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Abstract

Sub-cloud turbulent kinetic energy has been used to parameterize the cloud-base updraft velocity (wb) in cumulus parameter-

izations. The validity of this idea has never been proved in observations. Instead, it was challenged by recent Doppler lidar

observations showing a poor correlation between the two. We argue that the low correlation is likely caused by the difficulty

of a fixed-point lidar to measure ensemble properties of cumulus fields. Taking advantage of the stationarity and ergodicity of

early-afternoon convection, we developed a lidar sampling methodology to measure wb of a shallow cumulus (ShCu) ensemble

(not a single ShCu). By analyzing 128 ShCu ensembles over the Southern Great Plains, we show that the ensemble properties

of sub-cloud turbulence explain nearly half of the variability in ensemble-mean wb, demonstrating the ability of sub-cloud

turbulence to dictate wb. The derived empirical formulas will be useful for developing cumulus parameterizations and satellite

inference of wb.
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Key points: 13 

- Doppler lidar observations show sub-cloud turbulence explains half of the variability in 14 

cloud-base updrafts for shallow cumulus ensembles 15 

- The relationship has weak diurnal variation except in the early morning and late afternoon 16 

- We develop a new approach of observing ensemble-averaged quantities from lidar 17 

measurements made at a fixed point 18 
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Abstract 27 

Sub-cloud turbulent kinetic energy has been used to parameterize the cloud-base updraft velocity (wb) in 28 

cumulus parameterizations. The validity of this idea has never been proved in observations. Instead, it was 29 

challenged by recent Doppler lidar observations showing a poor correlation between the two. We argue that 30 

the low correlation is likely caused by the difficulty of a fixed-point lidar to measure ensemble properties 31 

of cumulus fields. Taking advantage of the stationarity and ergodicity of early-afternoon convection, we 32 

developed a lidar sampling methodology to measure wb of a shallow cumulus (ShCu) ensemble (not a single 33 

ShCu). By analyzing 128 ShCu ensembles over the Southern Great Plains, we show that the ensemble 34 

properties of sub-cloud turbulence explain nearly half of the variability in ensemble-mean wb, 35 

demonstrating the ability of sub-cloud turbulence to dictate wb. The derived empirical formulas will be 36 

useful for developing cumulus parameterizations and satellite inference of wb.    37 
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1. Introduction 52 

Cloud-base updraft velocity (wb) is a crucially important variable as it influences various 53 

aspects of cumulus clouds (Rogers and Yau, 1996). The wb modulates the aerosol cloud-mediated 54 

effect by governing the supersaturation near cloud bases (Twomey, 1959; Rosenfeld, 2014). In 55 

polluted conditions, cloud droplet size and number concentration are more sensitive to wb than 56 

aerosol concentration and size (Reutter et al., 2009). Moreover, wb  dictates lateral entrainment of 57 

cumulus that remains an unresolved bottleneck for climate modeling (Donner et al., 2016). 58 

Despite its importance, current cumulus parameterization schemes rarely express wb 59 

explicitly (Donner et al., 2016). Most schemes parameterize the cloud-base mass flux (Mb) without 60 

specifying the wb. For example, Arakawa and Schubert (1974) determine the Mb by adjusting the 61 

cloud work function towards a value maintaining an equilibrium between the large-scale forcing 62 

and the convection. Krishnamurti et al. (1983) determine Mb under the assumption that convection 63 

must balance the column integrated vertical advection of moisture. Kain and Fritsch (1993) and 64 

Grell (1993) parameterize Mb by requesting the convection to remove the large-scale instability 65 

over the convective time scale.  66 

The earliest effort that explicitly represents the wb in Mb closure is Brown (1979) who 67 

approximates the wb using the environmental vertical velocity from the surrounding nine points at 68 

lower tropospheric levels. This scheme is physically flawed by the fact that the air masses that 69 

initiate cumulus clouds are convective in nature. This issue is addressed by Neggers et al. (2009) 70 

and Fletcher and Bretherton (2010) (FB10) who argued that the wb could be dictated by the sub-71 

cloud turbulent intensity. FB10 used a set of cloud-resolving simulations to empirically derive the 72 

following formula to represent the wb: 73 

wb = 0.28×TKEML
1/2 + 0.64, (1) 74 

in which the TKEML is the turbulent kinetic energy averaged horizontally and vertically in the sub-75 

cloud mixed layer. FB10 shows that such a boundary-layer-based mass flux closure scheme 76 

outperforms several commonly used schemes for three cumulus cases.  77 

Still lacking is observational evidence of the ability of TKEML to explain the wb. As quoted 78 

by Donner et al. (2016):  “… parameterizations that do provide vertical velocities have been 79 



subject to limited evaluation against what have until recently been scant observations.” The only 80 

observational pursuit to evaluate the Eq. (1) is from Lareau et al. (2018) who analyzed Doppler 81 

lidar observations of ~1500 individual shallow cumulus (ShCu) over the Southern Great Plains 82 

