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Abstract

Understanding sensitive wetlands often requires non-invasive methods to characterize their complex geological structure and

hydrogeological parameters. Here, geoelectrical characterization is explored by employing frequency-domain electromagnetic

induction (EMI) at a site previously characterized by extensive intrusive measurements and 3D electrical resistivity tomography

(ERT). This work investigates the performance of several approaches to obtain structural information from EMI data and sharp

and smooth inversions. Additionally, the hydrological information content of EMI data is investigated using correlation with

piezometric measurements, established petrophysical relationships, and synthetic modeling. EMI measurements were dominated

by peat thickness and were relatively insensitive to both topography and depth to bedrock. An iso-conductivity method for peat

depth estimation had a normalized mean absolute difference (NMAD) of 23.5%, and although this performed better than the

sharp inversion algorithm (NMAD = 73.5%), a multi-linear regression approach achieved a more accurate prediction with only

100 measurements (NMAD = 17.8%). In terms of hydrological information content, it was not possible to unravel correlation

causation at the site, however, synthetic modeling demonstrates that the EMI measurements are predominantly controlled by

the electrical conductivity of the upper peat pore-water and not the thickness of the unsaturated zone or the lower peat pore-

water conductivity. Additionally, a priori information significantly improves the potential for time-lapse applications in similar

environments. This study provides an objective overview and insights for future EMI applications in similar environments. It

also covers areas seldom investigated in EMI studies, e.g. error quantification and the depth of investigation of ERT models

used for EMI calibration.
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Abstract 48 

Understanding sensitive wetlands often requires non-invasive methods to characterize their complex 49 

geological structure and hydrogeological parameters. Here, geoelectrical characterization is 50 

explored by employing frequency-domain electromagnetic induction (EMI) at a site previously 51 

characterized by extensive intrusive measurements and 3D electrical resistivity tomography (ERT). 52 

This work investigates the performance of several approaches to obtain structural information from 53 

EMI data and sharp and smooth inversions. Additionally, the hydrological information content of 54 

EMI data is investigated using correlation with piezometric measurements, established 55 

petrophysical relationships, and synthetic modeling. EMI measurements were dominated by peat 56 

thickness and were relatively insensitive to both topography and depth to bedrock. An iso-57 

conductivity method for peat depth estimation had a normalized mean absolute difference (NMAD) 58 

of 23.5%, and although this performed better than the sharp inversion algorithm (NMAD = 73.5%), 59 

a multi-linear regression approach achieved a more accurate prediction with only 100 measurements 60 



(NMAD = 17.8%). In terms of hydrological information content, it was not possible to unravel 61 

correlation causation at the site, however, synthetic modeling demonstrates that the EMI 62 

measurements are predominantly controlled by the electrical conductivity of the upper peat pore-63 

water and not the thickness of the unsaturated zone or the lower peat pore-water conductivity. 64 

Additionally, a priori information significantly improves the potential for time-lapse applications in 65 

similar environments. This study provides an objective overview and insights for future EMI 66 

applications in similar environments. It also covers areas seldom investigated in EMI studies, e.g. 67 

error quantification and the depth of investigation of ERT models used for EMI calibration. 68 

1 Introduction 69 

The shallow subsurface structure of wetlands governs their ability to provide important hydrological 70 

and biogeochemical functions. For instance, the geometry of deposits and underlying bedrock, and 71 

their associated hydrogeological properties dictate the exchange of water, nutrients, and pollutants 72 

between surface waters and groundwaters. Before the 1970s the importance of wetlands was 73 

commonly overlooked, and they were often modified; e.g. for agriculture or commercial and 74 

residential development (see Davidson, 2014). Since then there has been significant effort in 75 

restoring, maintaining, and managing wetlands (see Wagner et al., 2008). These efforts require 76 

methods for wetland characterization. However, conventional methods such as lithological 77 

sampling or piezometer installation (e.g. Grapes et al., 2005; Allen et al., 2010) may have limited 78 

spatial coverage or be prohibited due to environmental damage they may cause. 79 

Alternatively, hydrogeophysics provides the potential for subsurface characterization at high spatial 80 

and temporal resolutions (see reviews by Binley et al., 2015; Singha et al., 2015; Parsekian et al., 81 

2015; McLachlan et al., 2017). Methods sensitive to electrical conductivity are of interest to 82 

wetland characterization as it is dictated by porosity, pore-water conductivity, saturation, and grain 83 

mineralogy. These methods can therefore be used to distinguish between different lithologies and 84 

elucidate hydrogeological behavior. Most hydrogeophysical wetland investigations use electrical 85 

resistivity tomography (ERT) due to their proven application in imaging lithology and monitoring 86 

hydrological states (e.g. Chambers et al., 2014; Miller et al., 2014; Walter et al., 2015; Uhlemann et 87 

al., 2016). Recently, frequency-domain electromagnetic induction (EMI) methods have increased in 88 

popularity, particularly given the ease at which relatively large areas can be surveyed (e.g. von 89 

Hebel et al., 2014; Rejiba et al., 2018; Beucher et al., 2020). Additionally, it is important to note 90 

several wetland applications of ground penetrating radar which have revealed stratigraphy (e.g. 91 

Comas et al., 2005), gas content (e.g. Slater et al., 2007), and peat pipes (e.g. Holden et al., 2003). 92 

Initially, EMI methods were predominantly used for mapping (e.g.Sherlock and McDonnell, 2003; 93 

Corwin, 2008). However, the developments of multi-coil and multi-frequency devices, and 94 

inversion algorithms (e.g. Monteiro-Santos, 2004; Auken et al., 2015; McLachlan et al., 2020a), are 95 

such that applications have shifted focus to obtain quantitative models of electrical conductivity. In 96 

this way, EMI characterization of wetlands can be two-fold: i.e. boundaries between contrasting 97 

electrical conductivity can be interpreted in terms of stratigraphy, and electrical conductivity can be 98 

converted to parameters of interest using petrophysical models.  99 

Recently, there have been several studies using EMI inversion to investigate wetlands, peatlands, 100 

and fluvial environments. For instance, von Hebel et al. (2014) presented an inversion algorithm for 101 



sharp inversion (where conductivities and layer thicknesses were both solved as parameters) and 102 

Frederiksen et al. (2017) employed a smooth inversion algorithm and an iso-resistivity method for 103 

extracting lithological boundaries. Additionally, Beucher et al. (2020) used both sharp and smooth 104 

inversions but concluded that predictions from linear regressions with raw data were best for 105 

structural characterization when comparing with a limited intrusive data set. Moreover, Brosten et 106 

al. (2010) investigated the link between EMI and hydraulic conductivity with a smooth inversion 107 

algorithm. The distinction between sharp and smooth inversions is important; e.g. although 108 

conductivity will vary smoothly in broadly homogenous units with varying water content or gradual 109 

changes in mineralogy, for distinctly stratified environments, regularisation will smooth any abrupt 110 

changes in electrical conductivity. However, these previous studies, while focusing on particular 111 

applications, have not provided an objective comparison of those different approaches on a well-112 

characterized site.  113 

The overriding aim of this work is to assess the best modeling approaches to obtain realistic 114 

estimates about properties, or states, relevant to wetland function using EMI methods. The work 115 

focuses on a previously well-characterized site, which comprises peat and gravel deposits overlying 116 

