A Proxy for Quantitative Sea Ice Reconstruction under Complicated Hydrodynamic Conditions: A Case Study in Prydz Bay, Antarctica

Jiaqi Wu¹, Zhengbing Han¹, Gaojing Fan², Jun Zhao³, Haifeng Zhang¹, Jianming Pan⁴, Sohey Nihashi⁵, Baijuan Yang¹, Qiuhong Zhu¹, Haiyan Jin², and Jianfang Chen⁴

¹Second Institution of Oceanography

²Second Institute of Oceanography

³Second Institute of Oceanography, SOA

⁴Second Institute of Oceanography, State Oceanic Administration

⁵Department of Engineering for Innovation National Institute of Technology Tomakomai College, Tomakomai, Japan

November 23, 2022

Abstract

IPSO₂₅ and a combination of phytoplankton biomarkers and IPSO₂₅ (termed PIPSO₂₅) have been proposed as qualitative sea ice proxies in Antarctica. Exploring the effects of hydrodynamic conditions on the proxies might prompt the development of quantitative sea ice reconstruction. We investigated the variabilities of IPSO₂₅, brassicasterol, P_BIPSO₂₅ (B indicates using brassicasterol as the phytoplankton biomarker) in a sediment trap, and the distributions of these proxies, and mean grain size and sorting (σ), which are indicators of hydrodynamic conditions in surface sediments from Prydz Bay. The proxy signals in sediments decoupled with the information from the upper layer reveal that the export of biomarkers to sediments would be affected by the hydrodynamic conditions. Accordingly, we normalized IPSO₂₅ and P_BIPSO₂₅ to the sorting to compensate for different deposit environments. The accuracy of summer sea ice reconstruction increased from ca. 23% (based on IPSO₂₅ or P_BIPSO₂₅ alone) to 63% (based on P_BIPSO₂₅ × σ^2).

1								
2	A Proxy for Quantitative Sea Ice Reconstruction under Complicated Hydrodynamic							
3	Conditions: A Case Study in Prydz Bay, Antarctica							
4	Jiaqi Wu ¹ , Zhengbing Han ^{1,*} , Gaojing Fan ¹ , Jun Zhao ¹ , Haifeng Zhang ¹ , Jianming Pan ^{1,*} ,							
5	Sohey Nihashi ² , Baijuan Yang ¹ , Qiuhong Zhu ¹ , Haiyan Jin ^{1,3} , Jianfang Chen ^{1,3}							
6 7	Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.							
8	² National Institute of Technology, Tomakomai College, Tomakomai 059-1275, Hokkaido,							
9	Japan.							
10	² State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of							
11	Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.							
12	Corresponding author: Zhengbing Han (hzbing@sio.org.cn) and Jianming Pan							
13	(jmpan@sio.org.cn)							
14	Key Points:							
15	• We investigate the IPSO ₂₅ and $P_{\rm B}$ IPSO ₂₅ (sea ice proxies) in a sediment trap and surface							
16	sediments from Prydz Bay, Antarctica.							
17	• IPSO ₂₅ and $P_{B}IPSO_{25}$ in sediments would be affected by hydrodynamic conditions							
18	alongside its production mechanism.							
19 20	• The accuracy of quantitative summer sea ice reconstruction increased from 22% based on P_BIPSO_{25} to 63% based on $P_BIPSO_{25\sigma}$.							

22 Abstract

- $IPSO_{25}$ and a combination of phytoplankton biomarkers and $IPSO_{25}$ (termed $PIPSO_{25}$) have been
- 24 proposed as qualitative sea ice proxies in Antarctica. Exploring the effects of hydrodynamic
- conditions on the proxies might prompt the development of quantitative sea ice reconstruction.
- 26 We investigated the variabilities of $IPSO_{25}$, brassicasterol, P_BIPSO_{25} (B indicates using
- brassicasterol as the phytoplankton biomarker) in a sediment trap, and the distributions of these
- proxies, and mean grain size and sorting (σ), which are indicators of hydrodynamic conditions in
- 29 surface sediments from Prydz Bay. The proxy signals in sediments decoupled with the
- 30 information from the upper layer reveal that the export of biomarkers to sediments would be
- affected by the hydrodynamic conditions. Accordingly, we normalized IPSO₂₅ and P_BIPSO_{25} to
- the sorting to compensate for different deposit environments. The accuracy of summer sea ice
- reconstruction increased from ca. 23% (based on IPSO₂₅ or P_BIPSO_{25} alone) to 63% (based on
- 34 $P_{B}IPSO_{25} \times \sigma^{2}$).

35 Plain Language Summary

- 36 Antarctic sea ice plays a vital role in the global climate system. Understanding the variabilities of
- 37 sea ice conditions in the long term could help in the accurate prediction of climate in the future.
- 38 Recently, $IPSO_{25}$ and P_BIPSO_{25} have been proposed as alternative proxies for sea ice
- 39 reconstruction alongside the traditional ice proxies based on microfossils in Antarctica. These
- 40 proxies were based on the assumption that the chemical compound was produced by diatoms in
- the sea ice, subsequently sinking to and being preserved in the underlying seafloor. However,
- 42 based on the results from a sediment trap and surface sediments from Prydz Bay, Antarctica, we
- 43 found that the information of sea ice conditions reconstructed from $IPSO_{25}$ and P_BIPSO_{25} signals
- in sediments mismatched with satellite observations. This is attributed to the effect of current
 transport from the top to bottom sediments. Hence, we adjust the sea ice proxies to the grain size
- parameters which are indicators for current conditions to offset the effects of the currents. The
- 40 parameters when are indicators for current conditions to offset the circers of the currents. The 47 accuracy of sea ice reconstruction increased from ca. 23% based on IPSO₂₅ or P_BIPSO_{25} alone to
- 48 63% based on $P_{B}IPSO_{25\sigma}$ which is the $P_{B}IPSO_{25}$ proxy normalized to grain size parameters.

