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Abstract

Stream water temperature (T) is a variable of critical importance and decision-making relevance to aquatic ecosystems, energy

production, and human’s interaction with the river system. Here, we propose a basin-centric stream water temperature model

based on the long short-term memory (LSTM) model trained over hundreds of basins over continental United States, providing a

first continental-scale benchmark on this problem. This model was fed by atmospheric forcing data, static catchment attributes

and optionally observed or simulated discharge data. The model achieved a high performance, delivering a high median root-

mean-squared-error (RMSE) for the groups with extensive, intermediate and scarce temperature measurements, respectively.

The median Nash Sutcliffe model efficiency coefficients were above 0.97 for all groups and above 0.91 after air temperature was

subtracted, showing the model to capture most of the temporal dynamics. Reservoirs have a substantial impact on the pattern

of water temperature and negative influence the model performance. The median RMSE was 0.69 and 0.99 for sites without

major dams and with major dams, respectively, in groups with data availability larger than 90%. Additional experiments

showed that observed or simulated streamflow data is useful as an input for basins without major dams but may increase

prediction bias otherwise. Our results suggest a strong mapping exists between basin-averaged forcings variables and attributes

and water temperature, but local measurements can strongly improve the model. This work provides the first benchmark and

significant insights for future effort. However, challenges remain for basins with large dams which can be targeted in the future

when more information of withdrawal timing and water ponding time were accessible.
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1- INTRODUCTION 
  

Stream temperature (Ts) controls numerous physical, chemical, and biological 

processes and properties, e.g. dissolved oxygen concentrations and nutrient 

transformation rates, as well as industrial processes such as cooling power plants and 

treating drinking water (Delpla et al. 2009; Madden, Lewis, and Davis 2013; 

Kaushal et al. 2010). Thermal regimes of streams directly affect aquatic species 

(Justice et al. 2017) and in some cases, fish mortality rate increases as water 

temperature passes a certain threshold for even a few hours (Martins et al. 2012; 

Marcogliese 2001). These are complicated by water uses in industry, such as 

utilizing stream water for cooling systems purposes, which causes thermal pollution 

downstream. Fulfilling the temperature requirements of the environment, 

agriculture, industries, and municipalities, and coordinating these uses requires a 

delicate balance. Accurate water temperature models can inform the decision 

making process and help lower the risks of exceeding the thermal thresholds, but 

there are many factors influencing water temperature, making modeling very 

complicated. 

Long short-term memory (LSTM) is a deep learning algorithm, which has received 

increasing attention in hydrologic literature for its ability to learn and keep 

information for long periods. Based on LSTM, we developed multiple basin-centric 

lumped Tsmodels which were trained and tested on basins in the conterminous 

United States (CONUS) 

In this poster, we attempt to briefly answer the following research questions: 

   (1) Is there a reliable mapping between basin-average meteorological forcing and 

attributes and Ts that could be learned by deep networks to predict Ts with high 

accuracy? 

   (2) Can observed or simulated discharge be used to improve temperature 

predictions, especially when the simulated discharge is predicted using the same 

information as the Ts model? 

   (3) How to improve the prediction results in ungauged basins? 

   (4) How much do reservoirs impact water temperature modeling? 



 

 

 

2- LSTM MODEL FOR STREAM WATER TEMPERATURE 
PREDICTION 
  

We wanted to improve our understanding of the stream heat balance: 

• Is there a reliable mapping between basin-average meteorological forcing and 

attributes and Ts that could be learned by deep networks to predict Ts with 

high accuracy? 

  

Dataset 

• Basin characteristics from (GAGES-II).  

• Basin daily meteorological forcing data (precipitation, maximum and 

minimum air temperature, vapor pressure, solar radiation) from Google Earth 

Engine (GEE). 

• Ts observations from USGS national Water Information System (NWIS). 

• 118 basins: only gauges with more than 60% of daily observations, in basins 

where there were no major dams. 

  

Evaluation Metrics 

• Loss function (model’s goal was to minimize) was root-mean-square error 

(RMSE) 

• Also report bias, correlation, and Nash-Sutcliffe efficiency coefficient (NSE) 

• NSEres and Corrres calculated by a new value to remove seasonal trends: 

Tres = Ts - Tair 

  

Method 



• Model Ts, using basin-average climate forcings and attributes, without any 

data from streamflow (Q):  

 

  

Characteristics 

• Four years training, two years testing 

• Baseline for caomparison: a locally-fitted autoregressive model with 

exogenous variables (ARX2):  

 

• X: atmospheric forcings (maximum and minimum air temperature, observed 

Q) 

• a, b and c were fitted coefficients 

• Ts
t-i,* is the stream temperature simulated by ARX2 at time step t 

• p is the number of forcings 

 

Figure 1. CONUS-scale aggregated metrics of stream temperature models for the test period. LSTMnoQ had no input streamflow information, 

ARX2 is the locally-fitted auto-regressive model. 



  

 

Figure 2. Spatial Distribution of RMSE 

  

Result 

• Exceptionally strong performance LSTM-based models (The median RMSE: 

0.86 ℃, and the correlation: 0.992). 

• These metrics are markedly better than in previous studies 

• Temporal fluctuations were extremely well captured (median NSE: 0.979). 

• at this scale, which suggests that LSTM is particularly well-suited for Ts 

modeling at basin outlets. 

• NSEres improved substantially from ARX2 (0.772) to LSTM (0.91) indicating 

that LSTM model was much less reliant on air temperature. 