(SGP), finding that sub-cloud vertical velocity variance (a proxy for TKEML) explains only a few 83 

percent of the wb variability. This led them to cast doubt upon the relationship. They argue that 84 

sub-cloud updrafts must work against negative buoyancy near the top of the mixed layer to 85 

generate wb, and such a penetrative nature of the convection deteriorates their correlations.  86 

Given the contrasting results, it is imperative to answer the question of whether or not sub-87 

cloud turbulence explains the wb. This is not only important for cumulus parameterizations but 88 

also crucial for advancing other pursuits in the field of cumulus dynamics. First, theoretical 89 

inquiries of cumulus dynamics often rely on the assumption of a tight coupling between the sub-90 

cloud turbulence and wb. For example, in one-dimensional bulk models of boundary layer clouds, 91 

a key variable is the Deardoff velocity scale, w*, which dictates the sub-cloud turbulence intensity 92 

(Betts, 1973; Neggers et al., 2006; Stevens, 2006; Zheng, 2019). Linking the w* with the wb is the 93 

basis for several important coupling processes between the cloud and sub-cloud layers (Neggers 94 

et al., 2006; van Stratum et al., 2014; Zheng et al., 2020). Second, recently emerging new satellite 95 

remote sensing methodologies of retrieving wb (Zheng and Rosenfeld, 2015; Zheng et al., 2015, 96 

2016) have offered great insights into the aerosol indirect effect and climate change (Rosenfeld et 97 

al., 2016; Seinfeld et al., 2016; Li et al., 2017; Grosvenor et al., 2018; Rosenfeld et al., 2019). 98 

These studies infer the wb via quantifying the TKEML or its equivalents. Evaluating if the TKEML 99 

explains the wb is essential to evaluate the physical validity of these techniques.  100 

To that end, this study examines the relationship between the wb and sub-cloud turbulence 101 

for ShCu using DL observations over the SGP. We focus on wb of ShCu ensembles, not single 102 

ShCu, because the former is more relevant to cumulus parameterization. We show that ensemble-103 

averaged wb and sub-cloud turbulence are highly correlated with statistical significance 104 

(correlation coefficient greater than 0.7). Evaluating the relationship on ensembles but not on 105 

individual ShCu might explain the disparities with the previous finding (Lareau et al., 2018). The 106 

next session discusses the difference between the ensemble-mean wb and the wb of single cumuli. 107 

It lays the foundation for developing the sampling strategy of ShCu ensembles. Section 3 108 



introduces the observational data and methodology. Section 4 shows the results, followed by a 109 

summary.  110 

 111 

2. wb of cumulus ensembles 112 

Distinguishing between the ensemble and individual ShCu is necessary. The concept of 113 

cumulus ensemble is a fundamental building block for all cumulus parameterizations (Arakawa 114 

and Schubert, 1974). A cumulus ensemble on spatial scales of several tens of kilometers is 115 

composed of individual cumulus with a wide range of distributions in size and age. Since the 116 

individual cumulus clouds are at different stages of their lifetime, their physical properties differ 117 

considerably even if the surface and large-scale forcing are uniform.  118 

The difference could be illustrated by Figure 1 showing a ShCu ensemble simulated by the 119 

Weather Research and Forecasting (WRF) in the Large-Eddy Simulation (LES) Atmospheric 120 

Radiation Measurements (ARM) Symbiotic Simulation and Observation (LASSO) project (Text 121 

S1). The surface fluxes and large-scale forcing are uniform over the 14.4 × 14.4 km domain with 122 

a horizontal grid size of 100 m. The vertical velocity field at the cloud-base level shows a 123 

distinctive pattern with strong updrafts within clouds surrounding by shells of downdrafts (Fig. 124 

1a). We can see a rough correspondence between the vertical velocity field at the cloud-base level 125 

(Fig. 1a) and the TKEML (Fig. 1b): regions with larger TKEML typically have stronger updrafts 126 

near cloud bases. Such a correspondence, however, breaks down on the length scale of a single 127 