49 **1 Introduction**

50 The complex figure (satellite observations) of Antarctic sea ice shows that sea ice

- 51 modestly increased to an overall extent (with opposing regional trends) during 1979–2014
- 52 (Maksym, 2019), followed by an unprecedented and consistent decline in all regions (Parkinson,
- 53 <u>2019</u>). Sea ice play a vital role in the climate system by affecting the ecosystem (Arrigo, 2014)
- and global carbon cycle (<u>Stephens & Keeling</u>, 2000), regulating the exchange of heat and gas
- between the atmosphere and ocean <u>(Thomas, 2017)</u>, and driving the formation of bottom water
- 56 (Ohshima et al., 2013), so it is essential to understand that the mechanisms controlling the
- 57 variabilities. One of the methods is to determine the changes in sea ice before direct observations
- through sea ice proxies (de Vernal et al., 2013).
- 59 Studies of paleo sea ice reconstruction in polar regions are commonly based on
- 60 microfossils (foraminiferal assemblages and diatoms) associated with sea ice. However, their
- application may be limited by the selective degradation of the microfossils in the water column
- and sediments (de Vernal et al., 2013). Recently, a suite of highly branched isoprenoids (HBIs)
- has been proposed as alternative or additional sea ice proxies in the Arctic and Antarctica (Belt,
- 64 <u>2018</u>). A mono-unsaturated C_{25} HBI called IP₂₅ is considered a sea ice biomarker in the Arctic

- (Belt et al., 2007). The source of IP₂₅, its time-series studies, and modern spatial distributions
- 66 (over 500 samples) have been investigated to evaluate its applicability for the qualitative
- 67 reconstruction of sea ice (Belt et al., 2008; Brown et al., 2011, 2014). Other biomarkers
- (brassicasterol) have been combined with IP₂₅ (the so-called PIP₂₅ index) to improve the quality
- of sea ice reconstructions (Müller et al., 2009, 2011; Stein et al., 2016). Further, IP_{25} and PIP_{25}
- proxies have been calibrated with sea ice concentrations (SIC) to explore their potential for
- quantitative sea ice reconstruction (Belt, 2018). Interestingly, IP_{25} has not been found in
- Antarctica. A di-unsaturated C_{25} HBI (termed as IPSO₂₅; Fig. S1), a structure analog of IP₂₅, has
- ⁷³ been confirmed as a product of sea ice algae by the identification of the algal products, δ^{13} C
- value of IPSO₂₅ in sediments, and its distribution characteristics in the surface water column and
- ⁷⁵ surface sediments (Belt et al., 2016; Smik et al., 2016; Vorrath et al., 2019). Hence, IPSO₂₅ and
- the combined index of phytoplankton biomarkers and IPSO₂₅ (termed PIPSO₂₅) following the
 PIP₂₅ index in the Arctic have been considered as promising sea ice proxies in Antarctica (Massé
- PIP₂₅ index in the Arctic have been considered as promising sea ice proxies in Antarctica (Masse
 et al. 2011; Vorrath et al. 2019). Further, the highest concentrations of IPSO₂₅ are located in
- 79 coastal areas, which are partially covered by land-fast ice (fast ice), together with the only known
- producer of IPSO₂₅, *Berkeleya adeliensis* (Medlin) which is the dominant species on fast ice,
- leading to the proposal that IPSO₂₅ signals might reflect the ice types (Belt et al., 2016).
- However, variations in IPSO₂₅ distributions might be caused by factors apart from sea ice
- conditions such as hydrodynamic conditions. It has been reported that biomarker records (e.g., n-
- alkanes, lignin, GDGTs, IP_{25}) could be affected by hydrodynamic sorting as they reside in

different particle size fractions (Feng et al., 2013; Mollenhauer et al., 2006; Navarro-Rodriguez

- 86 <u>et al., 2013</u>). Therefore, we hypothesize that the accuracy of sea ice reconstruction based on
- 87 IPSO₂₅ and PIPSO₂₅ might be affected by hydrodynamic conditions.
- As such, we investigated the temporal variations in IPSO₂₅ and phytoplankton biomarkers 88 (and calculated PIPSO₂₅) from a sediment trap deployed at Prydz Bay (PB), and compared these 89 with the SIC to explore the effects of the deposition process on the distribution of these proxies 90 in sediments. We established the distribution of these proxies in surface sediments from PB, and 91 92 compared IPSO₂₅ and PIPSO₂₅ with the satellite-derived sea ice types. We analyzed the grain size parameters which are indicators for hydrodynamic conditions. These parameters, along with 93 SIC, were combined with sea ice proxies to further explore the potential of these indices for the 94 quantitative reconstruction of paleo-sea ice. 95
- 96 2 Materials and methods
- 97 2.1 Study area

98 PB (Fig.1) is the largest continental embayment in East Antarctica. The oceanic circulation in PB is composed of a closed cyclonic gyre called the Prydz Bay Gyre (PBG) and a 99 narrow westward Antarctic Coastal Current (ACC) along the face of the Amery Ice Shelf (AIS) 100 (Williams et al., 2016). In PB, sea ice freezes from March until reaching its maximum value in 101 September. The sea ice then begins to melt in October, reaching its minimum value in February 102 of the following year (Zheng, 2011). The types of sea ice in PB comprise fast ice, pack ice, and 103 polynyas. Fast ice is restricted to the vicinity of the AIS (Nihashi & Ohshima, 2015). There are 104 two polynyas named the Mackenzie polynya (MP) and Barrier polynya (BP). The rest of the 105 study area is covered by pack ice in the austral winter. There were nine types of sediments in the 106 PB. Silt and slightly gravelly sediments were mainly located in central PB and the Four Ladies 107

- Bank (FLB), while sandy silt and slightly gravelly muddy sand were widely distributed in the
- 109 Fram Bank (FB) and the front of the AIS (Wang et al., 2015).