Chalk bedrock. Firstly, the best approach for assessing the peat thickness is determined; predictions 117 

from linear regressions and smooth and sharp inversion methods are validated against an extensive 118 

intrusive data set. Secondly, the ability of EMI to characterize hydrogeological properties (i.e. 119 

unsaturated zone thickness, pore-water conductivity, hydraulic conductivity, and porosity) are 120 

investigated. Lastly, the potential of EMI to resolve hydrological states is quantified using synthetic 121 

modeling to better understand the limitations of the EMI method. Furthermore, although time-lapse 122 

EMI approaches have successfully resolved soil water dynamics in agricultural sites (e.g. Whalley 123 

et al., 2017) their potential in wetland sites has not yet been explored. Therefore, this work provides 124 

a thorough investigation of the usage of EMI methods in wetland environments and provides 125 

insights for future work in similar environments. 126 

2 Methods 127 

2.1 Field Site 128 

The Boxford Wetland, Berkshire, UK, covers an area of 10 ha and is situated along the River 129 

Lambourn. The river, and its associated habitats, are among the least impacted of the Chalk river 130 

systems in the UK; furthermore, the Boxford Wetland is a designated Site of Special Scientific 131 

Interest (Natural England) and a Special Area of Conservation (EU Habitats Directive) owing to the 132 

habitat it provides for aquatic and terrestrial fauna and flora (Old et al., 2014). The wetland consists 133 

of a north and a south meadow that are dissected by the Westbrook Channel (Fig. 1). 134 



  

 

Figure 1 — Maps of (a) measurement location of peat depths (grey dots) and ERT transects used 

for EMI calibration (white lines), (b) topography and 18
th

-century channels, (c) peat depth and 

peat channel outline, and (d) alluvial (peat and gravel) depth from previous 3D ERT work 

(Chambers et al., 2014; Newell et al., 2015). 

Although minimally impacted, during the 18
th

 century the hydrology of the site was modified by a 135 

network of drainage ditches, which are still evident in the topography of the site (Fig. 1b). 136 

Furthermore, some of these channels were demonstrated to coincide with the locations of 137 

groundwater-dependent flora and sites of upwelling of groundwater (see Fig. 3, House et al., 2015). 138 

The underlying Chalk bedrock present at the site is thought to exert a control on the hydrology. This 139 

is primarily because the upper surface of the Chalk is characterized by a discontinuous, low 140 

permeability, ‘putty chalk’ layer created by chemical weathering. Areas where the ‘putty chalk’ is 141 

absent or the Chalk has been deeply eroded, e.g. the channel feature in the north meadow (see Fig. 142 

1d), are thought to be areas of preferential groundwater upwelling (Younger et al., 1988; Chambers 143 

et al., 2014; House et al., 2016). 144 

Overlying the Chalk surface are Late Pleistocene to Holocene alluvial gravels and finer-grained 145 

deposits comprising peats, and alluvial silts and clays. The geometry of these deposits was revealed 146 

by the 3D ERT survey of Chambers et al. (2014) who observed that the gravels were thicker and 147 

more continuous in the north meadow (see Fig. 1d) and that the peats formed a broadly north-south 148 

trending channel on top of the gravels (see Fig 1c). A more detailed lithological study by Newell et 149 

al. (2015) demonstrated that the gravels can be divided into a unit of chalky gravels and an 150 

overlying unit of coarser flinty gravels, with some upper gravels showing the development of lateral 151 

accretion surfaces. The overlying deposits comprise a mixture of peats and alluvial clays and silts 152 

(see Newell et al., 2016); for the sake of brevity, these mixed peat deposits are referred to as peats 153 

hereafter. Organic carbon analysis of these peat deposits by Newell et al. (2016) indicated that they 154 

were deposited over 4,000 years ago and contain organic matter from both aquatic and terrestrial 155 

sources; i.e. the site was characterized by periodic changes in climate wetness. The complex 156 

depositional history of the peats is further evidenced by time-lapse ERT studies (Uhlemann et al. 157 

2016; McLachlan et al., 2020b) who demonstrated that the peats contain several hydrologically 158 

distinctive units. Most notably, the peats comprise an upper and lower layer separated by a thin clay 159 

layer. Both layers typically remain hydrologically separate and only exchange water when large 160 



hydraulic gradients are present, e.g. due to abrupt changes in the river stage and groundwater, which 161 

are strongly linked (Old et al., 2014). 162 

2.2 Intrusive Data 163 

The measured peat depths (see Fig. 1a) used to validate the peat thickness predictions from the EMI 164 

data here are taken from Chambers et al. (2014). Measurements were made by pushing a 6 mm 165 

diameter steel rod into the subsurface. The gravel was assumed non-penetrable and the depth was 166 

determined from the maximum penetration depth of the rod. Measurements were made at 2815 167 

locations on an approximate grid with 5 by 5 m spacing. In six locations the peat depths were too 168 

deep and were assumed to be 1.86 m, i.e. the maximum depth achievable with this method. 169 

During the EMI data collection (05-Mar-18 to 08-Mar-18), hydrological measurements were 170 

obtained from the peat and gravel piezometers at the site. In total 12 measurements of the 171 

unsaturated zone thickness in the peats and 13 measurements of pore-water electrical conductivity 172 

were obtained from both the peat and gravels. Piezometers were purged twice to ensure that pore-173 

water conductivity measurements were representative. As the screens of many of the piezometers 174 

had become overgrown since their initial installation, a previous set of unpublished hydraulic 175 

conductivity measurements, obtained using the falling head method, were used for analysis. This 176 

included 19 hydraulic conductivity measurements for the gravels and 20 for the peats. 177 

Additionally, as also noted by Beucher et al. (2020), there is interest in characterizing the organic 178 

matter content of wetland sediments given their role in the global carbon cycles (see Mitsch and 179 

Gosselink, 2007). To address this, 24 auger cores were obtained across the site and subsampled into 180 

0.1 m sections; organic matter content was then determined using the loss on ignition method (Heiri 181 

et al., 1999). Although a positive correlation between electrical conductivity and organic matter 182 

content may be expected given the surface conductivity component of organic sediments observed 183 

by Comas and Slater (2004), here no significant relationships were found between raw or inverted 184 

EMI data and organic matter content. This is perhaps due to the high organic matter content of peats 185 

at the site and the limited variability between samples, i.e. organic carbon content is not the main 186 

driver of variability in bulk electrical conductivity. Consequently, these data are not discussed 187 

further; however, this is a potential avenue for future research. 188 

2.3 Geophysical Data Collection 189 

2.3.1 EMI Data Collection 190 

EMI methods measure the interaction between an induced primary electromagnetic field and the 191 

resultant secondary electromagnetic field. Here, EMI data were obtained using the GF Instruments 192 