ShCu. For example, the vertical velocity field shows strong updrafts within individual clouds 128 

surrounding by shells of downdrafts whereas the TKEML variability across the cloud edges is 129 

considerably more uniform. This is not surprising since both updrafts and downdrafts contribute 130 

to the vertical mixing, jointly regulating the TKEML. As a result, their covariation on the length 131 

scale of individual ShCu tends to be noisy, which is confirmed by Figure 1c that compares the two 132 

quantities averaged over individual ShCu. The degree of scattering is likely to increase 133 

substantially when the synoptic and surface forcings are allowed to change.  134 



 135 

Figure 1: Examples of the different length scales of spatial variability of wb and TKEML 136 

using WRF-simulated ShCu on 21 UTC, June 6, 2015. (a) Spatial distribution of vertical velocity 137 

at the cloud-base level with maximum cloud coverage. Black contours mark the cloudy regions 138 

with liquid water content greater than 0.01 g/m3. (b) The same scene but the color shading is the 139 

TKEML. (c)  Scatter plot of cloud-base vertical velocity versus TKEML, with each point 140 

representing mean over individual cumuli. The size of a point is proportional to the size of 141 

cumuli. The data are obtained from the first phase of LASSO project. The TKEML is computed as 142 

0.5(𝑢′2 + 𝑣′2 + 𝑤′2) averaged below the cloud base. 143 

  144 

Measuring the ensemble-mean wb from a surface-based DL, however, is challenging. The 145 

DL at a fixed location samples a line of cloud elements along the direction of horizontal winds. In 146 

order to sample an adequate amount of individual cumuli to constitute an ensemble, the sampling 147 

time window must be at least several hours. For example, for the wind speed of 5 m/s, a 2-hour 148 

sampling window corresponds to a distance of ~ 36 km, comparable to the spatial scale of a 149 

continental ShCu ensemble. However, ShCu experiences distinctive diurnal variations over the 150 

continent. Within the 2-hour sampling period, the ShCu ensemble may evolve, leading to sampling 151 

uncertainties. Fortunately, a convective boundary layer often experiences a quasi-steady state 152 

(Moeng, 1984; Lensky and Rosenfeld, 2006; Stull, 2012). In atmospheric science, whether a 153 

dynamical system can be considered quasi-steady depends on the difference between the 154 



characteristic time scale of the system and the time scale of external forcing. For a typical 155 

convective boundary layer over the continent, the surface forcing time scale is on the order of a 156 

few hours (defined as half of the period when the surface heat fluxes remain positive) whereas the 157 

time scale for shallow convective circulations is several tens of minutes (i.e. the convective time 158 

scale) (Fig. S1a). Such a time scale separation allows the mixed layer to remain in a quasi-steady 159 

state in which changes in turbulent properties are negligible compared with the turbulence 160 

production and dissipation terms (Stull, 2012). This quasi-steady assumption is particularly valid 161 

in the early afternoon when the surface fluxes reach their plateau and their time derivatives 162 

minimize (Fig. S1b). As such, focusing on early-afternoon ShCu can reduce the uncertainty of 163 

sampling due to temporal evolution.  164 

In summary, to measure the wb of ShCu ensembles from surface-mounted DL, the sampling 165 

window must be at least a few hours to sample enough amount of individual ShCu. Moreover, an 166 

ideal sampling period is the early afternoon when the boundary layer is close to stationarity.    167 

 168 

3. Data and Methodology 169 

We use observations from the Department of Energy’s Atmospheric Radiation 170 

Measurements (ARM) SGP observatory. The key instrument used in this study is the DL. The DL 171 

measures vertical velocity with ~ 1 s temporal and 30 m vertical resolution. The transmitted 172 

wavelength is 1.5 µm. In addition to DL, we also use data from radiosondes, a ceilometer, a Ka-173 

band cloud radar (KAZR), and ARM instruments measuring surface meteorological variables 174 

routinely. 175 

3.1. An example case  176 

To illustrate the sampling principle of ShCu ensembles, Figure 2a shows a MODIS satellite 177 

imagery of a ShCu field over the SGP at 20:30 UTC on June 10, 2012.  The wind is southeasterly 178 

at a speed of ~ 9 m/s, corresponding to a horizontal distance of ~ 70 km over the two hours (the 179 

red solid line in Fig. 2a). One can see a few dozens of single cumuli drifting over the SGP site 180 

along the wind direction. Figure 2b shows a time-height plot of the DL from 19 to 21 UTC, 181 

corresponding to 13 ~ 15 local standard time (LST). Black dots mark the cloud-base heights (zb) 182 



measured by the ceilometer. To count how many individual cumuli are sampled during this period, 183 

we use the DL reflectivity to identify single cumuli. Figure 2c shows the zoomed-in window near 184 

cloud bases during the 19:48 ~ 20:00 UTC. The navy contours encompass pixels with DL 185 

reflectivity greater than 10-4.6 m-1 sr-1, a threshold that defines cloudy pixels (Lareau et al., 2018). 186 

