILP solutions for 218 interferograms, while Delaunay 

network takes 10738s. This is because there are more reliable edges in the APSP network, which 

are less likely to have phase ambiguities required to be compensated for. Therefore, it directly 

helps to reduce the total objective function cost. Subplot in Fig.S4 shows the APSP and Delaunay 

objective cost of 218 interferograms when exiting the ILP process. APSP outperforms Delaunay 

in objective cost and time consuming for most of interferograms. Also, we present the iteration 

process and its relative computing time of the interferogram for 20180806-20180830 as an 

example. In iteration, total cost and computing time of APSP are all less than that of Delaunay. 

It is important to note that the part of time cost reduction comes from the edge constraint introduced 

in Section 2.1. In the original SPU, phase cycles of all edges are required to integrate to each point 

using flood fill. This integration process was abandoned in this paper because it needs a long time 

to complete the integration for all interferograms. The modifications to the MCF objective function 

can help to directly obtain the phase ambiguity of all sparse points so as to improve the 

computational efficiency.  

In temporal correction using different methods, L2 and ILP solver have shown their great 

efficiency. L2 takes 1210s to finish the phase ambiguity correction, and ILP takes 1265s. However, 

for finishing the phase ambiguity correction, Lasso consumes a very long time up to 81354s. We 

therefore can conclude our proposed method can achieve high accuracy in an efficient manner. 

5 Conclusions 

In this paper, a 3D (2D + 1D) PU method has been presented that integrates the APSP network on 

spatial domain with ILP on temporal domain. First, the APSP network has been proposed to 

replace the Delaunay network in the spatial domain. The temporal coherence of edges are treated 

as the edge length function. APSP algorithm is used to maximize the temporal coherence of edges 

between two points. Thus, the phase difference induced by deformation and noise are reduced, 

making it easier to satisfy the phase continuity assumption. In addition, ILP based on CS 

framework is first introduced in this paper for phase ambiguity correction in the temporal domain. 

In addition to the great performance in terms of accuracy, another main advantage of this method 

is that it only modifies integer phase ambiguities without the change of the fractional part of the 

unwrapped phase. The effectiveness of the implemented integration of APSP network and ILP has 

been demonstrated on both synthetic data and a set of Sentinel-1 TOPS interferograms over Lost 

Hills, CA region. Based on these validation analysis, we conclude that the proposed 3D PU method 

can make time series PU more accurate. 
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