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Abstract

Deep learning (DL) methods have shown great promise for accurately predicting hydrologic processes but have not yet reached

the complexity of traditional process-based hydrologic models (PBHM) in terms of representing the entire hydrologic cycle.

The ability of PBHMs to simulate the hydrologic cycle makes them useful for a wide range of modeling and simulation tasks,

for which DL methods have not yet been adapted. We argue that we can take advantage of each of these approaches to

couple DL methods into PBHMs as individual process parameterizations. We demonstrate that this is viable by developing

DL process parameterizations for turbulent heat fluxes and couple them into the Structure for Unifying Multiple Modeling

Alternatives (SUMMA), a modular PBHM modeling framework. We developed two DL parameterizations and integrated them

into SUMMA, resulting in a one way coupled implementation (NN1W) which relies only on model inputs and a two-way

coupled implementation (NN2W), which also incorporates SUMMA-derived model states. Our results demonstrate that the

DL parameterizations are able outperform calibrated standalone SUMMA benchmark simulations. Further we demonstrate

that the two-way coupling can simulate the long-term latent heat flux better than the standalone benchmark. This shows that

DL methods can benefit from PBHM information, and the synergy between these modeling approaches is superior to either

approach individually.
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Key Points:

• Deep learned process parameterizations of turbulent heat fluxes outperform physically-based parame-
terizations.

• Deep learned process parameterizations can be dynamically coupled into process-based hydrologic
models.

• Incorporation of process-based model derived states into deep learning introduces feedbacks that im-
prove long-term simulations.

Abstract

Deep learning (DL) methods have shown great promise for accurately predicting hydrologic processes but
have not yet reached the complexity of traditional process-based hydrologic models (PBHM) in terms of
representing the entire hydrologic cycle. The ability of PBHMs to simulate the hydrologic cycle makes them
useful for a wide range of modeling and simulation tasks, for which DL methods have not yet been adapted.
We argue that we can take advantage of each of these approaches by embedding DL methods into PBHMs to
represent individual processes. We demonstrate that this is viable by developing DL-based representations
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of turbulent heat fluxes and coupling them into the Structure for Unifying Multiple Modeling Alternatives
(SUMMA), a modular PBHM modeling framework.

We developed two DL parameterizations and integrated them into SUMMA, resulting in a one-way coupled
implementation (NN1W) which relies only on model inputs and a two-way coupled implementation (NN2W),
which also incorporates SUMMA-derived model states. Our results demonstrate that the DL parameteriza-
tions are able to outperform calibrated standalone SUMMA benchmark simulations. Further we demonstrate
that the two-way coupling can simulate the long-term latent heat flux better than the standalone benchmark
and one-way coupled configuration. This shows that DL methods can benefit from PBHM information, and
the synergy between these modeling approaches is superior to either approach individually.

Plain Language Summary

Machine learning (ML) and process-based methods are two approaches to hydrologic modeling. Process-
based hydrologic models (PBHMs) represent the hydrologic cycle by solving equations which have been
developed from physical theory or experimentation, while ML models make predictions based on patterns
learned from large amounts of data. A particular sub-field of machine learning called deep learning (DL)
has been shown to often outperform process-based models. However, current DL models do not represent
all aspects of the hydrologic cycle (such as streamflow, evaporation, groundwater storage, and snowpack)
at once, as is often done in PBHMs. As a result, DL models in hydrology are often single purpose, while
PBHMs can be used for many different scientific and/or engineering purposes.

We show how individual DL models that simulate evaporation and convective heat transport at the land
surface can be incorporated into a PBHM. We show that deep learning simulated evaporation and convective
heat transport better than the PBHM. We also show how the incorporation of deep learning into process-
based models can further improve the DL model itself. We conclude that taking advantage of both modeling
perspectives is better than either on its own.

1 Introduction

The debates amongst the hydrologic modeling community about the use and utility of machine learning
(ML) to simulate hydrologic processes indicate that much work remains to be done to understand the role
and potential of machine learning in hydrologic modeling (Nearing et al., 2020; Shen, 2018). While it is
true that deep learning (DL) models have shown great promise and superior performance in many cases it
is yet unclear how to make models that are both composable (that is, easy to combine with other models)
and transferable for scientific studies (that is, the same model configuration can be used to explore disparate
scientific questions). In this paper we outline an approach for coupling DL models of individual processes into
existing hydrologic modeling frameworks. This coupling approach allows us to represent individual physical
processes within a larger model using ML methods and to introduce feedbacks between model components.
The ability to couple model components will address these composability and transferability questions, as
well as allow use of these types of machine-learned models in areas which do not have readily available
training data.

There are several reasons for the rapid advancement of ML-based approaches in hydrology (and other fields),
including a greater abundance of publicly available data, increased computational resources, and better
frameworks for selecting, fitting, and applying models. Along with this increase in interest, the community
has also begun to think about how to incorporate aspects of physical theory into these data driven models.
This desire for physics-based machine learning is enticing for a number of reasons. As scientists we hope
that the use of models which are based in, or constrained by, physical properties will allow us to learn about
the underlying processes of the systems we are modeling. Not only that, we hope that such approaches will
be able to efficiently extract information from a variety of datasets, from in situ observations to satellite
remote sensing data, or be able to represent complex phenomena in a more efficient way.

While inclusion of empirical or statistical relationships of individual processes in hydrologic models is com-
mon, this is not yet the case for ML methods. One reason for this is that it is not clear how to combine
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ML models in the same way that we have been able to include processes for which we have parsimonious
descriptions. Additionally, methodologies for representing physical relationships between ML-based process
representations have not been developed in the hydrology community. In part, this is not surprising since
machine learning is good at resolving relationships that we have not been able to decompose into easily de-
scribable parts. This “whole-system” or “black box” approach is conceptually appealing due to its simplicity,
and is exemplified by rainfall-runoff modeling, which deep learning has proven to be very good at (Hu et al.,
2018; Kratzert et al., 2018; Moshe et al., 2020). However, by taking a more granular approach, we will show
that DL models can be successfully incorporated as process modules into existing models. Doing so allows
us to see how changes in a single component affect the entire system.

In this paper, we look at turbulent heat fluxes, for which high-quality, long-term, local observations from eddy
covariance towers (here, from FluxNet; Pastorello et al., 2020) are available across a range of hydroclimates.
While machine learning has been used for modeling of turbulent heat fluxes and evaporation (Jung et al.,
2009; Tramontana et al., 2016; Zhao et al., 2019) there have not yet been model intercomparisons with
land surface models, much less integrations into land surface models. However, Best et al. (2015) showed
that even simple statistical models are often able to outperform state of the art land surface models in
simulation of latent and sensible heat fluxes. Best et al. (2015) postulated that the statistical models were
better able to use the information in the meteorological forcing data than the physics-based approaches.
This indicates there is strong motivation for incorporating data-driven techniques into complex land surface
and hydrologic models. We believe that if these types of approaches are able to provide better performance
than the physically motivated relationships we should work to understand how and why this performance is
better and use them where appropriate and applicable.

Despite the statistical benchmarks’ superior ability for predicting turbulent heat fluxes in Best et al. (2015),
land surface models remain more suitable for a wide range of applications, because they represent a wider
range of hydrologic processes and may be better suited for studies of environmental change. Such studies
include drought prediction (Li et al., 2012), snow melt predictions under climate change (Musselman et al.,
2017), and predicting volatile organic compound emissions (Lathière et al., 2006). That is not to say that
ML models cannot be used in this way or incorporated into larger frameworks. Both Kratzert et al. (2018)
and Jiang et al. (2020) make qualitative comparisons of internal ML model states to snowpack, but do not
later use the models for prediction of snowpack. We believe that it is likely that ML models will be used for
such purposes in the near future, but the question remains open how to extract process information from
statistical models.

Because the hydrology community is still learning the best ways to build and use ML models, there remains
considerable room for incorporation of machine learning into more conventional process-based hydrologic
models (PBHMs), which have the flexibility needed for general purpose modeling. This approach has be-
en adopted recently by Brenowitz & Bretherton (2018) as well as Rasp et al. (2018) for parameterizing
sub-gridcell scale processes, such as cloud convection, in atmospheric circulation models. Similarly, in ocea-
nography, neural networks have been used to parameterize the turbulent vertical mixing in the ocean surface
(Ramadhan et al., 2020).

In this study, we demonstrate how coupling ML models into a hydrologic model can yield better performance
at estimating turbulent heat fluxes without sacrificing mass and energy balance closure or the ability to
represent other processes such as runoff or snowpack. We have developed two ML models to simulate latent
and sensible heat fluxes. We embed these ML models as process parameterizations inside of a PBHM. These
ML-based process parameterizations replace the turbulent heat flux equations of the original PBHM. Our first
model was only allowed to learn from the same meteorological data that is used to force the hydrologic model,
while our second ML model is additionally trained with the inclusion of states derived from the hydrologic
model. We show that both ML models are able to outperform the routines for simulating turbulent heat
fluxes at subdaily timescales. We also show that the configuration which was trained using model states
is better able to reproduce the long-term water balance. Our results indicate that approaches to coupling
machine learning with PBHMs offer a promising avenue, which has only begun to be explored.
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2 Materials and Methods

2.1 Data and study sites

We used data from 60 FluxNet sites (Pastorello et al., 2020) to run our experiments. These sites cover a large
variety of vegetation and climate classifications. Our site selection process considered several criteria. We
first filtered the full FluxNet dataset to make sure we only included sites which had energy balance corrected
measurements of both sensible and latent heat fluxes, which will be discussed later. We then made sure that
these sites had the necessary variables to force our models, which include precipitation, air temperature,
incoming shortwave radiation, incoming longwave radiation, specific humidity, air pressure, and wind speed.
We then removed sites which had either fewer than three years of contiguous data or more than 20% missing
observations during the longest continuous period with observations. For the remaining sites, we used gap-
filled data provided as part of the FluxNet dataset. Gap-filling was based on ERA-Interim (ERAI) (Dee et
al., 2011) and includes downscaling and postprocessing explicitly for the purpose of model forcing. Time
steps flagged as gap-filled were excluded from our performance analysis to ensure that we did not simply
measure the ability of our simulations to model ERAI data. However, the gap-filled data is included when
analyzing the water balance.