Based on the reflectivity threshold, a total of 84 individual clouds are identified during the 2-h 187 

period. The majority of them have a duration shorter than 4 s, which seems too short to constitute 188 

a single cloud. Thus, we congregate clouds with gaps < 20 s, reducing the cloud population to 29, 189 

with 12 of them lasting longer than 30 s.    190 

 191 

Figure 2: An example case of the shallow cumulus field on Jun 10, 2012, over the SGP. 192 

(a) MODIS image centered on the SGP site (red star) at ~20:30 UTC. The red solid line 193 

marks the rough direction and travel distance of the mean horizontal wind during the 19 ~ 194 

21 UTC. (b) Height-time plot of Doppler lidar image of vertical velocity during a two-195 

hour window from 19 to 21 UTC. The black dots mark the cloud-base heights measured 196 

by a ceilometer. The blue rectangle marks a smaller window shown in the (c). Navy 197 

contours mark the cloudy regions defined as groups of pixels with reflectivity greater 198 

than 10-4.6 m-1 sr-1.  199 

 200 

 201 



3.2. Computing the wb 202 

We select “cloud-base” DL pixels through two steps. First, to exclude the decoupled cloud 203 

elements and elevated cloud sides, pixels with cloud bases higher than 30% of lifting condensation 204 

level (LCL) are removed. Second, for the remaining coupled clouds, we select pixels within three 205 

gates below the cloud base (~ 100 m) and cloudy pixels above the cloud base. These pixels are 206 

defined as “cloud-base” pixels. Because of the strong signal attenuation, the DL only penetrates < 207 

100 m into the clouds. Therefore, the cloudy pixels are mostly concentrated near several tens of 208 

meters above the cloud base. Figure S2 shows a comparison of the vertical velocity probability 209 

density function (PDF) between the two sub-groups of “cloud-base” pixels. Their PDF 210 

distributions are overall similar, suggesting that it is tenable to combine them as “cloud-base” 211 

pixels.  212 

To compute the ensemble-mean wb, we average the selected vertical velocities in two ways. 213 

The first is to simply average the vertical velocities above a threshold: 𝑤̅ = ∑𝑁𝑖𝑤𝑖 ∑𝑁𝑖⁄ , in which 214 

the Ni represents the frequency of occurrence of positive vertical velocity wi that is greater than a 215 

critical value (wcrit).  This is the common way for cloud-base mass fluxes study. The second way 216 

of averaging is weighted by volume: 𝑤̅vol = ∑𝑁𝑖𝑤𝑖
2 ∑𝑁𝑖⁄ 𝑤𝑖. The volume-averaged updraft speed 217 

has been considered as more relevant to the understanding of aerosol cloud-mediated effects 218 

because it gives more weight to the larger vertical velocities that generate clouds with greater 219 

volume (Rosenfeld et al., 2014; Zheng et al., 2015; Rosenfeld et al., 2016).  220 

3.3. Other quantities 221 

Ideally, the TKEML should be computed as 0.5(𝑢′2 + 𝑣′2 + 𝑤′2) averaged below the cloud 222 

base. However, the DL can only measure the vertical component, 0.5𝑤′2, denoted as TKEw
ML. In 223 

this study, we use the TKEw
ML to approximate the TKEML, motivated by the fact that TKEw

ML 224 

dominates the TKEML in typical convective boundary layers (Stull, 2012). The potential 225 

contributions from horizontal components of TKEML will be taken into account in our analyses in 226 

section 3. 227 

We used the surface-measured temperature and moisture to compute the LCL using the exact 228 

analytical formula of Romps (2014). As described in the example case, we used the threshold of 229 



DL reflectivity to identify single cumuli. To compute the chord length of individual cumuli, we 230 

used the DL product of horizontal wind speed near cloud-base, which is derived from a velocity 231 

azimuth display algorithm (Teschke and Lehmann, 2017). The multiplication of cloud-base 232 

horizontal wind speed and cloud duration yields the cloud chord length.    233 

3.4. Case selection 234 

A total of 128 ShCu days were selected between 2011 ~ 2014. The selection criterion is in 235 

principle similar to previous studies (Zhang and Klein, 2013; Lareau et al., 2018), which involves 236 

both objective and subjective criteria. The objective criteria include three steps: (1) the cloud-base 237 

height (defined as the mean of the lowest quartile within the 2-h period) has to be within 30% of 238 