CMD Explorer device (Brno, Czech Republic), hereafter referred to as the GF Explorer. This device 193 

contains three receiver coils with transmitter-receiver separation distances of 1.48, 2.82, and 4.49 194 

m. Furthermore, it can be operated with coplanar coils orientated either vertically (VCP) or 195 

horizontally (HCP), with respect to the ground, meaning that in total 6 measurements can be 196 

obtained. Hereafter, the GF Explorer measurements are referred to as VCP1.48, VCP2.82, 197 

VCP4.49, HCP1.48, HCP2.82, and HCP4.49, to indicate the coil orientation and spacing. 198 



In most cases, EMI devices like the GF Explorer are operated on, or near, the ground surface, 199 

however, at the Boxford Wetland, the presence of dense vegetation required that the device be 200 

manually carried at 1 m above ground level. This has implications for the depth sensitivity of the 201 

instrument. For instance, the depth of investigation values (i.e. the depth above which 70% of the 202 

signal comes from (see Callegary et al., 2007)) for the specifications of the GF Explorer are 1.1, 203 

2.2, and 3.4 m in VCP mode, or 2.1, 4.2, and 6.7 m in HCP mode when the device is operated at 204 

ground level. However, when operated at 1 m elevation the sensitivity patterns are shifted; 205 

following Andrade and Fischer (2018), the recalculated depth of investigation values become 2.7, 206 

3.4, and 4.5 m for VCP mode, and 3.1, 4.6, and 6.9 m for HCP. Although the sensitivity patterns for 207 

VCP and HCP measurements are both shifted deeper, the effect is greater for VCP measurements. 208 

Essentially this means that when operated at 1 m elevation the sensitivity patterns of the EMI 209 

measurements become more similar (i.e. less independent) and there is less sensitivity to the 210 

shallowest subsurface. 211 

Before the field measurements, the GF Explorer was left for 30 minutes to allow it to stabilize. For 212 

each survey, the device was carried at 1 m and held perpendicularly to walking direction. Although 213 

in some places the ground was heavily vegetated, uneven, and/or boggy, care was taken to ensure 214 

that the GF Explorer remained in a stable position during surveying. For instance, changes in the 215 

elevation of the device, its orientation to the ground, and its rotation about its long axis will all have 216 

implications on the quality of measurements. Nonetheless, to assess measurement quality, 217 

perpendicular survey lines were collected; this also enabled the assertation of whether any 218 

processing steps, e.g. drift corrections (as determined from a central drift station) or ERT calibration 219 

(see section 2.3.2) introduced any biases into the data. Measurements were logged every second and 220 

paired with coordinates obtained from a Trimble GPS (Sunnyvale, California, US) which has an 221 

accuracy of < 3 m; additionally, logged coordinates were shifted using 8 control points that were 222 

previously surveyed using a differential GPS. 223 

2.3.2 ERT Data Collection 224 

Although EMI devices provide an independent measure of electrical conductivity, several authors 225 

have advocated for calibrating EMI measurements before inversion (e.g. Lavoué et al., 2010; 226 

Minsley et al., 2013; von Hebel et al. 2014). Here, ERT data are used to calibrate EMI data 227 

following the same general approach of Lavoué et al. (2010); unlike EMI, ERT is not subject to 228 

drift or calibration issues. ERT methods use measurements of transfer resistance to construct 229 

models of electrical resistivity. ERT measurements are collected using two pairs of electrodes; one 230 

pair to inject current and the other pair to measure the resultant electrical potential difference. By 231 

utilizing different combinations of electrodes with different spacings, different regions of the 232 

subsurface can be interrogated. It is important to note that the calibration of EMI data using ERT 233 

data implicitly assumes that the ERT model is correct, and any biases will be inherited into the EMI 234 

data. Also, both methods have different spatial resolutions, and ERT is sensitive to resistors 235 

whereas EMI is sensitive to conductors which may also impart biases into the EMI data. 236 

Nonetheless, ERT calibration has been shown to aid with the convergence of inverse EMI models 237 

(e.g. von Hebel et al., 2014; 2019). 238 

Two ERT data sets were collected, one in each meadow, (Fig. 1a). The locations of the ERT 239 

transects were selected to encompass ground with variable peat depths. Both transects were 47.5 m 240 



long and comprised 96 electrodes at 0.5 m spacing. Measurements were made using a dipole-dipole 241 

sequence and a Syscal Pro resistivity device (IRIS Instruments, Orleans, France). Before and 242 

following the collection of ERT data, plastic pegs, and string were used to mark the position of both 243 

transects to obtain EMI measurements in the same position as ERT measurements during respective 244 

surveys. Both data sets were inverted on a quadrilateral finite element mesh using R2 via the 245 

ResIPy software (see Blanchy et al., 2020), and the depth of investigation was determined using the 246 

method proposed by Oldenburg and Li (1999). Both data sets were inverted for a quadrilateral mesh 247 

allowing for a 2% measurement error to compensate for forward modeling errors associated with 248 

the mesh. In both cases, convergence was achieved in 3 iterations. 249 

2.4 EMI Data Filtering and Calibration 250 

EMI devices typically provide data in terms of an apparent electrical conductivity (ECa) via the low 251 

induction number approximation (see McNeill, 1980). The ECa values obtained by the GF Explorer 252 

are derived using an alternative manufacturer calibration, therefore before inversion ECa values 253 

were converted such that they are coincident with the EMI forward model used in the inverse 254 

algorithm, which uses the low induction number approximation (see McLachlan et al. 2020a). 255 

Furthermore, it is important to note that although non-linear methods exist for obtaining more 256 

representative ECa values from quadrature conductivities (e.g. Andrade et al., 2016), these 257 

approaches will have minimal influences on inversion results, especially in low conductivity 258 

environments. 259 

As the GF Explorer does not provide a measure of data quality in continuous logging mode, 260 

measurements that differed by more than 5% from both preceding and succeeding measurements 261 

were considered poor quality and replaced via linear interpolation to smooth the data. Following 262 

this, data were binned based on their ECa values into 16 equally spaced bins. Any data in bins that 263 

contained less than 0.5% of the total data were considered outliers; these were also removed and 264 

replaced via linear interpolation. Data from each survey were then corrected based on 265 

measurements made at the drift station, this was done separately for each EMI data set. 266 

The EMI measurements used for calibration were obtained during each survey; measurement 267 

coordinates were converted into a distance along the relevant ERT transect. The forward model 268 

response of each column of the quadrilateral ERT model was computed using the Maxwell-based 269 

forward models for each of the six measurement specifications of the GF Explorer and then 270 

converted to ECa values using the low induction number approximation. To account for the 271 

different spatial resolutions of ERT and EMI methods, a running average across 3 samples (~1 m) 272 

was applied, and data were then binned based on their position along the ERT transect, for which 273 

bin widths of 1 m were used. Additionally, the ERT depth of investigation, as computed by the 274 

Oldenburg and Li (1999) method, provided a metric by which to objectively avoid using EMI 275 

measurements obtained at locations along the ERT transect with poor depth sensitivity. Here, 276 

locations along the ERT transect where the depths of investigation were less than 1 m were not 277 

included. The coefficients from linear regressions for each measurement setup were then used to 278 

calibrate the remainder of the EMI data. 279 



2.5 EMI Error Quantification 280 

As noted, perpendicular survey lines were collected to quantify errors within the data and determine 281 

if data processing had been effective. The errors were quantified by first locating cross-over points 282 