We also limited our analysis to sites which had an observed ET/P ratio of less than 1.1, calculated using
the mean FluxNet-reported values of ET and P over the simulation period. This was done to accommodate
our model structure, which enforces mass and energy balances on a point (or lumped) scale. Larger observed
ET/P ratios likely occur at sites which have strong spatial gradients and flow convergence, so that moisture
available for ET is not just the result of local precipitation. Our filtering process resulted in 60 sites with
508 site-years of data. A breakdown of the site names, data periods, locations and site characteristics are
given in Table 1. Figure 1 shows the locations and vegetation classes for these same sites.

Table 1. A listing of the sites, locations, IGBP vegetation types, and dates of simulation. Locations are given
as (Latitude (°N), Longitude (°E)). Vegetation types are given by their IGBP codes. MF is mixed forest,
ENF is evergreen needleleaf forest, CRL is croplands, GRL is grasslands, SVN is savannas, OSL is open
shrublands, WLD is permanent wetlands, DBF is deciduous broadleaf forest, and WS is woody savannas.
Site names are taken from FluxNet, and consist of a two-letter country code followed by a three-letter site
code.

Site name Location Veg Type Start Time End Time Site name Location Veg Type Start Time End Time

AT-Neu (47.1, 11.3) GRL 1-2002 12-2012 FI-Let (60.6, 24) ENF 7-2009 12-2012
AU-ASM (-22.3, 133.2) ENF 1-2010 12-2014 FI-Sod (67.4, 26.6) ENF 4-2002 4-2005
AU-Cpr (-34, 140.6) SVN 1-2010 12-2014 FR-LBr (44.7, -0.8) ENF 1-1996 12-2008
AU-DaP (-14.1, 131.3) GRL 6-2007 12-2013 FR-Pue (43.7, 3.6) EBF 7-2004 3-2013
AU-How (-12.5, 131.2) WS 4-2009 12-2014 IT-Cpz (41.7, 12.4) EBF 4-2000 1-2009
AU-Stp (-17.2, 133.4) GRL 4-2008 12-2014 IT-Lav (46, 11.3) ENF 1-2003 12-2014
AU-Wac (-37.4, 145.2) EBF 5-2005 12-2008 IT-MBo (46, 11) GRL 1-2003 12-2013
AU-Wom (-37.4, 144.1) EBF 1-2010 12-2014 IT-Noe (40.6, 8.2) CSL 2-2004 12-2014
BE-Lon (50.6, 4.7) CRL 4-2004 10-2013 IT-Ren (46.6, 11.4) ENF 8-2003 12-2013
BE-Vie (50.3, 6) MF 1-1996 12-2014 IT-Ro2 (42.4, 11.9) DBF 1-2002 2-2007
CA-Gro (48.2, -82.2) MF 1-2003 12-2014 IT-SRo (43.7, 10.3) ENF 6-2000 4-2009
CA-Qfo (49.7, -74.3) ENF 1-2003 12-2010 IT-Tor (45.8, 7.6) GRL 4-2008 12-2014
CA-TP1 (42.7, -80.6) ENF 1-2002 12-2014 NL-Hor (52.2, 5.1) GRL 7-2004 4-2009
CA-TP3 (42.7, -80.3) ENF 1-2002 12-2014 RU-Fyo (56.5, 32.9) ENF 1-1998 12-2014
CA-TPD (42.6, -80.6) DBF 1-2012 12-2014 US-AR2 (36.6, -99.6) GRL 5-2009 12-2012
CH-Cha (47.2, 8.4) GRL 1-2006 3-2014 US-ARM (36.6, -97.5) CRL 1-2003 12-2012
CH-Fru (47.1, 8.5) GRL 1-2006 2-2014 US-Blo (38.9, -120.6) ENF 5-1998 12-2007
CN-HaM (37.4, 101.2) GRL 1-2002 12-2004 US-CRT (41.6, -83.3) CRL 1-2011 12-2013
CZ-wet (49, 14.8) WLD 3-2009 12-2014 US-GLE (41.4, -106.2) ENF 9-2004 12-2014
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Site name Location Veg Type Start Time End Time Site name Location Veg Type Start Time End Time

DE-Geb (51.1, 10.9) CRL 1-2001 12-2014 US-Goo (34.3, -89.9) GRL 5-2002 12-2006
DE-Gri (51, 13.5) GRL 1-2004 12-2014 US-IB2 (41.8, -88.2) GRL 1-2004 12-2011
DE-Hai (51.1, 10.5) DBF 1-2000 8-2011 US-KS2 (28.6, -80.7) CSL 5-2003 12-2006
DE-Kli (50.9, 13.5) CRL 5-2006 12-2014 US-Los (46.1, -90) WLD 9-2000 2-2009
DE-Obe (50.8, 13.7) ENF 1-2008 12-2014 US-NR1 (40, -105.5) ENF 1-1998 12-2014
DE-Tha (51, 13.6) ENF 1-1996 12-2014 US-Prr (65.1, -147.5) ENF 11-2010 12-2014
DK-Eng (55.7, 12.2) GRL 6-2005 10-2008 US-Syv (46.2, -89.3) MF 9-2001 1-2008
ES-Amo (36.8, -2.3) OSL 6-2007 12-2012 US-Ton (38.4, -121) WS 1-2001 12-2014
ES-LJu (36.9, -2.8) OSL 1-2004 12-2013 US-Var (38.4, -121) GRL 11-2000 12-2011
FI-Hyy (61.8, 24.3) ENF 10-2004 8-2012 US-WCr (45.8, -90.1) DBF 8-2010 12-2014
FI-Jok (60.9, 23.5) CRL 2-2000 11-2003 US-Whs (31.7, -110.1) OSL 1-2007 12-2014

As noted, we chose to use the FluxNet-provided energy balance corrected turbulent heat fluxes.The energy
balance gap in eddy-covariance measurements is an extensively studied topic (Foken, 2008; Kidston et al.,
2010; Wilson et al., 2002), though no strong consensus has been reached on how to account for gaps in
the observed energy balance (or even whether one should). However, because we will be using models and
methods that enforce energy conservation, we chose to use the corrected fluxes provided by the FluxNet data
providers (Pastorello et al., 2020).

Figure 1 . A map of the FluxNet sites used in the analysis, coded by the IGBP vegetation type.

2.2 SUMMA standalone simulations

We used the Structure for Unifying Multiple Modeling Alternatives (SUMMA) to simulate the hydrologic
cycle (Clark et al., 2015) including the resulting turbulent heat fluxes. SUMMA is a hydrologic modeling
framework that allows users to select between different model configurations and process parameterizations.
The clean separation between the numerical solver and flux parameterizations allowed us to be confident that
coupled DL parameterizations embedded into SUMMA did not affect any model components in unintentional
ways. The core numerical solver in SUMMA enforces closure of the mass and energy balance and is used in
all of our simulations.

SUMMA provides multiple flux parameterizations and process representations for many hydrologic processes.
Because we were primarily interested in turbulent heat fluxes, we used a configuration for the other processes
which would be suitable for general purpose hydrologic modeling, including runoff and snowpack simulations.
For simulation of transpiration we used a Ball-Berry approach for simulating stomatal conductance (Ball et
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al., 1987), an exponentially decaying root density profile, and soil moisture controls that mimic the Noah land
surface model (Niu et al., 2011). Similarly, the radiative transfer parameterizations which are the primary
controls on the sensible heat fluxes are also set up to mimic the Noah land surface model. The functional
forms of the turbulent heat fluxes in SUMMA is similar to many other land surface and hydrologic models,
given by the bulk transfer equations (in resistance terms) as in Bonan (2015).

At each of the sites described in section 2.1 we independently calibrated a standalone SUMMA model using
the dynamically dimensioned search algorithm (Tolson & Shoemaker, 2007) as implemented in the OSTRICH
optimization package (Matott, 2017) using the mean squared error as the optimization criteria. A summary
of the calibration variables and test ranges is shown in table S1 of the supporting information. The first
year of available data was used for calibration. Because of the limited length of the data record at some
sites, the calibration period was not excluded from subsequent analysis. The 10 parameters we chose to
calibrate largely control water movement through the vegetation and soil domains. In the soil domain these
include the residual and saturated moisture contents, field capacity, and controls on anisotropy of flows. In
the vegetation domain these include controls on photosynthesis, rooting depth, wilting and transpiration
water contents, amount of throughfall of precipitation through the canopy, and a generic scaling factor for
the amount of vegetation.

The calibrations were run to a maximum of 500 trial iterations, which provided good convergence across
sites (see the supporting information for convergence plots). We used the mean square error at a half hourly
timestep for both the latent and sensible heat as the objective function and saved the best set of parameters
for each site to use as our comparison to the DL parameterizations. To provide good estimates of the initial
soil moisture and temperature states we spun up the standalone SUMMA simulations for 10 years both before
and after calibration (for a total of 20 spinup years). We will refer to the standalone calibrated SUMMA
simulations as SA (StandAlone) for the remainder of the paper. To summarize, we independently calibrated
a set of parameters for each site, whose resulting best parameter set was used as an in-sample benchmark
for comparison with our DL parameterizations. A brief description of the computational cost and runtimes
associated with calibrating SA is provided in the supporting information.

2.3 DL parameterization and simulations

To build DL parameterizations of turbulent heat fluxes we constructed our neural networks using the Keras
python package (Chollet , 2015). The neural networks take in a variety of input data such as meteorologic
forcing data and output the bulk latent and sensible heat fluxes as shown in panel b) of figure 2.

Our neural networks were constructed using only dense layers where every node in one layer is connected to
all nodes in the preceeding and following layers. We used the deep-dense architecture because it is the only
network architecture that could easily be coupled to SUMMA, given the capabilities of the coupling tools.
We will discuss the details of how we coupled the neural networks to SUMMA later in this section. We
tested networks with as few as one layer and 12 nodes and up to 10 layers and 64 nodes were tested. After
manual trial and error we settled on 6 layers each with 48 nodes. Smaller architectures were not as well
able to capture the extremes of the turbulent heat fluxes and larger networks showed diminishing additional
improvement. A simple schematic of the neural network architecture is shown in figure S2 of the supporting
information.

We used hyperbolic tangent (tanh) activations in all of the nodes of the network. Stochastic gradient descent
(SGD) with an exponential learning rate decay curve was used as the optimizer to train the weights and
biases of the neural networks. We used the mean square error (the same as our objective function in the
calibration of SA) in the 30-minute turbulent heat flux estimates as our loss function, similar to the objective
function in our calibration of the SUMMA-SA simulations. Dropout was applied after the first layer and
before the final layer with a retention rate of 0.9 to regularize. Dropout works by randomly pruning some
fraction (one minus the retention rate) of the nodes in a given layer during training. This reduces the
likelihood of overfitting the network as there is some stochasticity in the model architecture during training.