LCL to ensure coupling, (2) the KAZR reflectivity cannot exceed 0 dBZ between the surface and 239 

cloud base to ensure no considerable precipitation, and (3) the cloud duration cannot exceed 30 240 

min to exclude stratiform clouds. Besides, we examine KAZR imageries to ensure ShCu-like 241 

characteristics. This is the best we can do since a completely objective method for selecting ShCu 242 

remains missing, although the emerging new technique of machine learning is promising to 243 

address this issue in the near future (Rasp et al., 2019).  244 

Based on these criteria, we obtain 32 ShCu days per year, similar to the 28 ShCu days per 245 

year in Zhang and Klein (2013) and Lareau et al. (2018), suggesting that there is no marked 246 

sampling difference between this study and previous ones. Fig S3 shows the statistics of these 247 

selected ShCu ensembles. On average, each ensemble is composed of ~ 20 individual ShCu, with 248 

half lasting longer than 30 secs. The majority of the ensembles have the maximum cloud chord 249 

length shorter than 5 km, consistent with prior knowledge. 250 

 251 

4. Results 252 

4.1. Sub-cloud turbulence explains cloud-base updrafts 253 

Figure 3 shows the scatter plots of 𝑤𝑏̅̅ ̅̅  (a) and 𝑤𝑏
𝑣𝑜𝑙̅̅ ̅̅ ̅̅  (b) versus (TKEw

M)1/2
 for different wcrit. 254 

Overall, the (TKEw
M)1/2

 is a good predictor of cloud-base updrafts, explaining ~ 50% of their 255 

variabilities. Note that the degree of scattering is still noticeable, but given the instrument error of 256 

the DL (~ 0.1 m/s) and potential sampling errors due to the assumption of stationarity, such degrees 257 



of correlation are good enough for demonstrating the physical validness. To our knowledge, this 258 

is the first observational evidence supporting the ability of the sub-cloud turbulence to dictate 259 

cloud-base updrafts that was only found in high-resolution models (Grant and Brown, 1999; 260 

Fletcher and Bretherton, 2010; van Stratum et al., 2014). Such good correlations suggest a 261 

continuity of vertical momentum between the sub-cloud layer and cloud base, despite the in-262 

between weakly stable layer (i.e. cloud-base transition layer) (Neggers et al., 2007; Stevens, 2007). 263 

Indeed, the stability of the transition layer interacts with the convective circulation, a manifestation 264 

of the dynamical coupling between the sub-cloud and cloud layers, to reach an equilibrium that 265 

maintains the mass conservation (Neggers et al., 2006; Fletcher and Bretherton, 2010). In this 266 

regard, the transition layer property should not be considered an external forcing that alters the 267 

coupling between the sub-cloud and cloud-base dynamics, but an internal parameter that responds 268 

to the circulation.   269 

Both 𝑤𝑏̅̅ ̅̅  and 𝑤𝑏
𝑣𝑜𝑙̅̅ ̅̅ ̅̅  increase with the wcrit, but the 𝑤𝑏

𝑣𝑜𝑙̅̅ ̅̅ ̅̅  shows much weaker sensitivity 270 

primarily because the 𝑤𝑏
𝑣𝑜𝑙̅̅ ̅̅ ̅̅  gives more weight to the larger vertical velocities. The intercepts also 271 

increase with wcrit, which is an artificial consequence of using non-zero wcrit. Physically speaking, 272 

a zero TKEw
M should lead to zero cloud-base updraft speed. Therefore, we will focus our 273 

subsequent discussions on the slopes that bear more physical meaning than intercepts.  274 

To compare our results with that from FB10, we visualize the Eq. (1) in Figure 3a (light blue 275 

curve). FB10 uses the wcrit of 0.5 m/s. Our empirical estimate (the red line) shows a stronger 276 

sensitivity of 𝑤𝑏̅̅ ̅̅  to the sub-cloud turbulence than FB10 by more than a factor of 3. What causes 277 

the difference? One possible reason is that we used the TKEw
M  that does not include the horizontal 278 

components of the TKE, leading to smaller values of TKE and, thus, a steeper slope. Another more 279 

likely reason is that the horizontal resolutions of the model used by FB10 are too coarse (1 km) to 280 

accurately simulate the vertical velocities. For instance, modeled vertical velocities decrease with 281 

the model resolution by a power law of -2/3 (Rauscher et al., 2016; Donner et al., 2016). The 282 

underestimated 𝑤𝑏̅̅ ̅̅  due to low resolution may flatten the slope of 𝑤𝑏̅̅ ̅̅  versus (TKEML)1/2 in FB10.   283 

To understand which factor is responsible, we use the LES data of 18 ShCu days from the 284 