Figure 1. Map of PB showing the sampling locations and oceanographic setting. The locations of the sediment trap and surface sediments are shown as a black square and white dots, respectively. The black lines are the PBG and the black dashed line is the ACC. The yellow dashed line indicates the location of the MP and BP. The green dashed line delineates the boundary of the landfast ice with the frequency of its occurrence higher than 60% during the period 2003–2011 (Nihashi & Ohshima, 2015). The contour shows the bathymetry (Fretwell et al. 2013).

118 2.2 Sediment sampling

The sediment trap (McLane, USA) was deployed at PB (M7, 75.38° E, 68.49° S; water depth: 620 m; Fig.1, Table S1) during the 30th Chinese National Antarctic Research Expedition (CHINARE) and installed 490 m below the sea surface. After recovery, three of the aliquots collected during October, 2014 to February, 2015 were used for the particulate organic carbon (POC), biogenic silica (BSi), and biomarker analyses. Further details are described in <u>Han et al.</u> (2018) and the supporting information.

Surface sediment samples were collected during the CHINARE cruises in 2009, 2011,
 and 2013 using a box corer (Fig.1, Table S2). All samples after collection were preserved at -20
 °C until the analyses of total organic carbon content (TOC), grain size, and biomarkers were
 conducted.

129 2.3 POC, BSi, TOC, grain size, and biomarker analyses

The analyses of POC and TOC followed <u>Han et al. (2019)</u> and <u>(Sun et al. 2016)</u>. Briefly, after removing the inorganic carbon <u>(Schumacher, 2002)</u>, the carbon content of each sample was measured using an elemental analyzer (Elementar, Germany). A sodium carbonate leaching analysis procedure was used to determined BSi concentration as described in <u>Han et al. (2019)</u>.

The unground samples were scattered by a $Na_4P_2O_7$ solution prior to the analysis. The grain size was analyzed using a laser particle size analyzer (Malvern 3000). The grain-size parameters, including the mean grain size (Mz) and sorting (σ) were calculated graphically following Folk (1968).

For biomarker analyses, in brief, the internal standards, including 7-hexylnonadecane
(provided by Simon Belt from Plymouth University) and cholest-5-en-3β-ol-D6, were added to
the freeze-dried samples before the extraction. Samples were extracted in ultrasonication. HBIs
and sterols were purified using the silica gel chromatography. Furthermore, sterols were
derivatized with BSTFA. Both fractions were analyzed using an Agilent gas chromatography
coupled to a mass selective detector. Further details concerning biomarker analyses are described

- in <u>Belt et al. (2012)</u>, <u>Smik (2016)</u> and supporting information (Text S1).
- 145 2.4 Calculation of PIPSO₂₅

146 The PIPSO₂₅ indices were calculated according to the equation (Vorrath et al., 2019):

147
$$PIPSO_{25} = \frac{IPSO_{25}}{IPSO_{25} + phytoplankton \times c}$$
(1)

The detailed calculation of the balance factor *c* is described in supporting information (Text S2). Diatom biomarkers were chosen to represent the phytoplankton biomarker as phytoplankton is mainly composed of diatoms (> 80%) that are the main component of the settling particles in summer in PB (Han et al., 2019; Sun et al., 2003). Brassicasterol and HBI III (a tri-unsaturated C₂₅ HBI; Fig. S1) have been recognized as phytoplankton diatom biomarkers (Massé et al., 2011; Müller et al., 2009; Rampen et al., 2010). Brassicasterol was used to calculate P_BIPSO₂₅, and HBI III was used to calculate P_{III}IPSO₂₅.

155 2.5 Data presentation and storage

The daily SIC data used in this study were obtained from the Institute of Environmental Physics at the University of Bremen (Spreen et al., 2008). The remote sensing chlorophyll a (Chl a) data derived from the European Space Agency (ESA). The detailed calculation of SIC and Chl a used in this study were described in supporting information (Text S3).

- 160 **3 Results**
- 3.1 Temporal variability in environmental conditions and the fluxes and/or concentrations
 of POC, BSi, and biomarkers

According to satellite observations, the sea ice melting season at the M7 started on

November 18, 2014 and ended on November 26, 2014. The site was then ice-free until refrozen

in March. Furthermore, ice floes were observed twice at the end of November and December,

respectively (Fig. 2a). After large-scale sea ice melting, the surface Chl a concentration increased

167 gradually and reached a maximum in mid-January 2015 (Fig. 2a).

Figure 2. Time series of the bulk parameters, biomarkers, and P_BIPSO_{25} values measured at station M7 from October, 2014 to February, 2015. (a) Satellite-derived SIC (Spreen et al. 2008)

station M7 from October, 2014 to February, 2015. (a) Satellite-derived SIC (Spreen et al.
and Chl a (https://www.esa.int/); (b) BSi and POC flux; fluxes and concentrations of

- brassicasterol (c), HBI III (d), and IPSO₂₅ (e). The grey shades indicate the events of sea ice
- 1/2 brassicasteror (c), HBT III (d), and $1PSO_{25}$ (e). The grey shades indicate the events of sea ice melting.