When training the networks we performed a 5-fold cross validation. We used 48 sites to train each network
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and then applied it out of sample to each of the remaining 12 sites. The data from the 48 sites used to train
each network were randomly shuffled and split into 80% training and 20% validation data. The validation
data was used to define an early stopping criterion for the training procedure where training was stopped if
the validation loss was not decreased for 10 training epochs. This procedure keeps the model from overfitting
on the training data. The maximum number of training epochs was set to 500 epochs, with a batch size of
768 data points (or 14 days of data points). All data was shuffled before training to remove any temporal
bias that the model could learn, which also reduces overfitting.

Figure 2 . A schematic representation of the model setup. Panel a) shows the SUMMA runtime process.
Parameters and meteorologic forcing data, as well as the state variables from the previous timestep, are fed
to SUMMA to compute all fluxes, which are used to update the state variables for the subsequent timestep.
The purple box labeled “Turbulent heat flux” highlights the process representation that we modify in our
experiment. Panel b) shows the ways we represent the turbulent heat fluxes. One of the options from
panel b) replaces the purple box in panel a). SA is the standalone SUMMA representation, as described in
section 2.2. NN1W and NN2W are our DL-based representations described in section 2.3. Thus, SUMMA-x
represents one of the three model configurations where x is one of SA, NN1W, or NN2W.

The first network we trained took meteorological forcing data for the current timestep, vegetation and soil
types, and the calibrated SUMMA parameter values as input. We chose to include the calibration parameters
to provide the same information to the neural networks as was provided to the calibrations, allowing for a
more direct comparison and because the calibrated parameter values might be a proxy for site characteristics
that can be associated with different responses among the sites. The neural network outputs the bulk latent
and sensible heat fluxes at the half hourly timescale. We denote this network NN1W, for Neural-Network-
1-Way, because this configuration only takes meteorological forcing data and parameters, which cannot be
changed by the rest of the SUMMA calculations. That is, the neural network provides information about
turbulent heat fluxes to SUMMA, but SUMMA does not provide any internally-derived information to the
neural network.

The second network we trained took all of the same input data as the NN1W configuration, as well as a
number of additional inputs that are derived states taken from the output of the coupled SUMMA-NN1W
simulations. We included surface vapor pressure, leaf area index, surface soil layer volumetric water content,
depth averaged transpirable water (as a volumetric fraction), surface soil layer temperature, depth averaged
soil temperature, and a snow-presence indicator. These variables were chosen because they are used in
the process-based SUMMA parameterizations for either latent or sensible heat, or affect the way in which
the partitioning of the heat flux is distributed to the soil, vegetation, or snow domains. At runtime this
network uses the additional variables as calculated internally by SUMMA, rather than the ones provided
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during training from NN1W. We denote this network NN2W, for Neural-Network-2-Way, because SUMMA
internal states provide feedback to the ML model. That is, the neural network is provided inputs which are
dependent on the state variables derived internally by SUMMA, which in turn depend on the turbulent heat
fluxes that are predicted by the neural network.

After training each of these networks they were saved and translated into a format that could be loaded
into Fortran via the Fortran Keras Bridge (FKB) package (Ott et al., 2020). The FKB package allows for
translation of a limited subset of Keras model files (architecture, weights, biases, and activation functions)
to be translated into a file format which can be loaded into the FKB Fortran library which implements
several simple components for building and evaluating neural networks in Fortran, such as the deep-dense
architecture used here.

We then extended SUMMA (which is written in Fortran) to allow for the use of these neural networks
to simulate the turbulent heat fluxes. Normally SUMMA breaks the calculation of turbulent heat fluxes
into several domains to delineate between heat exchanges in the vegetation and soil domains. Because we
estimate these as bulk quantities we implemented this as only heat fluxes in the soil domain, and specified
that the model should skip any computation of vegetation fluxes. We then specified that all ET resulting
from the neural network’s estimate of latent heat be taken from the soil domain as transpiration, according
to SUMMA’s internal routines. We chose this rather than taking all of the ET as soil evaporation because
this allowed for a wider range of ET behaviors. In our simulations, the domain was split into nine soil layers,
with a 0.01 m deep top layer. In SUMMA soil evaporation is only taken from the top soil layer and the
shallow surface soil depth in our setup would not have allowed for sufficient storage to satisfy the predicted
ET for many of the vegetated sites. Water removed as transpiration is weighted by the root density in each
soil layer, which generally provides a large enough reservoir to satisfy the evaporative demand predicted by
the neural networks. Another side-effect of our decision for taking all ET as transpiration is the removal of
snow sublimation from the model entirely. As we will show in the results, the amount of snow sublimation
in the SA simulations is negligible at most of our FluxNet sites, so we believe that this is an acceptable
simplification for our initial demonstration. In cases where the neural network predicts greater evaporation
than is available in the soil SUMMA enforces the water balance and limits the evaporation to an amount it
can satisfy. A brief comparison of the computational cost and runtimes associated with training both NN1W
and NN2W is provided in the supporting information.

3 Results

We present our results in two categories. First, we compare the performance of the coupled neural network
simulations to the standalone calibrated simulations (SA). We use two commonly used metrics for determining
the performance of the simulated turbulent heat fluxes, the Nash-Sutcliffe efficiency (NSE) and Kling-Gupta
efficiency (KGE) scores. Using two metrics in tandem allows us to be sure that our results are robust
(Knoben et al., 2019). Then, we explore how the inclusion of NN-based parameterizations for turbulent heat
fluxes affects the overall model dynamics. This analysis is crucial to ensure that the new parameterizations
do not lead to unrealistic simulations of other processes

3.1 Performance analysis

Figure 3 shows the cumulative density functions of the performance metrics across all sites, evaluated on the
half-hourly data for all non-gap-filled periods. For all cases we see that both NN1W and NN2W outperformed
the SA simulations. NN1W showed a median increase in NSE of 0.07 for latent heat and 0.12 for sensible heat,
while NN2W showed a median increase in NSE of 0.10 for latent heat and 0.14 for sensible heat. Similarly,
for KGE these were 0.10 (latent) and 0.21 (sensible) for NN1W and 0.17 (latent) and 0.23 (sensible) for
NN2W. Examination of the individual KGE components (bias, variance, and correlation) shows that the
NNs showed consistent improvements in all components. Overall we see that the NN2W configuration slightly
outperforms the NN1W configuration. However, it is possible that in both cases that there are additional
performance gains to be made with better model architectures and/or training procedures. We will come
back to this in the Discussion.
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Figure 3 . Empirical CDFs of performance measures for simulations across all sites. a) shows the NSE for
latent heat, b) the NSE for sensible heat, c) the KGE for latent heat, and d) the KGE for sensible heat.

Even though the curves of the performance measures look quite similar between NN1W and NN2W, the
performance differences from SA were not always perfectly correlated. Figure 3 shows the change in perfor-
mance from SA for each site, ranked by SA performance. The maximum improvement that is possible is
also shown to provide a reference to account for the fact that the range of both NSE and KGE is (-[?],1].
That is, there is more room for improvement for poorly performing sites than there is for well performing
sites. For both performance measures and fluxes the general pattern of improvement follows the maximum
improvement curve, with some added noise.

While on average the NN-based configurations performed better than the SA simulations, they performed
worse at some locations. NN-based simulations generally had a higher NSE , but the KGE scores were more
mixed for sensible heat, with SA outperforming the NN-based configurations at a number of sites. The NN-
based configurations performed much worse at AT-Neu, DK-Eng, and CH-Cha (the outliers in the lowest
25th percentile of Figure 4d), where they failed in simulating large, upward, nighttime sensible heat fluxes.
SA also performed poorly for these nighttime fluxes, but to a lesser extent. For latent heat, while some sites
showed higher NSE and KGE values for SA results than for the NN-based simulations, more sites showed
poor performance across all configurations when evaluated by NSE. Decreases in performance relative to SA
mostly occurred where the NN-based configurations consistently overestimated latent heat during winter,
which most likely stems from our assumption that all latent heat is treated as transpiration. For both
conditions for which SA outperformed the NN-based configurations, we believe that the performance of the
NN-based configurations can be improved if more training data or more sophisticated ML methods were
used, since the number of outliers was small and the average performance improvement was large.
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Figure 4 . Scatter plots showing the performance of NN1W and NN2W against SA across all sites. Points
above the grey zero line show configurations where the NN configuration improved performance over SA. The
“Maximum improvement” line is based on the performance of the SA simulations, and is simply (1-NSE) in
subplots a and b, and (1-KGE) in subplots c and d.

We also compared the KGE for different periods of temporal aggregation to evaluate whether performance
improvements of the NN configurations persisted across timescales (Figure 5). The KGE score was chosen
here because it shows greater variability than the NSE score in Figure 3, though the results are similar
for NSE. We see that the sub-daily aggregations, on average, showed better performance for both NN
configurations, demonstrating that they were able to capture the diurnal cycle of turbulent heat fluxes. This
is mostly due to the strong dependence of turbulent heat fluxes on solar radiation, which we will further
explore in section 3.2. Both NN1W and NN2W were able to outperform SA across all timescales for sensible
heat.

However, at daily and longer temporal aggregations differences between models were seen in latent heat
performance. The NN1W configuration performed better at sub-daily timescales than for daily or longer
aggregations, for which performance was similar to SA. In contrast, the NN2W configuration performed
better for latent heat than SA across all timescales.
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y. Figure 5 . Performance of each model configuration for multiple temporal aggregations. Each box shows the
interquartile range, with the median marked as the central line. A 95% confidence interval for the estimate
of the median is represented by the notched portion. Outliers are shown as open circles.

3.2 Diagnostic analysis

In section 3.1 we demonstrated that the NN configurations were able to consistently outperform the SA
configuration for both latent and sensible heat flux predictions at a half-hourly timestep. The range of
performance differences shown in Figure 4 demonstrates that the NN-based simulations are significantly
different from the physically-based representation in SA. Consequently, water and energy partitioning in
the NN configurations is likely much different than in SA. To explore the effect of the new NN-based
parameterizations on the simulated water cycle we first compared the simulated evaporative fraction (ET/P)
to the observed (Figure 6). In all three model configurations the KGE values tend to be higher for sites
where the simulated evaporative fraction closely matches the observed value.

Figure 6 . Comparison of evaporative fraction for each model configuration across all sites. The one-to-one
line shows perfect correspondence with the observed values. Each point shows an individual site, averaged
over the simulation period. Points are colored by their respective performance in terms of KGE of the latent
heat at the half-hour timescale.