(i.e. locations of approximately perpendicular survey lines) within the VCP and HCP data sets. The 283 

mean and standard deviations were then computed for all measurements made within a two-meter 284 

radius of these cross-over points. By plotting these errors through time, it was evident that drift had 285 

been accounted for and no substantial errors were introduced by any of the processing steps (e.g. by 286 

drift correction or ERT calibration). The overall errors of the EMI data were low and showed a 287 

dependence on the magnitude (Fig 2). For instance, expressed as a percentage the errors for 288 

VCP1.48, VCP2.82, VCP4.49, HCP1.48, HCP2.82, and HCP4.49 were 6.26, 3.72, 3.64, 3.30, 1.46, 289 

and 1.88%, respectively. This suggests that throughout the surveying the position of the device 290 

relative to the ground may have been unstable. For instance, it could be anticipated that errors 291 

arising from orientation or elevation issues would be higher in higher conductivity regions of the 292 

wetland as the ratio of air to subsurface conductivity would be increased. Although this could 293 

explain why the measurements with a lower depth of investigation have higher errors, it is 294 

important to note that such an effect could also arise from the variable vegetation cover at the site.  295 

 

 

Figure 2 — Errors of EMI measurements show the relationship between ECa and error for 

VCP1.48, VCP2.82, VCP4.49, HCP1.48, HCP2.82, and HCP4.49 respectively. 



2.6 EMI Inversion 296 

Before inversion, EMI measurements were co-located by interpolating data onto the coordinates of 297 

the intrusive peat depth measurements using inverse distance weighting. Only peat depth 298 

measurement locations that had > 3 EMI measurements made within a 5 m radius were considered, 299 

this resulted in a co-located data set comprising 2308 measurements, out of the total 2815 peat 300 

depth measurements collected. These data were inverted using the Maxwell-based forward models 301 

implemented in EMagPy (McLachlan et al., 2020a). As with other EMI inversion software the 302 

smooth inversion uses vertical regularisation to balance the overall data misfit and model 303 

smoothness. This avoids geologically unreasonable models at the expense of smoothing the 304 

electrical conductivity. In comparison, for the sharp inversion algorithm used here, regularization is 305 

not implemented, and depths of interfaces are treated as parameters.  306 

The smooth inversions were completed for an 11-layer model (depths = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 307 

1.4, 1.8, 2.4, 3 m) and a vertical smoothing factor of 0.01. This approach assumes that beyond 3 m 308 

the subsurface is homogenous. However, in many cases, the boundary between the gravels and 309 

Chalk was deeper (Fig. 1d). These depths were chosen because in most cases the conductivity 310 

profile was monotonic (see supplementary information), i.e. there was unsubstantial sensitivity to 311 

resolve the Chalk.  312 

For the sharp inversions, a grid-based parameter search method (e.g. Dafflon et al., 2013) was used 313 

to produce two-layer models. This approach also assumes that the Chalk and gravel were 314 

indistinguishable. This assumption is justified by the insignificant reduction in misfit when 315 

comparing 2 and 3-layer models (see supplementary information). Parameter values of 1 to 50 316 

mS/m in 1 mS/m increments and 50 to 150 mS/m in 2 mS/m increments were chosen for the 317 

electrical conductivity values of layers 1 and 2, and the parameters for the thicknesses of layer 1 318 

were 0.1 to 3 m in 0.1 m increments. The best model for each set of EMI measurements was 319 

determined from the lowest total misfit. Following this, to determine the effect of constraining the 320 

depth of layer 1 to the measured peat thickness, the model with the lowest misfit was then selected 321 

from the models with the correct peat depth (rounded to nearest 0.1 m). 322 

2.7 Structural Characterization 323 

The correlation between the calibrated ECa measurements of each coil and the elevation, measured 324 

peat depths, and alluvial thickness (e.g. combined peat and gravel thickness) were assessed using 325 

linear regressions. Following this, peat depths were estimated using a method where multi-linear 326 

regression models between the six EMI measurements and the peat depths were built. Moreover, 327 

although the most robust linear regression would be determined from all the intrusive 328 

measurements, the interest here was in determining the minimum number of intrusive 329 

measurements needed to develop a model that characterizes peat depths accurately, i.e. the point 330 

beyond which addition of intrusive data does not improve results. To do so multi-linear regressions 331 

were fitted with 20, 25, 30, 35, 45, 55, 65, 75, 85, 100, 150, 200, 250, 400 and 480 randomly 332 

sampled sets of the co-located data. The resultant coefficients were then used to predict peat depth 333 

for the remainder of the data set. To assess the ability of the linear regression to predict peat depth 334 

the normalized mean absolute difference (NMAD) was determined by: 335 



  

𝑁𝑀𝐴𝐷 =

∑ (
|𝑑𝑚𝑒𝑎𝑠,𝑖 − 𝑑𝑝𝑟𝑒𝑑,𝑖|

𝑑𝑚𝑒𝑎𝑠,𝑖
)𝑛

𝑖=1

𝑛
 

(1) 

  

where, dmeas and dpred are measured and predicted depths, respectively, and n is the number of 336 

observations. Furthermore, to ensure that predictions of the accuracy were robust, the multi-linear 337 

regressions were constructed 5000 times for each subset using randomly sampled data. 338 

Peat depths were also estimated from the inverted EMI models. For the smooth models, the peat-339 

gravel boundary was extracted using two classes of edge detection method: gradient methods and 340 

iso-surface methods. For the gradient methods, the subsurface conductivity and resistivity gradient 341 

were calculated, and the peat-gravel interface was assumed to be the depth with the steepest 342 

gradient. For the iso-surface method, single values of conductivity and resistivity were used to 343 

predict the depth of the peat-gravel interface across the whole site. As with the linear regression 344 

method, the performance of gradient and iso-surface methods was assessed by calculating NMAD. 345 

For the sharp method, the predicted peat depth was simply taken as the thickness of the upper layer 346 

of the two-layer model for the cases where a priori knowledge of peat depths was not supplied. 347 

2.8 Hydrogeological Characterization 348 

For the hydrogeological parameters, it was anticipated that there would be a negative correlation 349 

between EMI data and the unsaturated zone thickness, and a positive correlation with the pore-350 

water conductivity. For hydraulic conductivity, the expected correlation could be positive or 351 

negative. For instance, if the electrical conductivity is dictated by porosity, a positive correlation 352 

would be expected, whereas if the electrical conductivity is dictated by clay content a negative 353 

correlation would be anticipated (e.g. see Brosten et al., 2011).  354 

As with the structural data, linear regressions between the calibrated ECa measurements of each 355 

coil and the hydrogeological data were first investigated. Following this, the correlations between 356 

the modeled electrical conductivities and the hydrogeological data were investigated. For the 357 

smooth models, conductivity values were determined for the peats and gravels by using the 358 

measured peat depths to determine which model layers were in the peats and which were in the 359 

gravels. Although Brosten et al. (2011) selected a single layer for correlation with hydraulic 360 

conductivity such an approach requires, or at least assumes, that there is no thickness variation in 361 

the lithological units across the site. For the unconstrained sharp inversions, correlations between 362 

the hydrogeological properties of the peat and layer 1 were investigated, whereas the hydrological 363 

properties of the gravel were correlated with layer 2.  364 

Additionally, the modeled electrical conductivities were used to predict the porosity. Given that the 365 

gravels are fully saturated, and the surface conductivity is negligible, the porosity can be determined 366 

from Archie’s (1942) law, as follows: 367 

  