174

During the study period, the average fluxes of POC and BSi were 508.99 μ mol m⁻² d⁻¹ 175 and 2034.63 μ mol m⁻² d⁻¹, respectively (Fig. 2b). Brassicasterol was detected in all samples (Fig. 176 2c). Brassicasterol flux increased after the sea ice melted and peaked abruptly in mid-December. 177 178 Its concentration ranged from 448.40 to 2868.46 μ g/g OC; the temporal variation trend of brassicasterol concentration was similar to that of Chl a. HBI III was present in most samples, 179 apart from those collected during late spring (Fig. 2d). The HBI III flux abruptly peaked at 26.85 180 ng $m^{-2} d^{-1}$, subsequently decreasing until the end of the sample collection period. Its 181 concentration increased to its highest (3353.69 ng/g OC) in early January 2015 and subsequently 182 decreased drastically. The trend pattern of HBI III concentration is different from that of 183 brassicasterol, which might be caused by HBI III degradation as it is more vulnerable to 184 185 degradation than brassicasterol (Rontani et al., 2011, 2019). Hence, we do not evaluate the applicability of P_{III}IPSO₂₅ in this paper. 186

¹⁸⁷ IPSO₂₅ was detected in all the trap samples except for that collected from January 26, ¹⁸⁸ 2015 to February 3, 2015 (Fig. 2e). The highest concentration of IPSO₂₅ occurred in the end of ¹⁸⁹ November (3003.56 ng/g OC). IPSO₂₅ flux peaked in the end of November (4.17 ng m⁻² d⁻¹) and ¹⁹⁰ mid-December (6.73 ng m⁻² d⁻¹) and then decreased drastically after the occurrence of the second ¹⁹¹ peak.

192 3.2 Spatial distributions of TOC, grain size, and biomarkers

The TOC values ranged from 0.2 to 1.87% (Table 1). The average values of TOC were similar in the fast ice $(1.04 \pm 0.84 \%)$ and non-fast ice zones (including the pack ice and polynya zones; $0.90 \pm 0.40 \%$). The value of sorting ranges from 1.45 to 2.76 ϕ , and shows a disparity between the fast ice and non-fast ice zones. For the fast ice zone, the average sorting value is $1.88 \pm 0.41 \phi$, indicating a poorly sorted condition; for the non-fast ice zone, the average sorting value is $2.14 \pm 0.43 \phi$, indicating a very poorly sorted condition (Table 1; Fig. S4).

The concentration of brassicasterol ranged from 62.04 to 290.47 µg/g OC (Table 1; Fig. 199 S3). The average brassicasterol concentration in the fast ice zone ($87.87 \pm 32.21 \, \mu g/g \, OC$) was 200 lower than that in the non-fast ice zone (98.70 \pm 96.63 µg/g OC). Increased concentrations of 201 brassicasterol were found in the region close to the continental slope between 67° S and 68° S, 202 which is in accordance with the satellite-derived Chl a maximum (Herraiz-Borreguero et al., 203 2016, Fig. 2a), and align well with the BSi distribution pattern in Prydz Bay from (Harris et al., 204 1998; Hu et al., 2007). This additionally supports the use of brassicasterol as a diatom proxy in 205 the study area. The distribution pattern of HBI III is in contrast to that of brassicasterol: the 206 average concentration of HBI III in the fast ice zone is twice that in the non-fast ice zone (Table 207 1; Fig. S4). 208

- IPSO₂₅ was detected in all surface sediment samples, with average values up to $791.13 \pm$
- 384.58 ng/g OC in the fast ice zone to $179.49 \pm 200.02 \text{ ng/g OC}$ in the non-fast ice zone (Table 1;
- Fig. S3). The distribution pattern of P_BIPSO_{25} was similar to that of $IPSO_{25}$ (Table 1; Fig. S4),
- with the average value of P_BIPSO_{25} in the fast ice zone (0.74 ± 0.07) being twice that in the non-
- 213 fast ice zone (0.34 ± 0.18) .

214 **4 Discussion**

215

4.1 Seasonal variability of biomarkers and its linkage with sea ice conditions

Diatoms are the main constituent of phytoplankton in PB. The mismatch between the BSi 216 fluxes and the changes in the phytoplankton biomass represented by satellite Chl a data might be 217 affected by the dissolution and/or lateral transport of BSi in the deposition process (Fig. 2a, b). 218 However, there was a significant correlation between the fluxes of BSi and brassicasterol, which 219 is resistant to degradation ($R^2=0.81$, p<0.01), indicating that the mismatch between the fluxes of 220 phytoplankton proxies and phytoplankton biomass might mainly be caused by the lateral 221 transport. Lateral transport is mainly controlled by sinking rates; ballast materials (i.e., opal, 222 CaCO₃, and lithogenic minerals) attached to sinking particles could affect the deposition 223 velocities (Alldredge & Gotschalk, 1988). However, it has been suggested that opal is not an 224 efficient ballast material during diatom blooms as they tend to form low-density aggregates in 225 226 the water column (Bach et al., 2016). Therefore, at the beginning of the ice-free period, lithogenic materials derived from the melting ice floe attached to the phytoplankton aggregates, 227 thereby increasing the velocities of the aggregates, which in-turn increased the BSi and 228 229 brassicasterol fluxes. In contrast, the sinking rates decreased when there was no melting of ice, and hence decreased the amount of lithogenic materials. Therefore, the residence time of 230 phytoplankton in the water column was extended and phytoplankton aggregates were more 231 susceptible to being carried by the current, leading to low fluxes of BSi and brassicasterol when 232 the phytoplankton biomass increased. 233