However, the SA configuration has a tendency to systematically underestimate total ET, while the NN
configurations tend to match the observed evaporative fraction. The NN1W configuration shows more over-
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evaporation than NN2W, indicating that the introduction of soil states allows the model to perform better in
moisture limiting conditions. This soil moisture feedback is the reason that the NN2W was able to perform
better at daily and greater temporal aggregations for the prediction of latent heat. The impacts of these
changes in the long-term evaporative fraction on the other terms of the water balance are shown in figure
S3 of the supporting materials.

As noted when discussing Figure 5, we hypothesize that the NN-based simulations performed better at the
sub-daily timescale because of their improved ability to model the diurnal cycle in the observations. We take
the approach of Renner et al. (2019) by comparing the time lag in the diurnal cycle between the turbulent
heat fluxes and shortwave radiation. To compute this we fitted a regression equation of the form:

Q (t) = a0 + a1SW (t) + a2
dSW(t)

dt + ε,( 1 )

where Q is the turbulent heat flux, SW is the shortwave radiation, ai are the coefficients of the regression,
andε is the residual term (Camuffo & Bernardi, 1982). Then, the phase lag can be computed as

φ = tan−1(2πa2/a1nd), ( 2 )

where nd is the number of timesteps in a day (here, 48). We calculated this phase lag for each of the simulation
configurations and the observations. Figure 7 shows how each of the simulations compare to the observed
phase lag across all sites. For both latent and sensible heat we see that the NN-based configurations are
better able to capture the diurnal phase lag seen in the observations, confirming our conclusion from Figure
5 that the improved sub-daily performance of the NN-based configurations is due to better representation
of the diurnal cycle.

Figure 7 . Difference in diurnal phase lag from observation. Positive values indicate that the simulated
phase lag leads the observed phase lag.

4 Discussion

Our analysis shows that the DL parameterizations were able to outperform the standalone simulations for
both latent and sensible heat fluxes. Most of the bulk gains in performance from the NN-based configu-
rations stemmed from drastic improvements at sites where the SA configuration performed poorly. This is
important to note, since our SA simulations were calibrated at site (and included the calibration period in
the evaluation), while all NN-based simulations were trained out of sample in both time and space. This
indicates that our NN-based configurations would likely be better able to represent turbulent heat fluxes in
regions without measurements, implying that deep learning may be suitable for regionalization applications.

Both of the NN-based configurations represented the diurnal phase lag between shortwave radiation and
turbulent heat fluxes better than SA. Renner et al. (2020) explored the ability of the land surface models
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used in the PLUMBER experiments (Best et al., 2015) to reproduce the observed diurnal phase lag, finding
similar deviations from the observed phase lag as our SA simulations. This indicates that the NN-based
approach has been able to learn something that has not been codified in PBHMs, and could provide better
insight into how turbulent heat fluxes are generated at the scales that FluxNet towers operate. It is difficult
to definitively state why the NN-based simulations provided more accurate simulations than SA’s process-
based parameterizations. Even if the functional forms of the SA were correct, the model parameters may
be difficult to determine. Zhao et al. (2019) were able to achieve good predictive performance out of a
standalone (that is, not coupled to a larger model) machine-learning model that used a neural network to
estimate the resistance term of the bulk transfer equations, and then computed the heat fluxes from the
standard equations. Using such an approach would likely work well in the coupled setting as well.

We also found that the NN2W configuration maintained higher performance than either NN1W or SA at
longer than daily timescales, as well as more accurately reproduced the observed long-term evaporative
fraction. This indicates that the synergy between the deep-learned parameterization and the soil-moisture
state evolution in SUMMA was able to better capture the long-term dynamics than either a purely machine-
learned or purely process-based approach. This lends credibility to our proposition that the synergy between
data-driven and physics-based approaches will likely lead to better simulations than a rigid adherence to
either one of the methods by themselves.

These performance gains came at the cost of drastically simplifying the way in which we represented evap-
otranspiration. The SA simulations partition the latent heat fluxes amongst the soil, snow, and vegetation
domains separately, while the NN simulations were set up to only represent the latent heat as a bulk flux,
whose withdrawals we set to be taken from each soil layer according to the root density in that layer. This
leads to the SA simulations being able to represent a more diverse range of conditions. While this was not a
problem for the NN simulations on average, we were able to identify two locations where our simplification
to the way in which ET is taken from the soil led to poor performance. At US-WCr and US-AR2 both NN
configurations underestimated ET, because the soil was too dry to meet evaporative demand for much of the
time. At these two sites the NN simulations performed significantly worse than the SA simulations, indi-
cating a clear failure mode of the neural network based approach. This shortcoming might be be addressed
by developing strategies that better partition the latent heat fluxes amongst the soil, snow, and vegetation
domains. This would also allow for adding snow sublimation back in, reducing the number of modifications
which must be made to SUMMA in order to run with an embedded neural network.

Other neural network architectures will likely lead to further performance improvements. Many recent studies
that used neural networks to predict hydrologic systems have shown that Long-Short-Term-Memory (LSTM)
networks are superior at learning timeseries behaviors compared to the methods used here (Feng et al., 2020;
Frame et al., 2020; Jiang et al., 2020; Kratzert et al., 2018). Convolutional neural networks (CNN) have been
used extensively to learn from spatially distributed fields (Geng & Wang, 2020; Kreyenberg et al., 2019; Liu
& Wu, 2016; Pan et al., 2019). To take advantage of these specialized architectures in existing PBHMs like
SUMMA will require the investment in tools and workflows. As of the time of writing, the FKB library only
supports densely connected layers, and a few simple activation and loss functions. Implementing these layers
in the FKB library, or some other framework that can be used to couple ML models with PBHMs, would
open many possibilities for future research. Additionally, implementing more specialized activation functions
and loss functions (such as NSE or KGE) will offer more flexibility for a wider range of applications.

Alongside better tools for incorporating machine learning into process-based models, the development and
identification of workflows to perform machine and deep learning tasks will be necessary for wider adoption in
the field. For instance, we initially trained the NN2W networks using the SA soil states, which were drastically
different from the spun up states in the NN configurations. This led to almost identical performance in the
NN1W and NN2W simulations, since the soil state information from the SA simulations was very different
from what the network saw during training. Only after realizing this and training the NN2W on the states
predicted by the NN1W simulations were we able to achieve better performance out of the NN2W simulations.
Understanding whether there is a sort of iterative train-spinup-train workflow that balances overfitting and
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provides representative training data will be important for future studies.

Similarly, it is unclear whether there would be significant difficulties in trying to calibrate either of the NN-
based models in new basins like we did for the SA simulations. Particularly, we do not know if the output
of the neural networks is sensitive to the values of the calibration parameters. Our decision to include the
calibrated parameter values in the training of the NN-based configurations was to provide the same types
of information to both optimization procedures. In future studies it may be worthwhile to explore whether
these parameters are necessary, or how regionalization of data driven approaches should best be codified. It
is also unclear whether our NN-based configurations are able to be calibrated efficiently for other processes
such as streamflow.

Finally, model architectures that separate process parameterizations in as clean a way as possible will allow
for more robust and rapid development of ML parameterizations of other processes. Building modular and
general purpose ways to incorporate machine learning into process-based models will allow researchers to
more efficiently evaluate different approaches. Exploring and answering these practical questions will likely
lead to community accepted practices which can be adopted to accelerate research of other applications.

5 Conclusions

We have shown that coupling DL parameterizations for prediction of turbulent heat fluxes into a PBHM
outperforms existing physically-based parameterizations while maintaining mass and energy balance. We
were able to couple our neural networks into SUMMA in two different ways, which both showed significant
performance improvements when performed out of sample over the at-site calibrated standalone SUMMA
simulations. The one-way coupling (NN1W), despite being conceptually simpler and not taking any model
states as inputs, was able to improve simulations almost as much as the more complex two-way coupling
(NN2W) at the sub-daily timescale. Both of the new parameterizations better represent the observed diurnal
cycles and NN2W was better able to represent the long-term evaporative fraction as well as both turbulent
heat fluxes at longer than daily timescales. We found that NN1W was also able to accurately predict sensible
heat fluxes at greater than daily timescales, indicating that even “simple” DL parameterizations show great
promise for coupling into PBHMs.

While we consider our new parameterizations a step forward in incorporating ML techniques into traditional
process-based modeling, we have only scratched the surface on many of the different avenues which will
surely be explored. We used the simplest possible network architecture, a deep-dense network. For spatial
applications we suspect that CNN layers will prove invaluable. Recurrent layers such as LSTMs have been
dominant in the timeseries domain. More sophisticated architectures such as neural ordinary differential
equations (Ramadhan et al., 2020) or those discovered through neural architecture search (Geng & Wang,
2020) are bound to be both more efficient and interpretable than our dense networks. The opportunities
for incorporating and learning from ML-based models into the hydrologic sciences are virtually untapped.
We believe that as the community builds tools and workflows around the existing ML ecosystems we will be
able to unlock this potential.
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Abstract 15 

Deep learning (DL) methods have shown great promise for accurately predicting hydrologic 16 

processes but have not yet reached the complexity of traditional process-based hydrologic 17 

models (PBHM) in terms of representing the entire hydrologic cycle. The ability of PBHMs to 18 

simulate the hydrologic cycle makes them useful for a wide range of modeling and simulation 19 

tasks, for which DL methods have not yet been adapted. We argue that we can take advantage of 20 

each of these approaches by embedding DL methods into PBHMs to represent individual 21 

processes. We demonstrate that this is viable by developing DL-based representations of 22 

turbulent heat fluxes and coupling them into the Structure for Unifying Multiple Modeling 23 

Alternatives (SUMMA), a modular PBHM modeling framework. We developed two DL 24 

parameterizations and integrated them into SUMMA, resulting in a one-way coupled 25 

implementation (NN1W) which relies only on model inputs and a two-way coupled 26 

implementation (NN2W), which also incorporates SUMMA-derived model states. Our results 27 

demonstrate that the DL parameterizations are able to outperform calibrated standalone SUMMA 28 

benchmark simulations. Further we demonstrate that the two-way coupling can simulate the 29 

long-term latent heat flux better than the standalone benchmark and one-way coupled 30 

configuration. This shows that DL methods can benefit from PBHM information, and the 31 

synergy between these modeling approaches is superior to either approach individually. 32 