𝜎𝑏 = 𝛷𝑚𝜎𝑤, (2) 

  

where σb is the bulk conductivity of the gravels, Φ is the effective porosity, m is the cementation 368 

factor, here assumed to be 1.5, and σw is the pore-water conductivity. To account for surface 369 

conductivity associated with organic matter, Comas and Slater (2004) proposed a modified Archie’s 370 

(1942) law: 371 

  

𝜎𝑏 = 𝛷𝑚𝑆𝑛𝜎𝑤 + 𝜎𝑠𝑢𝑟𝑓, (3) 

  

where S represents saturation, n is the saturation exponent and σsurf is the surface conductivity and is 372 

dependent on the pore-water conductivity. Here, σsurf was estimated by the pore-water conductivity 373 

using the experimental findings of Comas and Slater (2004). Although in each piezometer 374 

measurement the water table was not at the surface (i.e. the peat was not fully saturated), 375 

preliminary inversions with the constraint of a sharp three-layer model with knowledge of the 376 

unsaturated zone thickness and peat depth resulted in models with high electrical conductivity 377 

estimates of the unsaturated zone. This was in contrast with the anticipated lower saturation and 378 

could be attributed to a lack of sensitivity in this region or the presence of vegetation in regions 379 

modeled as infinitely resistive. Although such occurrence could be avoided using regularisation or 380 

further constraint, for porosity prediction, the peats were assumed fully saturated. 381 

It is also important to draw attention to the petrophysical work of Walter et al. (2015), who found a 382 

strong relationship between bulk electrical conductivity and pore-water conductivity. Although such 383 

a relationship provides alternative routes to obtain estimates of formation factors, ultimately such an 384 

approach was not applicable here as such a relationship between bulk conductivity and pore-water 385 

electrical conductivity was not observed. This is probably due to the low variability in porosity 386 

observed by Walter et al. (2015). 387 

Additionally, to further explore the ability of EMI to resolve hydrological processes synthetic 388 

modeling was used. Although preliminary EMI data were obtained to investigate this, there were no 389 

spatially coherent patterns of changes in EMI data and no ERT data from contemporaneous dates 390 

were available to calibrate data before EMI inversion. For synthetic modeling, the subsurface was 391 

represented by a four-layer model, i.e. the unsaturated peats, the upper and lower peats identified by 392 

Uhlemann et al. (2016), and the underlying gravel.  393 

Pore-water logging by Uhlemann et al. (2016) showed that the peat pore-water electrical 394 

conductivities exhibited a cyclical nature reaching a maximum of ~70 mS/m in the fall (autumn) 395 

and a minimum of ~55 mS/m in the spring. In comparison, the gravel pore-water conductivities 396 

remain relatively stable and range from ~55 mS/m to ~60 mS/m throughout the seasons (see Fig. 5 397 

of Uhlemann et al., 2016). EMI data were simulated for the specifications of the GF Explorer 398 

operated at 1 m for synthetic models representing changes in pore-water conductivity and thickness 399 

of the unsaturated peat. The bulk conductivities were determined using equation 3 for layers 1 to 3 400 

and equation 2 for layer 4 for 20 different ‘hydrological state-changes’ (e.g. changing pore-water 401 



electrical conductivity) at 50 ‘locations’ (e.g. constant porosities and layer thicknesses) see 402 

supplementary information for more details. 403 

3 Results 404 

3.1 ERT Data and ECa Patterns 405 

The ERT sections show a clear two-layer stratigraphy comprising a conductive upper layer and a 406 

more resistive lower layer (Fig. 3). Also, the measured peat depths are coincident with this 407 

boundary. Consequently, the peat has an average conductivity of 20–30 mS/m whereas the gravel 408 

has an average conductivity of 5-10 mS/m. This agrees with Chambers et al. (2014) who observed 409 

that the peat had a conductivity of 30 mS/m in the north meadow and 20 mS/m in the south 410 

meadow, whereas the gravel had a conductivity of around 4–5 mS/m in both meadows. These 411 

values are in good agreement and the small deviation can be explained by the different season and 412 

year that the data were collected. Although Chambers et al. (2014) were able to resolve the 413 

underlying Chalk with a conductivity of 6–8 mS/m, the Oldenburg and Li (1999) depth of 414 

investigation values here are relatively shallow and such a distinction was not possible. The 415 

superior depth sensitivity of Chambers et al. (2014) can be attributed to their larger electrode 416 

separation and larger survey scale. 417 

 

Figure 3 — ERT models of (a) north and (b) south meadow (see Fig. 1a for locations). Values are 

expressed in electrical conductivity; the white dashed line denotes the depth of the intrusively 

derived peat-gravel boundary. 

The general patterns of EMI measured ECa coincide well with the peat depths, e.g. the geometry of 418 

the north-south trending peat channel is expressed as a conductive anomaly in the ECa data (Fig. 4). 419 

Additionally, in the SW corner of the south meadow, the zone of elevated ECa is coincident with 420 

areas where the gravels are thin, i.e. the Chalk bedrock is closer to the surface (Fig. 1d). It can also 421 

be seen in the north meadow that the zone of lower ECa values could correspond with the paleo-422 

depression in the Chalk surface identified from ERT results (Chambers et al., 2014; Newell, et al., 423 

2015), although it is important to note here that the feature also corresponds to areas where the peat 424 

depths are shallowest. Lastly, although there were slight differences in the patterns of the ECa data 425 

for the different coil specifications they were all greater where the peat depth is thickest and smaller 426 

where the peat depths are thinnest. 427 



 

Figure 4 — Maps of ECa measurements from (a) VCP4.49 and (b) HCP2.82, depths of 

investigation are 4.5 and 4.6 m, respectively. Dashed lines indicate the position of the peat 

channel. 

3.2 Structural Characterization 428 

The information of each GF Explorer measurement was quantified by fitting linear regressions 429 

between the calibrated ECa values and the available structural information, see Fig. 5. As expected 430 

from Fig. 4, it is evident that ECa measurements are primarily influenced by the peat thickness; the 431 

strongest correlations are for VCP4.49 and HCP2.82 (depth of investigation values are 3.5 and 3.6 432 

m, respectively). Furthermore, although the other parameters show significant relationships, the 433 

correlation coefficient, r, values are typically low to moderate. For instance, it could have been that 434 

EMI data were correlated with the peat disturbance during the 18
th

 century (e.g. Fig. 1b), however, 435 

EMI measurements were unable to resolve this. Moreover, although in some areas the gravel 436 

thicknesses agree with the EMI data (e.g. SE corner of the south meadow), this correlation is not 437 

present across the entire site and is likely only important when peats are relatively thin. 438 

 

 



Figure 5 – Correlation plots of calibrated ECa measurements and structural information, in all 

cases n = 2308. Alluvial depth corresponds to the thickness of both peats and gravels, i.e. the 

depth to the Chalk bedrock. Significance levels are indicated as follows: * represents p < 0.05 

and ** represents p < 0.01. 