•  

3- IMPACT OF STREAMFLOW DATA ON STREAM WATER 
TEMPERATURE PREDICTION 
 

Ts is strongly impacted by groundwater-surface interactions and snowmelt periods 

which can be learned from streamflow records, but previously such information was 

challenging to effectively absorb with process-based models due to parameter 

equifinality. 

Can observed or simulated discharge be used to improve temperature predictions, 

especially when the simulated discharge is predicted using the same information as 

the Ts model? 



  

Method 

• Model Ts: using observed Q (obsQ) as an additional input to LSTM model 

 

• Model Ts: using simulated Q (simQ) as an additional input to LSTM model. 

 

Qsimwas simulated using another LSTM-based streamflow model which used the 

same meteorological forcing data as our LSTMnoQ model and a slightly different set 

of catchment attributes (AQ).  

 

  

 

Figure 3. CONUS-scale aggregated metrics of stream temperature models for the test period. LSTMobsQ incorporated observed streamflow, 

LSTMnoQhad no input streamflow information, while LSTMsimQ incorporated simulated streamflow (simQ). 

  



 

Figure 4. NSE difference between LSTMobsQ and LSTMnoQ 

  



 

Figure 5. Time series plots of observed and simulated Ts in (a) Black River at Elyria, Ohio; (b) South Fork Sultan River, Washington. The 

two brackets contain values for [RMSE, Bias, NSEres] for LSTMnoQ and LSTMobsQ, respectively. 

  



Results 

• Both obsQ & simQ are beneficial 

• Median RMSE for LSTMobsQ: 0.69 ℃. %20 better than LSTMnoQ 

• Median RMSE for LSTMsimQ: 0.81 ℃, still lower than LSTMnoQ 

• Indirectly absorbing discharge data (through a trained discharge model, i.e. 

simQ) can be useful if discharge observations (obsQ) are not available. 

• obsQ helps more in western part of the US 

• Negative biases with LSTMnoQ were attributable to undershooting Ts peaks in 

both winter and summer in some sites (e.g., Figure 5a) and a more consistent 

bias at other sites (e.g., Figure 5b). 

• Ts peaks are often associated with streamflow peaks (possibly caused by 

warm rain) in the winter but after-storm recession limbs in the summer. 

 

4- DATA AVAILABILITY & RESERVOIRS' IMPACT ON 
PREDICTION ACCURACY 
Based on the previous results, we favor LSTM for stream temperature simulation. 

However, there are open questions regarding how this model performs when we 

move into intermittently-measured or unmeasured basins, how performance changes 

when we encounter reservoirs, and how to assemble the most suitable training data 

for them. 

Data Availability 

Here, we created three different data availability groups (DAG, with varying 

sampling frequency): 

a) 415 basins with more than 10% observed Ts data in both training and testing 

period 

b) 306 basins with more than 60% Ts data 

c) 99 basins with more than 99% Ts data 

  



 

Figure 6. Stream water temperature results for different data availability groups in testing period 

  

Reservoirs Impact 

To more explicitly investigate reservoir impact on water temperature, Each of the 

data availability training datasets was divided into two sub-groups: 

(a) basins with at least one major dam upstream 

(b) basins without any major dams upstream 

  



 

Figure 7. Reservoir impact on stream water temperature model 

  



 

Figure 8. Spatial distribution of RMSE, NSE, & NSEres for %10 DAG 

Results 

• More intermittent data availability, reduces the accuracy of the results 

• Reservoirs adversely affect the accuracy  of the Ts model, all of our models 

understimate water temperature for basins with major dams. 

• Major dams increase ubRMSE by an average of >0.2 ℃, and enlarged 

negative bias by an average of > 0.35 ℃ . 



• Even for the reservoir group, the RMSE of the LSTM model appears to be 

smaller than those reported in other studies. 

 

5- PUB TESTING & INPUT SELECTION ENSEMBLE IMPACT ON 
RESULTS 
  

Prediction in ungauged basins (PUB) 

Models trained on different DAGs were tested with out-of-training-set test 

monitoring stations, these were those with observations recorded only 10% or less 

of the time (40 basins). 

 

Figure 10. PUB test on 40 basins. 

  

Results 

• Correlation and residual correlation still remained high overall, as did the 

seasonality-removed metrics. Bias was a much bigger issue. 

• Better performance when more basins are included (even though they have 

sparser temperature data) - this trend is opposite that for temporal 

extrapolation. 



• Put more simply, a more diverse training set can cover more regions in the 

input space, leading to a more robust model. 

  

Input Selection Ensemble 

Input selection ensemble means training models with different subsets of the static 

attributes as inputs, testing each one of the models in ungauged basins and 

averaging all the results as final prediction.  

The full-attribute model setup (full-attr) used all available static attributes, just as in 

section 4. 

  

 

Figure 11. PUB testing and ensemble input selection testing for ungauged basins 

  

Results 

• Input selection ensemble (ISE) improved the median of all metrics in all 

DAGs compared to full-attribute models. We hypothesize that at the ensemble 

level, ISE reduces overfitting to any one basin attribute, thus improving PUB 

performance. 



  

  

Note: 

This information is preliminary and is subject to revision. It is being provided to 

meet the need for timely best science. The information is provided on the condition 

that neither the U.S. Geological Survey nor the U.S. Government shall be held liable 

for any damages resulting from the authorized or unauthorized use of the 

information. 
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