Plain Language Summary 33 

Machine learning (ML) and process-based methods are two approaches to hydrologic modeling. 34 

Process-based hydrologic models (PBHMs) represent the hydrologic cycle by solving equations 35 

which have been developed from physical theory or experimentation, while ML models make 36 

predictions based on patterns learned from large amounts of data. A particular sub-field of 37 

machine learning called deep learning (DL) has been shown to often outperform process-based 38 

models. However, current DL models do not represent all aspects of the hydrologic cycle (such 39 

as streamflow, evaporation, groundwater storage, and snowpack) at once, as is often done in 40 

PBHMs. As a result, DL models in hydrology are often single purpose, while PBHMs can be 41 

used for many different scientific and/or engineering purposes.  42 

We show how individual DL models that simulate evaporation and convective heat transport at 43 

the land surface can be incorporated into a PBHM. We show that deep learning simulated 44 

evaporation and convective heat transport better than the PBHM. We also show how the 45 

incorporation of deep learning into process-based models can further improve the DL model 46 

itself. We conclude that taking advantage of both modeling perspectives is better than either on 47 

its own. 48 

1 Introduction 49 

The debates amongst the hydrologic modeling community about the use and utility of machine 50 

learning (ML) to simulate hydrologic processes indicate that much work remains to be done to 51 

understand the role and potential of machine learning in hydrologic modeling (Nearing et al., 52 

2020; Shen, 2018). While it is true that deep learning (DL) models have shown great promise 53 

and superior performance in many cases it is yet unclear how to make models that are both 54 

composable (that is, easy to combine with other models) and transferable for scientific studies 55 

(that is, the same model configuration can be used to explore disparate scientific questions). In 56 

this paper we outline an approach for coupling DL models of individual processes into existing 57 
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hydrologic modeling frameworks. This coupling approach allows us to represent individual 58 

physical processes within a larger model using ML methods and to introduce feedbacks between 59 

model components. The ability to couple model components will address these composability 60 

and transferability questions, as well as allow use of these types of machine-learned models in 61 

areas which do not have readily available training data. 62 

There are several reasons for the rapid advancement of ML-based approaches in hydrology (and 63 

other fields), including a greater abundance of publicly available data, increased computational 64 

resources, and better frameworks for selecting, fitting, and applying models. Along with this 65 

increase in interest, the community has also begun to think about how to incorporate aspects of 66 

physical theory into these data driven models. This desire for physics-based machine learning is 67 

enticing for a number of reasons. As scientists we hope that the use of models which are based 68 

in, or constrained by, physical properties will allow us to learn about the underlying processes of 69 

the systems we are modeling. Not only that, we hope that such approaches will be able to 70 

efficiently extract information from a variety of datasets, from in situ observations to satellite 71 

remote sensing data, or be able to represent complex phenomena in a more efficient way. 72 

While inclusion of empirical or statistical relationships of individual processes in hydrologic 73 

models is common, this is not yet the case for ML methods. One reason for this is that it is not 74 

clear how to combine ML models in the same way that we have been able to include processes 75 

for which we have parsimonious descriptions. Additionally, methodologies for representing 76 

physical relationships between ML-based process representations have not been developed in the 77 

hydrology community. In part, this is not surprising since machine learning is good at resolving 78 

relationships that we have not been able to decompose into easily describable parts. This “whole-79 

system” or “black box” approach is conceptually appealing due to its simplicity, and is 80 

exemplified by rainfall-runoff modeling, which deep learning has proven to be very good at (Hu 81 

et al., 2018; Kratzert et al., 2018; Moshe et al., 2020). However, by taking a more granular 82 

approach, we will show that DL models can be successfully incorporated as process modules 83 

into existing models. Doing so allows us to see how changes in a single component affect the 84 

entire system. 85 

In this paper, we look at turbulent heat fluxes, for which high-quality, long-term, local 86 

observations from eddy covariance towers (here, from FluxNet; Pastorello et al., 2020) are 87 

available across a range of hydroclimates. While machine learning has been used for modeling of 88 

turbulent heat fluxes and evaporation (Jung et al., 2009; Tramontana et al., 2016; Zhao et al., 89 

2019) there have not yet been model intercomparisons with land surface models, much less 90 

integrations into land surface models. However, Best et al. (2015) showed that even simple 91 

statistical models are often able to outperform state of the art land surface models in simulation 92 

of latent and sensible heat fluxes. Best et al. (2015) postulated that the statistical models were 93 

better able to use the information in the meteorological forcing data than the physics-based 94 

approaches. This indicates there is strong motivation for incorporating data-driven techniques 95 

into complex land surface and hydrologic models. We believe that if these types of approaches 96 

are able to provide better performance than the physically motivated relationships we should 97 

work to understand how and why this performance is better and use them where appropriate and 98 

applicable. 99 

Despite the statistical benchmarks’ superior ability for predicting turbulent heat fluxes in Best et 100 

al. (2015), land surface models remain more suitable for a wide range of applications, because 101 
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they represent a wider range of hydrologic processes and may be better suited for studies of 102 

environmental change. Such studies include drought prediction (Li et al., 2012), snow melt 103 

predictions under climate change (Musselman et al., 2017), and predicting volatile organic 104 

compound emissions (Lathière et al., 2006). That is not to say that ML models cannot be used in 105 

this way or incorporated into larger frameworks. Both Kratzert et al. (2018) and Jiang et al. 106 

(2020) make qualitative comparisons of internal ML model states to snowpack, but do not later 107 

use the models for prediction of snowpack. We believe that it is likely that ML models will be 108 

used for such purposes in the near future, but the question remains open how to extract process 109 

information from statistical models. 110 

Because the hydrology community is still learning the best ways to build and use ML models, 111 

there remains considerable room for incorporation of machine learning into more conventional 112 

process-based hydrologic models (PBHMs), which have the flexibility needed for general 113 

purpose modeling. This approach has been adopted recently by Brenowitz & Bretherton (2018) 114 

as well as Rasp et al. (2018) for parameterizing sub-gridcell scale processes, such as cloud 115 

convection, in atmospheric circulation models. Similarly, in oceanography, neural networks have 116 

been used to parameterize the turbulent vertical mixing in the ocean surface (Ramadhan et al., 117 

2020).  118 

In this study, we demonstrate how coupling ML models into a hydrologic model can yield better 119 

performance at estimating turbulent heat fluxes without sacrificing mass and energy balance 120 

closure or the ability to represent other processes such as runoff or snowpack. We have 121 

developed two ML models to simulate latent and sensible heat fluxes. We embed these ML 122 

models as process parameterizations inside of a PBHM. These ML-based process 123 

parameterizations replace the turbulent heat flux equations of the original PBHM. Our first 124 

model was only allowed to learn from the same meteorological data that is used to force the 125 

hydrologic model, while our second ML model is additionally trained with the inclusion of states 126 

derived from the hydrologic model. We show that both ML models are able to outperform the 127 

routines for simulating turbulent heat fluxes at subdaily timescales. We also show that the 128 

configuration which was trained using model states is better able to reproduce the long-term 129 

water balance. Our results indicate that approaches to coupling machine learning with PBHMs 130 

offer a promising avenue, which has only begun to be explored. 131 

2 Materials and Methods 132 

2.1 Data and study sites 133 

We used data from 60 FluxNet sites (Pastorello et al., 2020) to run our experiments. These sites 134 

cover a large variety of vegetation and climate classifications. Our site selection process 135 

considered several criteria. We first filtered the full FluxNet dataset to make sure we only 136 

included sites which had energy balance corrected measurements of both sensible and latent heat 137 

fluxes, which will be discussed later. We then made sure that these sites had the necessary 138 

variables to force our models, which include precipitation, air temperature, incoming shortwave 139 

radiation, incoming longwave radiation, specific humidity, air pressure, and wind speed. We then 140 

removed sites which had either fewer than three years of contiguous data or more than 20% 141 

missing observations during the longest continuous period with observations. For the remaining 142 

sites, we used gap-filled data provided as part of the FluxNet dataset. Gap-filling was based on 143 

ERA-Interim (ERAI) (Dee et al., 2011) and includes downscaling and postprocessing explicitly 144 
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for the purpose of model forcing. Time steps flagged as gap-filled were excluded from our 145 

performance analysis to ensure that we did not simply measure the ability of our simulations to 146 

model ERAI data. However, the gap-filled data is included when analyzing the water balance. 147 

We also limited our analysis to sites which had an observed ET/P ratio of less than 1.1, 148 

calculated using the mean FluxNet-reported values of ET and P over the simulation period. This 149 

was done to accommodate our model structure, which enforces mass and energy balances on a 150 

point (or lumped) scale. Larger observed ET/P ratios likely occur at sites which have strong 151 

spatial gradients and flow convergence, so that moisture available for ET is not just the result of 152 

local precipitation. Our filtering process resulted in 60 sites with 508 site-years of data. A 153 

breakdown of the site names, data periods, locations and site characteristics are given in Table 1. 154 

Figure 1 shows the locations and vegetation classes for these same sites. 155 

Table 1. A listing of the sites, locations, IGBP vegetation types, and dates of simulation. 156 