It is shown in Fig. 6b that for multi-linear regressions using > 200 observations, the data-model 439 

misfit, in terms of NMAD, is not reduced substantially. For instance, in comparing the predictions 440 

from 200 and 400 observations, the average NMAD is only reduced from 17.8% to 17.4%. 441 

Furthermore, the predicted peat depth from 100 intrusive measurements (see Fig. 6a) resolves the 442 

overall patterns of the peat depth and with reasonable accuracy (NMAD = 18.3%). However, it can 443 

be seen from Fig. 6c that areas, where the peats are thickest, are underestimated, and areas, where 444 

the peats are thinnest, are overestimated. Furthermore, although the peat depths can explain most of 445 

the variation in the EMI data (r = 0.73), it is anticipated that additional variability may be attributed 446 

to hydrogeological heterogeneity within the peats and/or gravels. 447 

 

Figure 6 — Predicted peat depths based on the linear regression: (a) shows the distribution of 

peat depths, (b) shows the improvement in terms of normalized mean absolute difference when 

more observations are included, (c) shows a scatter plot of predicted and measured peat depths 

with 1:1 line. Dashed lines in (a) indicate the position of the peat channel. Note color scale in (a) 

is the same as in Fig. 1b. 

Layer 3 (0.6 m depth) and Layer 9 (2.4 m depth) of the smooth inversion are shown in Fig. 7a and 448 

b. As expected, the electrical conductivity decreases with depth and the area corresponding to the 449 

peat channel occurs as a zone of elevated electrical conductivity. Of the edge detection methods 450 

investigated, the iso-conductivity method performed the best (i.e. NMAD values for iso-451 

conductivity, iso-resistivity, resistivity gradient, and conductivity gradient methods were 24.5, 27.7, 452 

32.5, and 37.3%, respectively). The predicted peat depth, obtained by assuming the peat-gravel 453 

boundary can be represented by an iso-surface with a conductivity of 16.5 mS/m is shown in Fig. 454 

7c; the corresponding 1:1 plot is shown in Fig. 7d. Although the general pattern of the peat channel 455 



is well resolved, the predicted peat depths were less accurate than the predictions from the multi-456 

linear regression method. Moreover, the predictor performs poorer for thicker peats, this could be 457 

attributed to the lower sensitivity (i.e. reduced model resolution) at these depths. 458 

 

Figure 7 — Inverted electrical conductivity for smooth inversion: (a) and (b) show the inverted 

electrical conductivities of layers 3 (0.4 to 0.6 m) and 9 (1.8 to 2.4 m), respectively, (c) and (d) 

show the distribution of predicted peat depths and a scatter plot of predicted and measured peat 

depths, respectively. Note color scale in (c) is the same as in Fig. 1b and 6a. 

The results for the sharp model approach are shown in Fig 8a, b, and c. The general pattern of the 459 

peat depth (Fig. 8c) is evident, however in most cases, the predicted peat depths are overestimated 460 

(Fig. 8g), and the predictions have an NMAD of 73.5%. Furthermore, the conductivities of layer 1 461 

(Fig. 8a) are correlated with the modeled peat depth (r = -0.60, p < 0.01); i.e. high conductivity 462 

regions occur where the depth of layer 1 is shallowest, and vice versa. This correlation is also 463 

evident in the electrical conductivities of layer 2 (Fig. 8b). Such features imply that patterns in the 464 

data resulting from the peat depth are not accounted for properly in the inversion. This is further 465 

evidenced in the modeled electrical conductivities of layers 1 and 2 for the cases where a priori 466 

knowledge about the peat depth is supplied (Fig 8e and f) as such correlations are not present in the 467 

inversion results. Moreover, it can be seen from the histograms of modeled electrical conductivity 468 

(Fig. 8e and f) that by supplying a priori knowledge about the peat depth, the distribution of layer 469 

conductivity values is reduced. Moreover, although not shown, the uncertainty in electrical 470 

conductivity for layers 1 and 2 is substantially reduced by supplying a priori knowledge. The 471 

uncertainty for the depths of layer 1 in the unconstrained inversion is further indicated in Fig. 8d. 472 

The standard deviation of modeled depths where the model had a total misfit of < 5% demonstrates 473 

that uncertainty exceeds 0.8 m, and highlights that a diverse range of models can be used to 474 

describe the data. 475 

 



 

 

Figure 8 — Results of the sharp inversion approach for non-constrained and constrained cases: 

(a), (b), (c), and (d) show the layer 1 conductivities, layer 2 conductivities, layer 1 depths, and 

depth standard deviations of the unconstrained approach. (e) and (f) show the electrical 

conductivities of layers 1 and 2 in the constrained approach. (g) shows the pattern between the 

predicted and measured peat depths. (h) and (i) are histograms for the conductivities of layer 1 

(grey) and layer 2 (white) for unconstrained and constrained cases. Dashed lines in map plots 

indicate the position of the peat channel. 

3.3 Hydrogeological Characterization 476 

Fig. 9 displays the correlations between ECa measurements, inversion results, and hydrogeological 477 

parameters. It was anticipated that there would be negative correlations between ECa and thickness 478 

of the saturated zone; however, none of the correlations were statistically significant (at the 5% 479 

level). Similarly, no significant relationships between ECa and peat hydraulic conductivity, gravel 480 

hydraulic conductivity, or gravel water electrical conductivity were observed.  481 

 



 

Figure 9 - Correlations between EMI measurements and hydrological parameters. K is used to 

represents permeability, σw represents pore-water conductivity. Significance levels are indicated 

as follows: * represents p < 0.05 and ** represents p < 0.01. 