234 The patterns of IPSO₂₅ fluxes, to some extent, link with the sea ice conditions. During the strict ice-free period (without ice floe melting events), the IPSO₂₅ flux and concentrations were 235 extremely low or undetectable, consistent with the finding that the flux of the ice algae proxy 236 was low during this period in the Arctic from Bai et al. (2019) and Fahl and Stein (2012). During 237 the melting season (late spring and summer), the biomass of sea ice algae sharply increases when 238 the strength of the light increases in polar regions. Moreover, the ice algae are subsequently 239 deposited to the underlying sediments when the ice melts (McMinn et al., 2010). Thus, IPSO₂₅ 240 fluxes should evidently increase during the melting season (Bai et al., 2019). However, in this 241 study, the IPSO₂₅ fluxes did not increase during large-scale sea ice melting in mid-November. 242 This might be due to the ex-situ melting of sea ice and/or the ice algae from the melting ice being 243 carried elsewhere by strong currents. Additionally, there were time lags between the peak of 244 IPSO₂₅ fluxes and ice floe melting events, likely due to hydrodynamic conditions. As such, 245 although IPSO₂₅ could be used for qualitative sea ice reconstruction to some extent, the effects of 246 hydrodynamics cannot be ignored when the proxy is used for quantitative sea ice reconstruction. 247

248 249

4.2 Testing the applicability of the combined open-water phytoplankton biomarkers and $IPSO_{25}$ in different sea ice conditions

The spatial distribution pattern of $IPSO_{25}$ likely refers to the different sea ice types, with the highest $IPSO_{25}$ concentrations located in the fast ice zone and lower $IPSO_{25}$ concentrations in the non-fast ice zone, which is consistent with the results of <u>Belt et al. (2016)</u>. Owing to the different processes of sea ice formation, the ice structures in the fast ice and non-fast ice zones are different (Allison, 1989). Columnar ice is the main component in the fast ice zone; as for the non-fast ice zone, the ice contains significant amounts of frazil ice (Gow et al., 1982; He et al.,

256 <u>1998</u>), leading to different ice algae compositions in the two regions (Ackley & Sullivan, 1994;

- 257 <u>Scott et al., 1994</u>). For example, *B. adeliensis* is recognized as one of the dominant species in the
- bottom section of fast ice, but not in pack ice (Riaux-Gobin et al., 2003; Saggiomo et al., 2017).
- 259 This might lead to a disparity in the distribution patterns of $IPSO_{25}$ in the two regions.
- Additionally, the phytoplankton biomass (brassicasterol concentrations) in the fast ice zone was
- slightly lower than that in the non-fast ice zone, and when combined with the characteristics of
- the IPSO₂₅ distribution pattern, it leads to higher P_BIPSO_{25} values in the fast ice zone.

Figure 3. Pearson correlation coefficients of sea ice proxies with the mean austral spring SIC and austral summer SIC. The dot size and the color indicate the magnitude of the correlation coefficients. Single asterisk and double asterisks indicate that the correlation is significant at a level of 0.05 (2-tailed) and of 0.01 (2-tailed), respectively.

To further test the applicability of $IPSO_{25}$ and P_BIPSO_{25} for quantitative sea ice reconstruction, we compared the $IPSO_{25}$ concentrations and P_BIPSO_{25} values with spring SIC (SIC_{Spr}) and summer SIC (SIC_{Sum}). Both $IPSO_{25}$ concentrations and P_BIPSO_{25} values did not

exhibit any clear correlation with SIC_{Spr} but showed a positive correlation with SIC_{Sum} (Fig. 3),

suggesting that the proxies are mainly affected by the presence of summer sea ice. Indeed, the

sympagic algae biomass sharply increases during the ice melting season, and sea ice melts

Further, the linear correlation of IPSO₂₅ and P_BIPSO_{25} against SIC_{sum} can be described as:

277
$$IPSO_{25} = 10.123 \times SIC_{Sum} - 16.786 \ (R^2 = 0.23, p < 0.05)$$
(2)

278
$$P_BIPSO_{25} = 0.0067 \times SIC_{Sum} + 0.2082 \ (R^2 = 0.22, p < 0.05)$$
 (3)