Locations are given as (Latitude (°N), Longitude (°E)). Vegetation types are given by their IGBP 157 

codes. MF is mixed forest, ENF is evergreen needleleaf forest, CRL is croplands, GRL is 158 

grasslands, SVN is savannas, OSL is open shrublands, WLD is permanent wetlands, DBF is 159 
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deciduous broadleaf forest, and WS is woody savannas. Site names are taken from FluxNet, and 160 

consist of a two-letter country code followed by a three-letter site code. 161 

Site name Location 

Veg 

Type 

Start 

Time End Time Site name Location 

Veg 

Type 

Start 

Time End Time 

AT-Neu (47.1, 11.3) GRL 1-2002 12-2012 FI-Let (60.6, 24) ENF 7-2009 12-2012 

AU-ASM (-22.3, 133.2) ENF 1-2010 12-2014 FI-Sod (67.4, 26.6) ENF 4-2002 4-2005 

AU-Cpr (-34, 140.6) SVN 1-2010 12-2014 FR-LBr (44.7, -0.8) ENF 1-1996 12-2008 

AU-DaP (-14.1, 131.3) GRL 6-2007 12-2013 FR-Pue (43.7, 3.6) EBF 7-2004 3-2013 

AU-How (-12.5, 131.2) WS 4-2009 12-2014 IT-Cpz (41.7, 12.4) EBF 4-2000 1-2009 

AU-Stp (-17.2, 133.4) GRL 4-2008 12-2014 IT-Lav (46, 11.3) ENF 1-2003 12-2014 

AU-Wac (-37.4, 145.2) EBF 5-2005 12-2008 IT-MBo (46, 11) GRL 1-2003 12-2013 

AU-Wom (-37.4, 144.1) EBF 1-2010 12-2014 IT-Noe (40.6, 8.2) CSL 2-2004 12-2014 

BE-Lon (50.6, 4.7) CRL 4-2004 10-2013 IT-Ren (46.6, 11.4) ENF 8-2003 12-2013 

BE-Vie (50.3, 6) MF 1-1996 12-2014 IT-Ro2 (42.4, 11.9) DBF 1-2002 2-2007 

CA-Gro (48.2, -82.2) MF 1-2003 12-2014 IT-SRo (43.7, 10.3) ENF 6-2000 4-2009 

CA-Qfo (49.7, -74.3) ENF 1-2003 12-2010 IT-Tor (45.8, 7.6) GRL 4-2008 12-2014 

CA-TP1 (42.7, -80.6) ENF 1-2002 12-2014 NL-Hor (52.2, 5.1) GRL 7-2004 4-2009 

CA-TP3 (42.7, -80.3) ENF 1-2002 12-2014 RU-Fyo (56.5, 32.9) ENF 1-1998 12-2014 

CA-TPD (42.6, -80.6) DBF 1-2012 12-2014 US-AR2 (36.6, -99.6) GRL 5-2009 12-2012 

CH-Cha (47.2, 8.4) GRL 1-2006 3-2014 US-ARM (36.6, -97.5) CRL 1-2003 12-2012 

CH-Fru (47.1, 8.5) GRL 1-2006 2-2014 US-Blo (38.9, -120.6) ENF 5-1998 12-2007 

CN-HaM (37.4, 101.2) GRL 1-2002 12-2004 US-CRT (41.6, -83.3) CRL 1-2011 12-2013 

CZ-wet (49, 14.8) WLD 3-2009 12-2014 US-GLE (41.4, -106.2) ENF 9-2004 12-2014 

DE-Geb (51.1, 10.9) CRL 1-2001 12-2014 US-Goo (34.3, -89.9) GRL 5-2002 12-2006 

DE-Gri (51, 13.5) GRL 1-2004 12-2014 US-IB2 (41.8, -88.2) GRL 1-2004 12-2011 

DE-Hai (51.1, 10.5) DBF 1-2000 8-2011 US-KS2 (28.6, -80.7) CSL 5-2003 12-2006 

DE-Kli (50.9, 13.5) CRL 5-2006 12-2014 US-Los (46.1, -90) WLD 9-2000 2-2009 

DE-Obe (50.8, 13.7) ENF 1-2008 12-2014 US-NR1 (40, -105.5) ENF 1-1998 12-2014 

DE-Tha (51, 13.6) ENF 1-1996 12-2014 US-Prr (65.1, -147.5) ENF 11-2010 12-2014 

DK-Eng (55.7, 12.2) GRL 6-2005 10-2008 US-Syv (46.2, -89.3) MF 9-2001 1-2008 

ES-Amo (36.8, -2.3) OSL 6-2007 12-2012 US-Ton (38.4, -121) WS 1-2001 12-2014 

ES-LJu (36.9, -2.8) OSL 1-2004 12-2013 US-Var (38.4, -121) GRL 11-2000 12-2011 

FI-Hyy (61.8, 24.3) ENF 10-2004 8-2012 US-WCr (45.8, -90.1) DBF 8-2010 12-2014 

FI-Jok (60.9, 23.5) CRL 2-2000 11-2003 US-Whs (31.7, -110.1) OSL 1-2007 12-2014 

 162 

As noted, we chose to use the FluxNet-provided energy balance corrected turbulent heat 163 

fluxes.The energy balance gap in eddy-covariance measurements is an extensively studied topic 164 

(Foken, 2008; Kidston et al., 2010; Wilson et al., 2002), though no strong consensus has been 165 

reached on how to account for gaps in the observed energy balance (or even whether one 166 

should). However, because we will be using models and methods that enforce energy 167 

conservation, we chose to use the corrected fluxes provided by the FluxNet data providers 168 

(Pastorello et al., 2020).  169 
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 170 

171 
Figure 1. A map of the FluxNet sites used in the analysis, coded by the IGBP vegetation type. 172 

2.2 SUMMA standalone simulations 173 

We used the Structure for Unifying Multiple Modeling Alternatives (SUMMA) to simulate the 174 

hydrologic cycle (Clark et al., 2015) including the resulting turbulent heat fluxes. SUMMA is a 175 

hydrologic modeling framework that allows users to select between different model 176 

configurations and process parameterizations. The clean separation between the numerical solver 177 

and flux parameterizations allowed us to be confident that coupled DL parameterizations  178 

embedded into SUMMA did not affect any model components in unintentional ways. The core 179 

numerical solver in SUMMA enforces closure of the mass and energy balance and is used in all 180 

of our simulations. 181 

SUMMA provides multiple flux parameterizations and process representations for many 182 

hydrologic processes. Because we were primarily interested in turbulent heat fluxes, we used a 183 

configuration for the other processes which would be suitable for general purpose hydrologic 184 

modeling, including runoff and snowpack simulations. For simulation of transpiration we used a 185 

Ball-Berry approach for simulating stomatal conductance (Ball et al., 1987), an exponentially 186 

decaying root density profile, and soil moisture controls that mimic the Noah land surface model 187 

(Niu et al., 2011). Similarly, the radiative transfer parameterizations which are the primary 188 

controls on the sensible heat fluxes are also set up to mimic the Noah land surface model. The 189 

functional forms of the turbulent heat fluxes in SUMMA is similar to many other land surface 190 

and hydrologic models, given by the bulk transfer equations (in resistance terms) as in Bonan 191 

(2015). 192 

At each of the sites described in section 2.1 we independently calibrated a standalone SUMMA 193 

model using the dynamically dimensioned search algorithm (Tolson & Shoemaker, 2007) as 194 

implemented in the OSTRICH optimization package (Matott, 2017) using the mean squared 195 

error as the optimization criteria. A summary of the calibration variables and test ranges is shown 196 

in table S1 of the supporting information. The first year of available data was used for 197 
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calibration. Because of the limited length of the data record at some sites, the calibration period 198 

was not excluded from subsequent analysis. The 10 parameters we chose to calibrate largely 199 

control water movement through the vegetation and soil domains. In the soil domain these 200 

include the residual and saturated moisture contents, field capacity, and controls on anisotropy of 201 

flows. In the vegetation domain these include controls on photosynthesis, rooting depth, wilting 202 

and transpiration water contents, amount of throughfall of precipitation through the canopy, and 203 

a generic scaling factor for the amount of vegetation.  204 

The calibrations were run to a maximum of 500 trial iterations, which provided good 205 

convergence across sites (see the supporting information for convergence plots). We used the 206 

mean square error at a half hourly timestep for both the latent and sensible heat as the objective 207 

function and saved the best set of parameters for each site to use as our comparison to the DL 208 

parameterizations. To provide good estimates of the initial soil moisture and temperature states 209 

we spun up the standalone SUMMA simulations for 10 years both before and after calibration 210 

(for a total of 20 spinup years). We will refer to the standalone calibrated SUMMA simulations 211 

as SA (StandAlone) for the remainder of the paper. To summarize, we independently calibrated a 212 

set of parameters for each site, whose resulting best parameter set was used as an in-sample 213 

benchmark for comparison with our DL parameterizations. A brief description of the 214 

computational cost and runtimes associated with calibrating SA is provided in the supporting 215 

information. 216 

2.3 DL parameterization and simulations 217 

To build DL parameterizations of turbulent heat fluxes we constructed our neural networks using 218 

the Keras python package (Chollet , 2015). The neural networks take in a variety of input data 219 

such as meteorologic forcing data and output the bulk latent and sensible heat fluxes as shown in 220 

panel b) of figure 2. 221 

Our neural networks were constructed using only dense layers where every node in one layer is 222 

connected to all nodes in the preceeding and following layers. We used the deep-dense 223 

architecture because it is the only network architecture that could easily be coupled to SUMMA, 224 

given the capabilities of the coupling tools. We will discuss the details of how we coupled the 225 

neural networks to SUMMA later in this section. We tested networks with as few as one layer 226 

and 12 nodes and up to 10 layers and 64 nodes were tested. After manual trial and error we 227 

settled on 6 layers each with 48 nodes. Smaller architectures were not as well able to capture the 228 

extremes of the turbulent heat fluxes and larger networks showed diminishing additional 229 

improvement. A simple schematic of the neural network architecture is shown in figure S2 of the 230 

supporting information. 231 

We used hyperbolic tangent (tanh) activations in all of the nodes of the network. Stochastic 232 

gradient descent (SGD) with an exponential learning rate decay curve was used as the optimizer 233 

to train the weights and biases of the neural networks. We used the mean square error (the same 234 

as our objective function in the calibration of SA) in the 30-minute turbulent heat flux estimates 235 

as our loss function, similar to the objective function in our calibration of the SUMMA-SA 236 

simulations. Dropout was applied after the first layer and before the final layer with a retention 237 

rate of 0.9 to regularize. Dropout works by randomly pruning some fraction (one minus the 238 

retention rate) of the nodes in a given layer during training. This reduces the likelihood of 239 

overfitting the network as there is some stochasticity in the model architecture during training. 240 
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When training the networks we performed a 5-fold cross validation. We used 48 sites to train 241 

each network and then applied it out of sample to each of the remaining 12 sites. The data from 242 

the 48 sites used to train each network were randomly shuffled and split into 80% training and 243 

20% validation data. The validation data was used to define an early stopping criterion for the 244 

training procedure where training was stopped if the validation loss was not decreased for 10 245 

training epochs. This procedure keeps the model from overfitting on the training data. The 246 

maximum number of training epochs was set to 500 epochs, with a batch size of 768 data points 247 

(or 14 days of data points). All data was shuffled before training to remove any temporal bias 248 

that the model could learn, which also reduces overfitting. 249 

 250 

Figure 2. A schematic representation of the model setup. Panel a) shows the SUMMA runtime 251 

process. Parameters and meteorologic forcing data, as well as the state variables from the 252 

previous timestep, are fed to SUMMA to compute all fluxes, which are used to update the state 253 

variables for the subsequent timestep. The purple box labeled “Turbulent heat flux” highlights 254 

the process representation that we modify in our experiment. Panel b) shows the ways we 255 

represent the turbulent heat fluxes. One of the options from panel b) replaces the purple box in 256 

panel a). SA is the standalone SUMMA representation, as described in section 2.2. NN1W and 257 