Curiously, however, it was observed that all VCP measurements and HCP1.48 measurements had a 482 

significant negative correlation with peat pore-water electrical conductivity. This could be 483 

explained if porosity was negatively correlated with peat pore-water electrical conductivity. For 484 

instance, areas with higher porosity may be flushed more readily by low conductivity rain waters. 485 

Such a hypothesis is somewhat backed by the correlation between peat water conductivity and log-486 

transformed hydraulic conductivity of the peat (r = -0.67, p < 0.05, n = 12). However, it is 487 

important to note that the unconstrained layer 1 conductivity of the sharp inversion also displays a 488 

significant negative correlation. Given that such a correlation was not observed for the constrained 489 

sharp inversion, a negative correlation between pore-water electrical conductivity and peat depth is 490 

also expected. It is however important to note the strongest relationships for peat pore-water 491 

electrical conductivity are with VCP1.48 and HCP1.48, whereas for peat depths VCP4.49 and 492 

HCP2.82 had the strongest correlation, Fig 5. 493 

The estimated porosities for the peats and gravels, following equations 2 and 3, resulted in average 494 

porosities of 0.424 (SD = 0.102) and 0.323 (SD = 0.004), respectively. The estimates for gravel are 495 

in agreement with gravels in similar environments (e.g. Frings et al., 2011). However, the porosities 496 

for the peats here are typically lower than in other environments (e.g. Walter et al., 2015). This can 497 

be attributed to an elevated proportion of silt and clay present in the peat deposits at the Boxford 498 

Wetland, see Newell et al. (2016). Additionally, the estimated peat porosity has a significant 499 

positive relationship with hydraulic conductivity (r = 0.60, p < 0.05), and provides additional 500 

validity to the hypothesis behind the observed correlation between pore-water conductivity and EMI 501 

values. Nonetheless, given that peat pore-water, electrical conductivity values are required to obtain 502 

porosities, a petrophysical relationship to predict the hydraulic conductivity across the site was not 503 

possible. 504 

It is also worth noting that if the results from the smooth inversion are used to predict the porosities, 505 

the peats have an average porosity of 0.32 and the gravels have a porosity of 0.38. This is because 506 

the true electrical contrast between gravels and peats is reduced in the smooth inversion, and 507 



although the electrical conductivities for the gravels are lower than the peats their higher estimated 508 

porosities are a result of the absence of surface conductivity component in equation 2. 509 

The synthetic modeling allows further investigation of the hydrogeological information content of 510 

the EMI data, the results are displayed in Fig. 10. As noted, the data were generated for a series of 511 

4-layer models; layers 1 and 2 represent the unsaturated and saturated zones of the upper peat, layer 512 

3 represents the lower peat and layer 4 represents the gravel. The correlation between changes in 513 

ECa and bulk electrical conductivities and changes in hydrological states are shown in Fig. 10. 514 

There is substantial potential to resolve changes in the upper peat and gravel pore-water 515 

conductivity from ECa values. However, for lower peat pore-water and unsaturated zone thickness 516 

the correlations are substantially weaker. Moreover, for the sharp inversion, it can be seen that 517 

although the layer conductivities of the unconstrained sharp inversion are high for the upper peat 518 

pore-water conductivity and moderate for the lower peat pore-water conductivity, the correlations 519 

are substantially improved for the constrained inversion.  520 

 

 

Figure 10 - Correlations between EMI measurements and hydrological parameters used in 

synthetic modeling. σw represents pore-water conductivity. Significance levels are indicated as 

follows: * represents p < 0.05 and ** represents p < 0.01. 

It is important to also note here that, unlike Fig. 9, the correlations in Fig. 10 are expressed as 521 

changes, not as absolute values. Therefore, the poorer correlations between the measured pore-522 

water conductivities with EMI data and inversion results can likely be attributed to additional 523 

variability in porosity, peat depth, and perhaps vegetation cover. Moreover, for the field data 524 

contrasts in spatial resolution of geophysical and hydrogeological parameters can cause additional 525 

factors to reduce the correlation, and although spatial averaging or interpolation methods may be 526 

able to improve correlation, it is an important issue to be cautious of. Nonetheless, it is evident that 527 

even if absolute values do not yield significant information about properties or states, this 528 

information may be present in appropriately collected time-lapse EMI data and enhanced resolution 529 



can be achieved with a priori knowledge. Moreover, it also follows that with the collection of more 530 

hydrogeological data more substantial relationships could be obtained. 531 

4 Discussion 532 

4.1 Acquisition and Calibration of EMI Data 533 

In this work, EMI data were collected at an elevation of 1 m due to the vegetation at the site. This 534 

has several important implications. Firstly, as noted, the sensitivity patterns of the device are 535 

modified. Although the exact modifications of the sensitivity patterns will be dependent upon the 536 

subsurface conductivity, the approach investigated by Andrade and Fischer (2018) which uses 537 

McNeill’s (1980) cumulative sensitivity function is validated by the observed similar values of the 538 

correlations between peat depths and VCP4.49 and HCP2.82 measurements, which have similar 539 

depth of investigation (4.6 and 4.5 m, respectively). Secondly, by elevating the device, the signal-540 

to-noise ratio is reduced because the measurement magnitude is reduced, and the magnitude of 541 

errors is increased (e.g. device rotation or instability). Although some systematic errors are removed 542 

by ERT calibration, errors arising from variable acquisition errors or vegetation are still likely to 543 

influence the measurements. However, although some large errors were observed (see Fig. 2), most 544 

data had low errors. 545 

Furthermore, although the factors mentioned above are likely to reduce the quality of data in similar 546 

environments, i.e. where vegetation precludes the use of all-terrain-vehicles and sleds, it is 547 

important to note that the walking survey here was still more productive than the 3D ERT 548 

investigation of Chambers et al. (2014). For instance, the EMI data collected here required 2-549 

person-days to collect the data across the entire 10 ha field site, in comparison the work of 550 

Chambers et al. (2014) required 12-person-days. Furthermore, although the 3D ERT work provided 551 

superior characterization, the transport of numerous electrodes and cable spools may be unfeasible 552 

in remote sites, and if only shallow characterization is required, EMI offers a more attractive and 553 

rapid approach. ERT surveys are also more invasive (e.g., electrode placement and disturbance of 554 

vegetation), which can also be problematic in ecologically sensitive wetland environments.  555 

In this work, data were calibrated using ERT models following the approach of Lavoué et al. 556 

(2011). Whilst it was observed that this substantially improved convergence of the EMI data, it 557 

should be noted that the depths of investigation of the ERT survey, as determined by the Oldenburg 558 

and Li (1999) method, were substantially smaller than the depth of investigation of the EMI device. 559 

Although they were calculated differently, the ERT calibration here was essentially biased to the 560 

shallower conductivity, in comparison to the deeper areas; this is the opposite of Rejiba et al. (2018) 561 

who hypothesized that their choice of ERT set up did not allow accurate calibration of the 562 

shallowest subsurface. Moreover, although lateral smoothing was used to reduce artifacts related to 563 

different spatial resolution, these effects were not investigated in significant detail. Other methods 564 

to calibrate data, e.g. electrical resistivity sounding (von Hebel et al., 2019), soil sampling (e.g. 565 

Moghadas et al., 2012), and multi-elevation EMI measurements (e.g. Tan et al., 2019) have been 566 

investigated and may offer superior methods to calibration. It is clear, however, that an objective 567 

study investigating these approaches and the depth of investigation of electrical resistivity methods 568 

(which is seldom reported) could go a long way in ascertaining the best approach in the calibration 569 

of EMI data. 570 



4.2 Predicting Peat Depth using EMI methods 571 

Although there is a range of EMI inversion software available, in this work EMagPy was used to 572 

produce smooth and sharp models of electrical conductivity. Ultimately, however, it was observed 573 

that of the approaches for determining peat depth, the multilinear regression method worked best. 574 