LASSO project (Text S1). The LASSO horizontal resolution is 100 m, 10 times finer than that 285 

used in FB10. With the model output of three-dimensional winds, we are able to diagnose the full 286 



components of TKEML so that we can conduct an “apple-to-apple” comparison between the 287 

LASSO and FB10. As shown by the green lines in Fig. 3a, LASSO models (WRF and System for 288 

Atmospheric Modeling, SAM) show slopes steeper than the FB10 by more than a factor of 3 (see 289 

Fig. S4 for their scatter plots with statistical details).  This confirms that the flatter slope of FB10 290 

is likely caused by the coarse model resolution. The comparison between the LASSO and DL, 291 

which is not the focus of this study, is discussed in the supplementary material (Text S2).  292 

We have tabulated the empirical formulas for 𝑤𝑏̅̅ ̅̅  and 𝑤𝑏
𝑣𝑜𝑙̅̅ ̅̅ ̅̅ for different wcrit (Table S1) so 293 

that readers can use what suits their research interests.   294 

 295 

Figure 3: Scatter plots of 𝑤𝑏̅̅ ̅̅  (a) and 𝑤𝑏
𝑣𝑜𝑙̅̅ ̅̅ ̅̅  (b) versus (TKEw

M)1/2
  for wcri = 0, 0.1, and 0.5 m/s. Each 296 

point represents a ShCu ensemble mean. The blue solid line marks the Eq. (1), the empirical 297 

formula developed in Fletcher and Bretherton (2010).  298 

 299 

 300 



 301 

4.2.Diurnal dependence 302 

Given that all cases are in the early afternoon, one may ask how the observed relationship is 303 

representative of the other times of a diurnal cycle. To address this question, we use the LAASO 304 

data to examine its diurnal dependence. We chose the wcrit = 0 m/s for determining the 𝑤𝑏̅̅ ̅̅  because, 305 

as noted above, using an ad-hoc wcrit, say 0.5 m/s, leads to a markedly positive 𝑤𝑏̅̅ ̅̅  for zero 306 

(TKEw
M)1/2. By using wcri = 0 m/s, we can force the best-fit line through the origin through the 307 

least-square algorithm, freeing us from the unphysical meaning of positive intercepts. Figure 4a 308 

and b show the scatterplots of the 𝑤𝑏̅̅ ̅̅  versus (TKEw
M)1/2

 in different local times simulated by WRF 309 

and SAM, respectively. Both models show notably significant correlations between the two 310 

quantities in different phases of a diurnal cycle, confirming the ability of (TKEw
M)1/2

 to explain the 311 

variability of 𝑤𝑏̅̅ ̅̅ . More importantly, the slope of the relationship varies little with local time, 312 

except in the early morning and late afternoon (Fig. 4c and d). In the early morning, the stronger 313 

capping inversion weakens the speeds of rising thermals when they penetrating into the inversion, 314 

leading to smaller 𝑤𝑏̅̅ ̅̅  for given sub-cloud turbulence (Fig. S1c). Such a stabilization effect 315 

becomes less influential as the convection kicks up, which lessens the inversion strength. In the 316 

late afternoon, as the solar insolation weakens, the surface fluxes decrease considerably whereas 317 

the boundary layer remains deep (Fig. S1d). This leads to a decoupling between the ShCu and the 318 

surface (Stull, 2012), which may explain the flatter slope between 𝑤𝑏̅̅ ̅̅  and (TKEw
M)1/2

  in the late 319 

afternoon.    320 

In summary, the diurnal dependence of the coupling between the wb and sub-cloud turbulence 321 

is small, except in the early morning and late afternoon when the strong capping inversion and 322 

cloud-surface decoupling may lead to flatter slopes, respectively.     323 



 324 

Figure 4: Scatterplots of 𝑤𝑏̅̅ ̅̅  (wcrit = 0 m/s) versus the (TKEw
M)1/2

  grouped by the local 325 

standard time, simulated by WRF (a) and SAM (b). Each group of points corresponds to a best-326 

fit linear regression line forced through zero. The slopes of the best-fit lines are plotted in (c) and 327 