NN2W are our DL-based representations described in section 2.3. Thus, SUMMA-x represents 258 

one of the three model configurations where x is one of SA, NN1W, or NN2W. 259 

The first network we trained took meteorological forcing data for the current timestep, vegetation 260 

and soil types, and the calibrated SUMMA parameter values as input. We chose to include the 261 

calibration parameters to provide the same information to the neural networks as was provided to 262 

the calibrations, allowing for a more direct comparison and because the calibrated parameter 263 

values might be a proxy for site characteristics that can be associated with different responses 264 

among the sites. The neural network outputs the bulk latent and sensible heat fluxes at the half 265 

hourly timescale. We denote this network NN1W, for Neural-Network-1-Way, because this 266 

configuration only takes meteorological forcing data and parameters, which cannot be changed 267 
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by the rest of the SUMMA calculations. That is, the neural network provides information about 268 

turbulent heat fluxes to SUMMA, but SUMMA does not provide any internally-derived 269 

information to the neural network. 270 

The second network we trained took all of the same input data as the NN1W configuration, as 271 

well as a number of additional inputs that are derived states taken from the output of the coupled 272 

SUMMA-NN1W simulations. We included surface vapor pressure, leaf area index, surface soil 273 

layer volumetric water content, depth averaged transpirable water (as a volumetric fraction), 274 

surface soil layer temperature, depth averaged soil temperature, and a snow-presence indicator. 275 

These variables were chosen because they are used in the process-based SUMMA 276 

parameterizations for either latent or sensible heat, or affect the way in which the partitioning of 277 

the heat flux is distributed to the soil, vegetation, or snow domains. At runtime this network uses 278 

the additional variables as calculated internally by SUMMA, rather than the ones provided 279 

during training from NN1W. We denote this network NN2W, for Neural-Network-2-Way, 280 

because SUMMA internal states provide feedback to the ML model. That is, the neural network 281 

is provided inputs which are dependent on the state variables derived internally by SUMMA, 282 

which in turn depend on the turbulent heat fluxes that are predicted by the neural network. 283 

After training each of these networks they were saved and translated into a format that could be 284 

loaded into Fortran via the Fortran Keras Bridge (FKB) package (Ott et al., 2020). The FKB 285 

package allows for translation of a limited subset of Keras model files (architecture, weights, 286 

biases, and activation functions) to be translated into a file format which can be loaded into the 287 

FKB Fortran library which implements several simple components for building and evaluating 288 

neural networks in Fortran, such as the deep-dense architecture used here. 289 

We then extended SUMMA (which is written in Fortran) to allow for the use of these neural 290 

networks to simulate the turbulent heat fluxes. Normally SUMMA breaks the calculation of 291 

turbulent heat fluxes into several domains to delineate between heat exchanges in the vegetation 292 

and soil domains. Because we estimate these as bulk quantities we implemented this as only heat 293 

fluxes in the soil domain, and specified that the model should skip any computation of vegetation 294 

fluxes. We then specified that all ET resulting from the neural network’s estimate of latent heat 295 

be taken from the soil domain as transpiration, according to SUMMA’s internal routines. We 296 

chose this rather than taking all of the ET as soil evaporation because this allowed for a wider 297 

range of ET behaviors. In our simulations, the domain was split into nine soil layers, with a 0.01 298 

m deep top layer. In SUMMA soil evaporation is only taken from the top soil layer and the 299 

shallow surface soil depth in our setup would not have allowed for sufficient storage to satisfy 300 

the predicted ET for many of the vegetated sites. Water removed as transpiration is weighted by 301 

the root density in each soil layer, which generally provides a large enough reservoir to satisfy 302 

the evaporative demand predicted by the neural networks. Another side-effect of our decision for 303 

taking all ET as transpiration is the removal of snow sublimation from the model entirely. As we 304 

will show in the results, the amount of snow sublimation in the SA simulations is negligible at 305 

most of our FluxNet sites, so we believe that this is an acceptable simplification for our initial 306 

demonstration. In cases where the neural network predicts greater evaporation than is available 307 

in the soil SUMMA enforces the water balance and limits the evaporation to an amount it can 308 

satisfy. A brief comparison of the computational cost and runtimes associated with training both 309 

NN1W and NN2W is provided in the supporting information. 310 
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3 Results 311 

We present our results in two categories. First, we compare the performance of the coupled 312 

neural network simulations to the standalone calibrated simulations (SA). We use two commonly 313 

used metrics for determining the performance of the simulated turbulent heat fluxes, the Nash-314 

Sutcliffe efficiency (NSE) and Kling-Gupta efficiency (KGE) scores. Using two metrics in 315 

tandem allows us to be sure that our results are robust (Knoben et al., 2019). Then, we explore 316 

how the inclusion of NN-based parameterizations for turbulent heat fluxes affects the overall 317 

model dynamics. This analysis is crucial to ensure that the new parameterizations do not lead to 318 

unrealistic simulations of other processes 319 

3.1 Performance analysis 320 

Figure 3 shows the cumulative density functions of the performance metrics across all sites, 321 

evaluated on the half-hourly data for all non-gap-filled periods. For all cases we see that both 322 

NN1W and NN2W outperformed the SA simulations. NN1W showed a median increase in NSE 323 

of 0.07 for latent heat and 0.12 for sensible heat, while NN2W showed a median increase in NSE 324 

of 0.10 for latent heat and 0.14 for sensible heat. Similarly, for KGE these were 0.10 (latent) and 325 

0.21 (sensible) for NN1W and 0.17 (latent) and 0.23 (sensible) for NN2W. Examination of the 326 

individual KGE components (bias, variance, and correlation) shows that the NNs showed 327 

consistent improvements in all components. Overall we see that the NN2W configuration 328 

slightly outperforms the NN1W configuration. However, it is possible that in both cases that 329 

there are additional performance gains to be made with better model architectures and/or training 330 

procedures. We will come back to this in the Discussion. 331 
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332 
Figure 3. Empirical CDFs of performance measures for simulations across all sites. a) shows the 333 

NSE for latent heat, b) the NSE for sensible heat, c) the KGE for latent heat, and d) the KGE for 334 

sensible heat. 335 

 336 

Even though the curves of the performance measures look quite similar between NN1W and 337 

NN2W, the performance differences from SA were not always perfectly correlated. Figure 3 338 

shows the change in performance from SA for each site, ranked by SA performance. The 339 

maximum improvement that is possible is also shown to provide a reference to account for the 340 

fact that the range of both NSE and KGE is (-∞,1]. That is, there is more room for improvement 341 

for poorly performing sites than there is for well performing sites. For both performance 342 

measures and fluxes the general pattern of improvement follows the maximum improvement 343 

curve, with some added noise.  344 

While on average the NN-based configurations performed better than the SA simulations, they 345 

performed worse at some locations. NN-based simulations generally had a higher NSE , but the 346 

KGE scores were more mixed for sensible heat, with SA outperforming the NN-based 347 

configurations at a number of sites. The NN-based configurations performed much worse at AT-348 

Neu, DK-Eng, and CH-Cha (the outliers in the lowest 25th percentile of Figure 4d), where they 349 

failed in simulating large, upward, nighttime sensible heat fluxes. SA also performed poorly for 350 

these nighttime fluxes, but to a lesser extent. For latent heat, while some sites showed higher 351 



manuscript submitted to Water Resources Research 

13 

 

NSE and KGE values for SA results than for the NN-based simulations, more sites showed poor 352 

performance across all configurations when evaluated by NSE. Decreases in performance 353 

relative to SA mostly occurred where the NN-based configurations consistently overestimated 354 

latent heat during winter, which most likely stems from our assumption that all latent heat is 355 

treated as transpiration. For both conditions for which SA outperformed the NN-based 356 

configurations, we believe that the performance of the NN-based configurations can be improved 357 

if more training data or more sophisticated ML methods were used, since the number of outliers 358 

was small and the average performance improvement was large. 359 

 360 

 361 

Figure 4. Scatter plots showing the performance of NN1W and NN2W against SA across all 362 

sites. Points above the grey zero line show configurations where the NN configuration improved 363 

performance over SA. The “Maximum improvement” line is based on the performance of the SA 364 

simulations, and is simply (1-NSE) in subplots a and b, and (1-KGE) in subplots c and d. 365 

We also compared the KGE for different periods of temporal aggregation to evaluate whether 366 

performance improvements of the NN configurations persisted across timescales (Figure 5). The 367 

KGE score was chosen here because it shows greater variability than the NSE score in Figure 3, 368 

though the results are similar for NSE. We see that the sub-daily aggregations, on average, 369 

showed better performance for both NN configurations, demonstrating that they were able to 370 

capture the diurnal cycle of turbulent heat fluxes. This is mostly due to the strong dependence of 371 

turbulent heat fluxes on solar radiation, which we will further explore in section 3.2. Both 372 

NN1W and NN2W were able to outperform SA across all timescales for sensible heat.  373 

However, at daily and longer temporal aggregations differences between models were seen in 374 

latent heat performance. The NN1W configuration performed better at sub-daily timescales than 375 

for daily or longer aggregations, for which performance was similar to SA. In contrast, the 376 

NN2W configuration performed better for latent heat than SA across all timescales. 377 
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378 
Figure 5. Performance of each model configuration for multiple temporal aggregations. Each 379 

box shows the interquartile range, with the median marked as the central line. A 95% confidence 380 

interval for the estimate of the median is represented by the notched portion. Outliers are shown 381 

as open circles. 382 

3.2 Diagnostic analysis 383 

In section 3.1 we demonstrated that the NN configurations were able to consistently outperform 384 

the SA configuration for both latent and sensible heat flux predictions at a half-hourly timestep. 385 

The range of performance differences shown in Figure 4 demonstrates that the NN-based 386 

simulations are significantly different from the physically-based representation in SA. 387 

Consequently, water and energy partitioning in the NN configurations is likely much different 388 

than in SA. To explore the effect of the new NN-based parameterizations on the simulated water 389 

cycle we first compared the simulated evaporative fraction (ET/P) to the observed (Figure 6). In 390 

all three model configurations the KGE values tend to be higher for sites where the simulated 391 

evaporative fraction closely matches the observed value.  392 
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 393 