However, the accuracy of the sea ice reconstruction based on IPSO₂₅ or P_BIPSO_{25} alone is only ~ 279 23%, which might be attributed to $IPSO_{25}$ concentrations in sediments being affected by the 280 281 hydrodynamic conditions during the sinking processes as mentioned before, alongside the sea ice conditions. Hydrodynamic conditions may trigger the lateral transport and differentiation of 282 biomarker records residing within the different particle classes, and then the decoupling of 283 proxies (Kim et al., 2009; Mollenhauer et al., 2006). Grain size parameters such as the Mz and 284 sorting have been used as indicators of hydrodynamic energy for particles undergoing sediment 285 processes (Robert Louis Folk & Ward, 1957; Prodger et al., 2016). The Mz in the fast ice zone is 286 287 larger than that in the non-fast ice zone, and the sorting value in the fast ice zone is lower than that in the non-fast ice zone (Table 1), indicating a stronger hydrodynamic condition of 288 sedimentation in the fast ice zone. In a stronger sorting environment (fast ice zone), the 289 deposition of fine particles is difficult as their sinking rate is slower than the current speed 290 (McCave & Hall, 2006; Yoon et al., 1998). Large parts of organic carbon are associated with 291 smaller particles because of their high surface area (Mayer, 1994), likely leading to the loss of 292 organic carbon, which is absorbed in a fine fraction. However, ice algae are subject to relatively 293 rapid sedimentation as they tend to form aggregates and the lithogenic material derived from 294 295 melting ice can be incorporated into the aggregates, enhancing their sinking velocities (Han et al., 2019; Riebesell et al., 1991; Van der Jagt et al., 2018). Thus, in the fast ice zone, the material 296 derived from the ice algae contributes greatly to the organic carbon than that derived from the ice 297 algae in the non-fast ice zone. In contrast, in a weaker sorting environment (non-fast ice zone), 298 the deposition of small sized particles is relatively easy; this, along with a higher biomass of 299 phytoplankton, leads to the dilution of the IPSO₂₅ signals. Overall, the IPSO₂₅ concentrations and 300 P_BIPSO_{25} values in the fast ice zone were higher than those in the non-fast ice zone. 301 Accordingly, we normalized the IPSO₂₅ concentrations and P_BIPSO₂₅ by introducing the Mz and 302 sorting (σ) to compensate for the different hydrodynamic conditions and calculated the possible 303

- 304 combinations. Most of the normalized sea ice proxies show better correlations with SIC_{Sum} (Fig.
- 305 3), suggesting that this approach provides a more reliable approach for sea ice reconstruction.
- 306 The highest correlations between normalized proxies and SIC_{Sum} are as follows:

307
$$P_{B}IPSO_{25\sigma} = P_{B}IPSO_{25} \times \sigma^{2}$$
(4)

$$P_{\rm B} IPSO_{25\sigma} = 0.0458 \times SIC_{\rm Sum} + 0.3 \ (R^2 = 0.63, \, p < 0.01)$$
(5)

The accuracy of the summer sea ice reconstruction significantly increased from 22% based on the sea ice proxies without normalization to 64% based on the normalized sea ice proxy (i.e., $P_BIPSO_{25\sigma}$). This indicates that the introduction of sorting to sea ice proxies can effectively boost their certainty for summer sea ice reconstructions in the study area. However, further work is necessary to evaluate the applicability of this approach in other Antarctic regions.

314 **5 Conclusions**

The mismatch between the records of $IPSO_{25}$ and P_BIPSO_{25} in sediments and the information from the upper layer was attributed to the effect of the deposition process on their

- 317 distribution. Therefore, the use of these proxies alone to reconstruct sea ice conditions should be
- cautious. The normalization of $IPSO_{25}$ and P_BIPSO_{25} to sorting increases the precision of these
- proxies for summer sea ice reconstruction in complex sedimentary environments. The accuracy
- of summer sea ice reconstruction increased from 22% based on IPSO₂₅ or P_BIPSO_{25} alone to
- 63% based on P_BIPSO₂₅₅, providing a promising method for the quantitative summer sea ice
- 322 reconstruction in Antarctica.

323 Acknowledgments, Samples, and Data

We thank the captains, crew, and science party of the RV "Xuelong" for their assistance in the sample collection. Additionally, we thank Simon Belt (University of Plymouth) for

- providing the inter standard (7-hexylnonadecane). Datasets for this research are included in this
- 327 paper (and its supplementary information files). The original fast ice data can be found from
- 328 <u>https://kosenjp-my.sharepoint.com/:f:/g/personal/sohey_tomakomai_kosen-</u>
- 329 <u>ac_jp/Eojgxb19Pn1Jv4Dof6bVb_MBzS1cgT1btVrNXBDdTURhIw?e=KUcJYs</u> (and Dataset
- s1). The original SIC data can be found from the Institute of Environmental Physics at the
- University of Bremen (https://seaice.uni-bremen.de/databrowser/). The original Chl a data can be
- found from the ESA (<u>https://www.esa.int/</u>). This research was supported by the National Natural Science Foundation of China (41976227, 41976228, and 41376193) and the response and
- feedback of the Southern Ocean to climate change (RFSOCC2020-2025). Authors declare no
- 335 competing interests.

336 **References**

Ackley, S. F., & Sullivan, C. W. (1994). Physical controls on the development and 337 characteristics of Antarctic sea ice biological communities—a review and synthesis. Deep 338 Sea Research Part I: Oceanographic Research Papers, 41(10), 1583–1604. 339 https://doi.org/10.1016/0967-0637(94)90062-0 340 Alldredge, A. L., & Gotschalk, C. (1988). In situ settling behavior of marine snow 1. Limnology 341 and Oceanography, 33(3), 339-351. https://doi.org/10.4319/lo.1988.33.3.0339 342 Allison, I. (1989). The East Antarctic Sea Ice Zone: Ice Characteristics and Drift. GeoJournal, 343 18(1), 103-115. https://doi.org/10.1007/BF00722394 344 Arrigo, K. R. (2014). Sea ice ecosystems. Annual Review of Marine Science, 6, 439–467. 345 https://doi.org/10.1146/annurev-marine-010213-135103 346 Bach, L. T., Boxhammer, T., Larsen, A., Hildebrandt, N., Schulz, K. G., & Riebesell, U. (2016). 347 Influence of plankton community structure on the sinking velocity of marine aggregates. 348 Global Biogeochemical Cycles, 30(8), 1145–1165. https://doi.org/10.1002/2016GB005372 349 Bai, Y., Sicre, M.-A., Chen, J., Klein, V., Jin, H., Ren, J., Li, H., Xue, B., Ji, Z., Zhuang, Y., & 350 Zhao, M. (2019). Seasonal and spatial variability of sea ice and phytoplankton biomarker 351 flux in the Chukchi sea (western Arctic Ocean). Progress in Oceanography, 171, 22-37. 352 https://doi.org/10.1016/j.pocean.2018.12.002 353 Belt, S. T. (2018). Source-specific biomarkers as proxies for Arctic and Antarctic sea ice. 354 Organic Geochemistry, 125, 277-298. https://doi.org/10.1016/j.orggeochem.2018.10.002 355 Belt, S. T., Brown, T. A., Rodriguez, A. N., Sanz, P. C., Tonkin, A., & Ingle, R. (2012). A 356 reproducible method for the extraction, identification and quantification of the Arctic sea 357