(d) for WRF and SAM, respectively.  328 

5. Conclusion 329 

This study examines the relationship between the sub-cloud turbulence and cloud base 330 

updrafts using Doppler lidar (DL) observations of 128 shallow cumulus (ShCu) ensembles over 331 

the Southern Great Plains. We proposed a new DL sampling method that allows measuring the 332 

cloud-base updrafts for an ensemble, instead of individual, ShCu. Specifically, we take advantage 333 

of the stationarity and ergodicity of ShCu-topped boundary layers in the early afternoon when the 334 

temporal change in the surface forcing is minimum. For each ShCu case, we selected a 2-hour 335 

window of DL that includes an average amount of ~ 20 individual cumuli with varying sizes, 336 

constituting an ensemble. This allows us to compute the ensemble-averaged quantities from DL 337 



measurements made at a fixed point. By analyzing the 128 ShCu ensembles, we found that the 338 

vertical velocity variance explains ~ 50% variability of ensemble-mean cloud-base updrafts, thus 339 

supporting the widely-held hypothesis and practice of using the sub-cloud turbulent kinetic energy 340 

to parameterize the cloud-base updrafts in some state-of-the-art mass flux closure schemes of 341 

convection parameterization (Bretherton et al., 2004; Neggers et al., 2009; Fletcher and Bretherton, 342 

2010). To our knowledge, this is the first observational evidence that demonstrates the ability of 343 

sub-cloud turbulence intensity to dictate the cloud-base updrafts. 344 

With the observational data, we derived empirical relationships between the square-root of 345 

sub-cloud turbulent kinetic energy and ensemble-mean cloud-base updraft speeds that are 346 

computed for different thresholds of vertical velocity and by different averaging schemes. 347 

Although all the 128 cases were sampled in the early afternoon, the diurnal variation of the 348 

relationship is weak (except in the early morning and late afternoon), as shown by the LES 349 

simulations of 18 ShCu cases over the SGP. These empirical formulas are useful for the 350 

developments of cumulus parameterizations, theoretical studies of ShCu dynamics, and satellite-351 

based inference of cloud-base updrafts.   352 
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 24 

Text S1: LASSO data  25 

The Large-Eddy Simulation (LES) Atmospheric Radiation Measurements (ARM) Symbiotic 26 

Simulation and Observation (LASSO) project was launched in 2015 by the U.S. Department of 27 

Energy’s ASR program (Gustafson Jr et al., 2020). Routine large-eddy simulations of shallow 28 

convection at ARM’s SGP observatory were conducted between 2015 and 2019. One of the core 29 

concepts of LASSO is to provide a library of ShCu cases for researchers to conduct composite 30 

analysis with statistical robustness. This contrasts with previous LES studies that are limited to 31 

only a couple of ShCu cases.  In this study, we use all the 18 ShCu cases released in the first two 32 

phases (2015 and 2016) of the LASSO. The output from two different models are used: Weather 33 

Research and Forecasting (WRF) (Skamarock et al., 2008) and System for Atmospheric Modeling 34 

(SAM) (Khairoutdinov and Randall, 2003). Both models were run with resolutions of 100 m in 35 

the horizontal and 30 m in the vertical within a domain with a size of 14.4 km. The initial state and 36 

the forcing data are the same: balloon-based sounding used as the initial state, large-scale-forcing 37 

input obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) 38 

analysis averaged over the spatial scale of 114 km, and the homogenized surface fluxes obtained 39 

from the ARM Variational Analysis (VARANAL) product. The WRF model used in this study 40 

adopted LASSO-Morrison cloud microphysical scheme (Gustafson et al., 2017) whereas the SAM 41 

uses the two-moment Bulk scheme (Morrison et al., 2005). Here, we offer additional discussions 42 

on two aspects of the LASSO data. First, one may suspect if the horizontal resolution of 100 m is 43 

fine enough for studying the vertical velocity (Guo et al., 2008; Donner et al., 2016; Endo et al., 44 

2019). Since this study is focused on the ensemble-averaged vertical velocity, this resolution issue 45 

is more or less alleviated. Improving the horizontal resolution to 25 m has a discernable, but not 46 

significant, influence on the domain-averaged vertical velocity statistics (Endo et al., 2019). 47 

Second, the selection of the specific combinations of large-scale and surface forcing data is purely 48 

random. There is no conclusive evidence as to which combination of forcing is superior to others.  49 

We determine the cloud-base height (zb) as the altitude with the largest cloud cover. At the  zb, 50 

we selected cloudy pixels with liquid water greater than 0.01 g m-3 to compute the cloud-base 51 

updrafts. The averaging routines are the same as those described in Section 3 of the main 52 

manuscript. The TKEML is computed as 0.5 ∗ (𝑢′2 + 𝑣′2 + 𝑤′2)  averaged below the zb. The 53 



mixed-layer height, h, is determined as the altitude with the most negative buoyancy fluxes. The 54 

convective time scale, t*, is computed as h/( TKEML)1/2.  55 

 56 

Text S2: Comparison between the DL- and LAASO-derived results 57 

As shown in Figure 3a and S4c, d and summarized in Table S1, WRF and SAM show ~ 50% 58 

steeper slope of the relationships between the 𝑤𝑏̅̅ ̅̅  and (TKEw
M)1/2 than that from the DL.  We think 59 

that the larger slope is likely due to the known problem of LES in overestimating the updrafts near 60 

cloud bases (Endo et al., 2019). As shown in Endo et al., (2019), compared with DL observations, 61 

the LES tends to shift the probability density function (PDF) of cloud-base vertical velocities 62 

toward the positive end. This leads to weaker downdrafts and stronger updrafts at cloud bases. 63 