Figure 6. Comparison of evaporative fraction for each model configuration across all sites. The 394 

one-to-one line shows perfect correspondence with the observed values. Each point shows an 395 

individual site, averaged over the simulation period. Points are colored by their respective 396 

performance in terms of KGE of the latent heat at the half-hour timescale. 397 

However, the SA configuration has a tendency to systematically underestimate total ET, while 398 

the NN configurations tend to match the observed evaporative fraction. The NN1W 399 

configuration shows more over-evaporation than NN2W, indicating that the introduction of soil 400 

states allows the model to perform better in moisture limiting conditions. This soil moisture 401 

feedback is the reason that the NN2W was able to perform better at daily and greater temporal 402 

aggregations for the prediction of latent heat. The impacts of these changes in the long-term 403 

evaporative fraction on the other terms of the water balance are shown in figure S3 of the 404 

supporting materials.  405 

As noted when discussing Figure 5, we hypothesize that the NN-based simulations performed 406 

better at the sub-daily timescale because of their improved ability to model the diurnal cycle in 407 

the observations. We take the approach of Renner et al. (2019) by comparing the time lag in the 408 

diurnal cycle between the turbulent heat fluxes and shortwave radiation. To compute this we 409 

fitted a regression equation of the form: 410 

𝑄(𝑡) = 𝑎0 + 𝑎1𝑆𝑊(𝑡) + 𝑎2
𝑑𝑆𝑊(𝑡)

𝑑𝑡
+ 𝜖,     ( 1 ) 411 

where 𝑄 is the turbulent heat flux, 𝑆𝑊 is the shortwave radiation, 𝑎𝑖 are the coefficients of the 412 

regression, and 𝜖 is the residual term (Camuffo & Bernardi, 1982). Then, the phase lag can be 413 

computed as  414 

𝜙 = 𝑡𝑎𝑛−1(2𝜋𝑎2/𝑎1𝑛𝑑),     ( 2 ) 415 

where 𝑛𝑑 is the number of timesteps in a day (here, 48). We calculated this phase lag for each of 416 

the simulation configurations and the observations. Figure 7 shows how each of the simulations 417 

compare to the observed phase lag across all sites. For both latent and sensible heat we see that 418 

the NN-based configurations are better able to capture the diurnal phase lag seen in the 419 

observations, confirming our conclusion from Figure 5 that the improved sub-daily performance 420 

of the NN-based configurations is due to better representation of the diurnal cycle. 421 
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422 
Figure 7. Difference in diurnal phase lag from observation. Positive values indicate that the 423 

simulated phase lag leads the observed phase lag. 424 

4 Discussion  425 

Our analysis shows that the DL parameterizations were able to outperform the standalone 426 

simulations for both latent and sensible heat fluxes. Most of the bulk gains in performance from 427 

the NN-based configurations stemmed from drastic improvements at sites where the SA 428 

configuration performed poorly. This is important to note, since our SA simulations were 429 

calibrated at site (and included the calibration period in the evaluation), while all NN-based 430 

simulations were trained out of sample in both time and space. This indicates that our NN-based 431 

configurations would likely be better able to represent turbulent heat fluxes in regions without 432 

measurements, implying that deep learning may be suitable for regionalization applications.  433 

Both of the NN-based configurations represented the diurnal phase lag between shortwave 434 

radiation and turbulent heat fluxes better than SA. Renner et al. (2020) explored the ability of the 435 

land surface models used in the PLUMBER experiments (Best et al., 2015) to reproduce the 436 

observed diurnal phase lag, finding similar deviations from the observed phase lag as our SA 437 

simulations. This indicates that the NN-based approach has been able to learn something that has 438 

not been codified in PBHMs, and could provide better insight into how turbulent heat fluxes are 439 

generated at the scales that FluxNet towers operate. It is difficult to definitively state why the 440 

NN-based simulations provided more accurate simulations than SA’s process-based 441 

parameterizations. Even if the functional forms of the SA were correct, the model parameters 442 

may be difficult to determine. Zhao et al. (2019) were able to achieve good predictive 443 

performance out of a standalone (that is, not coupled to a larger model) machine-learning model 444 

that used a neural network to estimate the resistance term of the bulk transfer equations, and then 445 

computed the heat fluxes from the standard equations. Using such an approach would likely 446 

work well in the coupled setting as well. 447 

We also found that the NN2W configuration maintained higher performance than either NN1W 448 

or SA at longer than daily timescales, as well as more accurately reproduced the observed long-449 
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term evaporative fraction. This indicates that the synergy between the deep-learned 450 

parameterization and the soil-moisture state evolution in SUMMA was able to better capture the 451 

long-term dynamics than either a purely machine-learned or purely process-based approach. This 452 

lends credibility to our proposition that the synergy between data-driven and physics-based 453 

approaches will likely lead to better simulations than a rigid adherence to either one of the 454 

methods by themselves. 455 

These performance gains came at the cost of drastically simplifying the way in which we 456 

represented evapotranspiration. The SA simulations partition the latent heat fluxes amongst the 457 

soil, snow, and vegetation domains separately, while the NN simulations were set up to only 458 

represent the latent heat as a bulk flux, whose withdrawals we set to be taken from each soil 459 

layer according to the root density in that layer. This leads to the SA simulations being able to 460 

represent a more diverse range of conditions. While this was not a problem for the NN 461 

simulations on average, we were able to identify two locations where our simplification to the 462 

way in which ET is taken from the soil led to poor performance. At US-WCr and US-AR2 both 463 

NN configurations underestimated ET, because the soil was too dry to meet evaporative demand 464 

for much of the time. At these two sites the NN simulations performed significantly worse than 465 

the SA simulations, indicating a clear failure mode of the neural network based approach. This 466 

shortcoming might be be addressed by developing strategies that better partition the latent heat 467 

fluxes amongst the soil, snow, and vegetation domains. This would also allow for adding snow 468 

sublimation back in, reducing the number of modifications which must be made to SUMMA in 469 

order to run with an embedded neural network. 470 

Other neural network architectures will likely lead to further performance improvements. Many 471 

recent studies that used neural networks to predict hydrologic systems have shown that Long-472 

Short-Term-Memory (LSTM) networks are superior at learning timeseries behaviors compared 473 

to the methods used here (Feng et al., 2020; Frame et al., 2020; Jiang et al., 2020; Kratzert et al., 474 

2018). Convolutional neural networks (CNN) have been used extensively to learn from spatially 475 

distributed fields (Geng & Wang, 2020; Kreyenberg et al., 2019; Liu & Wu, 2016; Pan et al., 476 

2019). To take advantage of these specialized architectures in existing PBHMs like SUMMA 477 

will require the investment in tools and workflows. As of the time of writing, the FKB library 478 

only supports densely connected layers, and a few simple activation and loss functions. 479 

Implementing these layers in the FKB library, or some other framework that can be used to 480 

couple ML models with PBHMs, would open many possibilities for future research. 481 

Additionally, implementing more specialized activation functions and loss functions (such as 482 

NSE or KGE) will offer more flexibility for a wider range of applications. 483 

Alongside better tools for incorporating machine learning into process-based models, the 484 

development and identification of workflows to perform machine and deep learning tasks will be 485 

necessary for wider adoption in the field. For instance, we initially trained the NN2W networks 486 

using the SA soil states, which were drastically different from the spun up states in the NN 487 

configurations. This led to almost identical performance in the NN1W and NN2W simulations, 488 

since the soil state information from the SA simulations was very different from what the 489 

network saw during training. Only after realizing this and training the NN2W on the states 490 

predicted by the NN1W simulations were we able to achieve better performance out of the 491 

NN2W simulations. Understanding whether there is a sort of iterative train-spinup-train 492 



manuscript submitted to Water Resources Research 

18 

 

workflow that balances overfitting and provides representative training data will be important for 493 

future studies.  494 

Similarly, it is unclear whether there would be significant difficulties in trying to calibrate either 495 

of the NN-based models in new basins like we did for the SA simulations. Particularly, we do 496 

not know if the output of the neural networks is sensitive to the values of the calibration 497 

parameters. Our decision to include the calibrated parameter values in the training of the NN-498 

based configurations was to provide the same types of information to both optimization 499 

procedures. In future studies it may be worthwhile to explore whether these parameters are 500 

necessary, or how regionalization of data driven approaches should best be codified. It is also 501 

unclear whether our NN-based configurations are able to be calibrated efficiently for other 502 

processes such as streamflow. 503 

Finally, model architectures that separate process parameterizations in as clean a way as possible 504 

will allow for more robust and rapid development of ML parameterizations of other processes. 505 

Building modular and general purpose ways to incorporate machine learning into process-based 506 

models will allow researchers to more efficiently evaluate different approaches. Exploring and 507 

answering these practical questions will likely lead to community accepted practices which can 508 

be adopted to accelerate research of other applications. 509 

5 Conclusions 510 

We have shown that coupling DL parameterizations for prediction of turbulent heat fluxes into a 511 

PBHM outperforms existing physically-based parameterizations while maintaining mass and 512 

energy balance. We were able to couple our neural networks into SUMMA in two different 513 

ways, which both showed significant performance improvements when performed out of sample 514 

over the at-site calibrated standalone SUMMA simulations. The one-way coupling (NN1W), 515 

despite being conceptually simpler and not taking any model states as inputs, was able to 516 

improve simulations almost as much as the more complex two-way coupling (NN2W) at the sub-517 

daily timescale. Both of the new parameterizations better represent the observed diurnal cycles 518 

and NN2W was better able to represent the long-term evaporative fraction as well as both 519 

turbulent heat fluxes at longer than daily timescales. We found that NN1W was also able to 520 

accurately predict sensible heat fluxes at greater than daily timescales, indicating that even 521 

“simple” DL parameterizations show great promise for coupling into PBHMs. 522 

While we consider our new parameterizations a step forward in incorporating ML techniques 523 

into traditional process-based modeling, we have only scratched the surface on many of the 524 

different avenues which will surely be explored. We used the simplest possible network 525 

architecture, a deep-dense network. For spatial applications we suspect that CNN layers will 526 

prove invaluable. Recurrent layers such as LSTMs have been dominant in the timeseries domain. 527 

More sophisticated architectures such as neural ordinary differential equations (Ramadhan et al., 528 

2020) or those discovered through neural architecture search (Geng & Wang, 2020) are bound to 529 

be both more efficient and interpretable than our dense networks. The opportunities for 530 

incorporating and learning from ML-based models into the hydrologic sciences are virtually 531 

untapped. We believe that as the community builds tools and workflows around the existing ML 532 

ecosystems we will be able to unlock this potential. 533 
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