These findings agree with the recent work of Beucher et al. (2020) who found that the best approach 575 

for determining peat depth was using a linear regression method and that it performed better than 576 

inverse models obtained from Aarhus workbench. Moreover, given that at low conductivity values 577 

the ERT calibration is assumed linear, by-passing the ERT calibration of the EMI data does not 578 

substantially reduce the performance of the multi-linear regression prediction method. For instance, 579 

using uncalibrated EMI data and 100 peat depth observations yielded a relationship with an NMAD 580 

of 18.6%, in comparison to the NMAD of 18.3% when using calibrated data. 581 

In this work, it is evident that the electrical conductivities of the unconstrained sharp inversion are 582 

highly correlated with the measured peat depths, i.e. high first layer electrical conductivities are 583 

correlated with small first layer thicknesses. This is a crucial limitation of this approach, and 584 

although it could be argued that regularization could be introduced this may reduce the accuracy of 585 

petrophysical interpretations. Potentially, the results of a non-regularized inversion could be 586 

improved by adding electrical conductivity bounds. For example, von Hebel (2014) proposed using 587 

bounds of double the maximum ECa value and half the minimum ECa value when the device was 588 

operated at ground level. Although this approach can be modified for cases where the device is 589 

elevated, such an approach would be too conservative to resolve the contrasting gravel and peat 590 

conductivities (as observed in the ERT results) at this field site. The failure of this method, i.e. high 591 

uncertainty in final models (see Fig. 8d), is likely a result of the underdetermined nature of the 592 

inverse problem, as although six measurements were obtained, they are noisy and are not truly 593 

independent. Furthermore, the similarity of measurements is increased by operating the device 594 

above the ground. For future applications retaining the lack of vertical regularization, the 595 

uncertainty of the problem could perhaps be reduced by using lateral smoothing, collecting more 596 

measurements with different sensitivity patterns, or operating the device at the ground.  597 

Additionally, although the predictions using the smooth inversion were substantially better, they 598 

were not as good as the multi-linear regression method. This is likely due to a combination of 599 

regularisation and discretization of the model which acts to smooth the boundaries. For instance, 600 

one could argue that given that the inversions are conducted independently, it is not necessary to 601 

use the same vertical regularization and model discretization. Although this may improve peat depth 602 

prediction, one cannot arbitrarily pick vertical smoothing values to obtain the best correlation. 603 

Nonetheless, it is possible that using an objective approach, such as an L-curve, could help to select 604 

independent vertical smoothing values for each 1D inversion. This however invokes a substantial 605 

increase in computation time, especially if Full-Maxwell forward models are used. 606 

4.3 Obtaining Hydrogeological Information 607 

In addition to characterizing wetland structure, there is interest in obtaining both static and dynamic 608 

hydrogeological information about wetlands. Given the dependence of EMI measurements on peat 609 

depth the data ought to be governed by contrasts in the hydrogeological properties between the 610 

peats and gravels. For instance, given the similarities of pore-water conductivities at the time of 611 



sampling, the contrasts can most likely be linked to porosity. The negative correlation between VCP 612 

measurements, HCP1.48, the unconstrained layer 1 conductivity of the sharp inversion, and peat 613 

pore-water conductivity highlight the negative correlation between peat depth and porewater 614 

conductivity. However, the similarly strong negative correlation between peat pore-water 615 

conductivity and log-transformed conductivity highlight more intrusive information is required. For 616 

instance, by collecting a larger set of intrusive information, the influence of uncorrelated variability 617 

could be mitigated, and meaningful observations could be observed.  618 

Using Archie’s (1942) law for the gravel and a modified Archie’s law (Comas and Slater, 2004) for 619 

the peats it was possible to obtain estimates of porosity. As noted, when the values from electrical 620 

conductivity from the smooth inversion were used, the estimates for porosity were significantly 621 

lower than those obtained when using electrical conductivity values from the sharp models. In the 622 

synthetic work, it was observed that there is substantial potential for time-lapse EMI to reveal 623 

dynamic patterns. Furthermore, although site-specific relationships could be developed to link ECa 624 

and hydrogeological parameters, inversion results (and therefore the use of established 625 

petrophysical relationships), were significantly better if structural information was supplied. 626 

Perhaps this information could be supplied by ground-penetrating radar surveys which have proved 627 

successful in the past (Slater and Comas et al., 2004; Walter et al., 2015). 628 

5 Conclusions and Outlook 629 

The potential of EMI methods to characterize the hydrogeological structure was assessed, using a 630 

combination of intrusive measurements and synthetic modeling. EMI data were calibrated using the 631 

ERT data and errors were quantified using cross-over points.  Here, the depth of investigation of the 632 

ERT was relatively shallow in comparison to the EMI sensitivity; future applications ought to 633 

investigate the influence of differences in both vertical and spatial resolution between both methods 634 

(see also von Hebel et al., 2019). 635 

Calibrated EMI data were inverted using both smooth and sharp inversion algorithms, however, the 636 

absence of regularization in the sharp inversion resulted in large degrees of uncertainty in the 637 

resulting models. Moreover, because of the extensive data set of intrusive measurements it was 638 

possible to objectively assess the performance of the sharp inversion algorithm. Consideration of 639 

this uncertainty is important and future applications could reduce it using intrusive information or 640 

collection of more EMI measurements with different sensitivity patterns.  641 

Although the smooth inversions permitted characterization of the peat depth with relatively good 642 

accuracy, a method using the EMI data and a multi-linear regression model provided superior 643 

accuracy. Given the substantial contrasts in hydrogeological properties of the peats and gravels, this 644 

structural information is valuable for determining conceptual models of the field site. Such 645 

characterization could help to inform management decisions in similar environments and aid in the 646 

management and restoration of wetlands. 647 

However, although it was possible to distinguish between peat and gravel, no meaningful 648 

petrophysical relationships linking hydrogeological properties with EMI data were obtained. This 649 

could be attributed to the variability of static properties (e.g. peat depth and porosity) and the 650 

influence of different vegetation cover across the field site, however, it is possible that with 651 

additional hydrogeological measurements more meaningful relationships could be obtained. 652 



Moreover, although estimates of porosity were obtained from the sharp inversion methods, when 653 

using the electrical conductivities obtained from the smooth models, the predicted peat porosities 654 

were likely underestimated and whereas the gravel porosities were likely overestimated. This is an 655 

important consideration in stratified environments, because although electrical properties are likely 656 

to vary smoothly within lithologies, ideally regularization across boundaries should be limited to 657 

obtain the most accurate petrophysical interpretations. 658 

Lastly, the synthetic component permitted removal of variability associated with the porosity and 659 

structural heterogeneity, and vegetation cover, to focus solely on change water content and pore-660 

water electrical conductivity. In doing so the potential for EMI to characterize dynamic properties 661 

in the wetland was revealed. It is however important to note that as EMI measurements are prone to 662 

drift and influence of the user, it would be necessary to calibrate the device. Nonetheless, the 663 

application of time distributed EMI surveys has clear relevance for understanding groundwater-664 

surface water dynamics at the site, which is important for both the local ecosystem and the wider 665 

climate (e.g. related CO2 and CH4 production).  666 

lateral resolution can benefit from the 707 
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