This problem is found to be a consequence of model physics underestimating the evaporative and 64 

radiative cooling near cloud bases, processes driving downdrafts. It’s reasonable to conjecture that 65 

such an effect should be less influential for weaker sub-cloud forcing. As a thought experiment, 66 

one may imagine the evaporative cooling to approach zero as the convection gradually shuts off, 67 

leaving little chance for the underestimated evaporative cooling to modify the 𝑤𝑏̅̅ ̅̅ .  68 

 69 

 70 

 71 

 72 

 73 

 74 

 75 



 76 

Figure S1: WRF-simulated composite diurnal variations of t* (a), TKEML (b), and height-time 77 

plots of Brunt-Vaisala frequency (c), and vertical velocity variance (d). In (c) and (d), the black 78 

lines mark the diagnosed mixed-layer height (h). All plotted are the composite means of the 18 79 

ShCu cases from the 1st phase of the LAASO project.  80 



 81 

Figure S2: Probability density functions of vertical velocity for pixels at 100 m below 82 

(black) and above (red) the cloud bases. 83 
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 88 

Figure S3: Statistical distribution of key quantities for the 128 ShCu cases including (a) the 89 

number of individual cumuli (the red marks those that last longer than 30 secs), (b) maximum 90 

cloud duration, (c) horizontal wind speed near cloud base, and (d) maximum cloud chord length.  91 

 92 



 93 

 94 

Figure S4: Scatter plots of simulated 𝑤𝑏̅̅ ̅̅  versus (TKEML)1/2 (upper) and (TKEw
ML)1/2 95 

(bottom), simulated by WRF (left) and SAM (right). 96 
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 99 

 100 



 Slope Intercept (m/s) 
Slope 

(forced through origin) 
Corr. 

DL 𝑤𝑏̅̅ ̅̅  (w > 0 m/s) 1.04 ± 0.09 0.11 ± 0.06 1.20 0.73 

DL 𝑤𝑏̅̅ ̅̅  (w > 0.1 m/s) 1.04 ± 0.09 0.20 ± 0.06 N/A 0.73 

DL 𝑤𝑏̅̅ ̅̅  (w > 0.5 m/s) 0.98 ± 0.10 0.61 ± 0.07 N/A 0.68 

DL 𝑤𝑏
𝑣𝑜𝑙̅̅ ̅̅ ̅̅  (w > 0 m/s) 1.81 ± 0.15 0.22 ± 0.10 2.11 0.74 

DL 𝑤𝑏
𝑣𝑜𝑙̅̅ ̅̅ ̅̅  (w > 0.1 m/s) 1.80 ± 0.15 0.24 ± 0.10 N/A 0.74 

DL 𝑤𝑏
𝑣𝑜𝑙̅̅ ̅̅ ̅̅  (w > 0.5 m/s) 1.64 ± 0.14 0.50 ± 0.10 N/A 0.71 

WRF 𝑤𝑏̅̅ ̅̅  (w > 0 m/s) 1.65 ± 0.04 -0.04 ± 0.03 1.63 0.81 

WRF 𝑤𝑏̅̅ ̅̅  (w > 0.1 m/s) 1.65 ± 0.04 0.03 ± 0.03 N/A 0.82 

WRF 𝑤𝑏̅̅ ̅̅  (w > 0.5 m/s) 1.58 ± 0.04 0.31 ± 0.03 N/A 0.83 

SAM 𝑤𝑏̅̅ ̅̅  (w > 0 m/s) 1.46 ± 0.04 0.06 ± 0.03 1.54 0.79 

SAM 𝑤𝑏̅̅ ̅̅  (w > 0.1 m/s) 1.46 ± 0.04 0.11 ± 0.03 N/A 0.79 

SAM 𝑤𝑏̅̅ ̅̅  (w > 0.5 m/s) 1.41 ± 0.04 0.40 ± 0.03 N/A 0.80 

Table S1: Statistics of the relationships between the ensemble-mean cloud-base updrafts and 101 

(TKEw
ML)1/2 derived from DL, WRF, and SAM data. 102 
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