358	ice proxy IP25 from marine sediments. <i>Anal.Methods</i> , <i>4</i> , 705–713.
359	https://doi.org/10.1039/c2ay05728j
360	Belt, S. T., Massé, G., Rowland, S. J., Poulin, M., Michel, C., & LeBlanc, B. (2007). A novel
361	chemical fossil of palaeo sea ice: IP25. <i>Organic Geochemistry</i> , 38(1), 16–27.
362	https://doi.org/10.1016/j.orggeochem.2006.09.013
363	Belt, S. T., Massé, G., Vare, L. L., Rowland, S. J., Poulin, M., Sicre, MA., Sampei, M., &
364	Fortier, L. (2008). Distinctive 13C isotopic signature distinguishes a novel sea ice
365	biomarker in Arctic sediments and sediment traps. <i>Marine Chemistry</i> , <i>112</i> (3), 158–167.
366	https://doi.org/10.1016/j.marchem.2008.09.002
367	Belt, S. T., Smik, L., Brown, T. A., Kim, JH., Rowland, S. J., Allen, C. S., Gal, JK., Shin, K
368	H., Lee, J. I., & Taylor, K. W. R. (2016). Source identification and distribution reveals the
369	potential of the geochemical Antarctic sea ice proxy IPSO25. <i>Nature Communications</i> , 7,
370	12655. https://doi.org/10.1038/ncomms12655
371	Brown, T. (2011). <i>Production and preservation of the Arctic sea ice diatom biomarker IP25</i> ,
372	(Doctoral dissertation). Retrieved from PEARL. (http://hdl.handle.net/10026.1/314).
373	Plymouth: University of Plymouth.
374	Brown, T. A., Belt, S. T., Philippe, B., Mundy, C. J., Massé, G., Poulin, M., & Gosselin, M.
375	(2011). Temporal and vertical variations of lipid biomarkers during a bottom ice diatom
376	bloom in the Canadian Beaufort Sea: further evidence for the use of the IP25 biomarker as a
377	proxy for spring Arctic sea ice. <i>Polar Biology</i> , <i>34</i> (12), 1857–1868.
378	https://doi.org/10.1007/s00300-010-0942-5
379 380	Brown, T. A., Belt, S. T., Tatarek, A., & Mundy, C. J. (2014). Source identification of the Arctic sea ice proxy IP25. <i>Nature Communications</i> , <i>5</i> , 4197. https://doi.org/10.1038/ncomms5197
381	de Vernal, A., Gersonde, R., Goosse, H., Seidenkrantz, MS., & Wolff, E. W. (2013). Sea ice in
382	the paleoclimate system: the challenge of reconstructing sea ice from proxiesan
383	introduction. <i>Quaternary Science Reviews</i> , 79, 1–8.
384	https://www.sciencedirect.com/science/article/pii/S0277379113003089
385 386 387	Fahl, K., & Stein, R. (2012). Modern seasonal variability and deglacial/Holocene change of central Arctic Ocean sea-ice cover: New insights from biomarker proxy records. <i>Earth and</i> <i>Planetary Science Letters</i> , 351-352, 123–133. https://doi.org/10.1016/j.epsl.2012.07.009
388 389 390 391 392	 Feng, X., Vonk, J. E., van Dongen, B. E., Gustafsson, Ö., Semiletov, I. P., Dudarev, O. V., Wang, Z., Montluçon, D. B., Wacker, L., & Eglinton, T. I. (2013). Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, 110(35), 14168–14173. https://doi.org/10.1073/pnas.1307031110
393	Folk, R. L. (1968). Petrology of sedimentary rocks. Austin, Texas: Hemphill's.
394	Folk, R. L., & Ward, W. C. (1957). Brazos River bar; a study in the significance of grain size
395	parameters. <i>Journal of Sedimentary Research</i> , 27(1), 3–26.
396	https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
397 398	Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H.,

399	Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R.,
400	Zirizzotti, A. (2013). Bedmap2: improved ice bed, surface and thickness datasets for
401	Antarctica. <i>The Cryosphere</i> , 7, 375–393. https://doi.org/10.5194/tc-7-375-2013
402	Gow, A. J., Ackley, S. F., Weeks, W. F., & Govoni, J. W. (1982). Physical and Structural
403	Characteristics of Antarctic Sea Ice. <i>Annals of Glaciology</i> , <i>3</i> , 113–117.
404	https://doi.org/10.3189/S0260305500002627
405	Günther, S., & Dieckmann, G. S. (1999). Seasonal development of algal biomass in snow-
406	covered fast ice and the underlying platelet layer in the Weddell Sea, Antarctica. <i>Antarctic</i>
407	<i>Science / Blackwell Scientific Publications</i> , <i>11</i> (3), 305–315.
408	https://doi.org/10.1017/S0954102099000395
409	Han, Z., Hu, C., Sun, W., Zhao, J., Pan, J., Fan, G., & Zhang, H. (2019). Characteristics of
410	particle fluxes in the Prydz Bay polynya, Eastern Antarctica (in Chinese with English
411	abstract). SCIENCE CHINA Earth Sciences, 62(4), 657–670.
412	https://doi.org/10.1007/s11430-018-9285-6
413	Han, Z., Sun, W., Fan, G., Hu, C., Pan, J., Zhao, J., Zhang, H., Li, D., & Zhang, H. (2018).
414	Sinking particle fluxes during austral summer in the Prydz Bay polynya, Antarctica. <i>China</i>
415	<i>Environmental Science</i> , <i>38</i> (5), 1923–1934.
416 417 418 419	 Harris, P. T., Taylor, F., Pushina, Z., Leitchenkov, G., O'Brien, P. E., & Smirnov, V. (1998). Lithofacies distribution in relation to the geomorphic provinces of Prydz Bay, East Antarctica. Antarctic Science / Blackwell Scientific Publications, 10(3), 227–235. https://doi.org/10.1017/S0954102098000327
420	He, J., Chen, B., & Wu, K. (1998). Developing and Structural Characteristics of First-Year Sea
421	Ice and With Effects on Ice Alage Biomass of Zhongshan Station, East Antarctica. <i>Journal</i>
422	of Glaciology and Geocryology, 20(4), 358–367.
423 424 425 426	 Herraiz-Borreguero, L., Lannuzel, D., van der Merwe, P., Treverrow, A., & Pedro, J. B. (2016). Large flux of iron from the Amery Ice Shelf marine ice to Prydz Bay, East Antarctica: MARINE ICE IRON FERTILIZES PRYDZ BAY. <i>Journal of Geophysical Research, C:</i> <i>Oceans, 121</i>(8), 6009–6020. https://doi.org/10.1002/2016JC011687
427	Hu, C., Yao, M., Yu, P., Pan, J., & Zhang, H. (2007). Biogenic silica in surficial sediments of
428	Prydz Bay of the Southern Ocean (in Chinese with English abstract). Acta Oceanologica
429	Sinica, 29(5), 48–54. https://doi.org/10.3724/SP.J.1084.2013.00105
430	Kim, JH., Crosta, X., Michel, E., Schouten, S., Duprat, J., & Sinninghe Damsté, J. S. (2009).
431	Impact of lateral transport on organic proxies in the Southern Ocean. <i>Quaternary Research</i> ,
432	71(2), 246–250. https://doi.org/10.1016/j.yqres.2008.10.005
433	Lei, R., Li, Z., Cheng, B., Zhang, Z., & Heil, P. (2010). Annual cycle of landfast sea ice in Prydz
434	Bay, east Antarctica. <i>Journal of Geophysical Research</i> , <i>115</i> (C2), 161.
435	https://doi.org/10.1029/2008JC005223
436	Massé, G., Belt, S. T., Crosta, X., Schmidt, S., Snape, I., Thomas, D. N., & Rowland, S. J.
437	(2011). Highly branched isoprenoids as proxies for variable sea ice conditions in the
438	Southern Ocean. <i>Antarctic Science / Blackwell Scientific Publications</i> , 23(5), 487–498.
439	https://doi.org/10.1017/S0954102011000381

440	Mayer, L. M. (1994). Surface area control of organic carbon accumulation in continental shelf
441	sediments. <i>Geochimica et Cosmochimica Acta</i> , 58(4), 1271–1284.
442	https://doi.org/10.1016/0016-7037(94)90381-6
443	McCave, I. N., & Hall, I. R. (2006). Size sorting in marine muds: Processes, pitfalls, and
444	prospects for paleoflow-speed proxies. <i>Geochemistry, Geophysics, Geosystems</i> , 7(10),
445	Q10N05. https://doi.org/10.1029/2006GC001284
446	McMinn, A., Martin, A., & Ryan, K. (2010). Phytoplankton and sea ice algal biomass and
447	physiology during the transition between winter and spring (McMurdo Sound, Antarctica).
448	<i>Polar Biology</i> , <i>33</i> (11), 1547–1556. https://doi.org/10.1007/s00300-010-0844-6
449	Meehl, G. A., Arblaster, J. M., Chung, C. T. Y., Holland, M. M., DuVivier, A., Thompson, L.,
450	Yang, D., & Bitz, C. M. (2019). Sustained ocean changes contributed to sudden Antarctic
451	sea ice retreat in late 2016. <i>Nature Communications</i> , <i>10</i> (1), 14.
452	https://doi.org/10.1038/s41467-018-07865-9
453	Mollenhauer, G., McManus, J. F., Benthien, A., Müller, P. J., & Eglinton, T. I. (2006). Rapid
454	lateral particle transport in the Argentine Basin: Molecular 14C and 230Thxs evidence.
455	<i>Deep Sea Research Part I: Oceanographic Research Papers</i> , 53(7), 1224–1243.
456	https://doi.org/10.1016/j.dsr.2006.05.005
457	Müller, J., Massé, G., Stein, R., & Belt, S. T. (2009). Variability of sea-ice conditions in the
458	Fram Strait over the past 30,000 years. <i>Nature Geoscience</i> , 2(11), 772–776.
459	https://doi.org/10.1038/ngeo665
460	Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., & Lohmann, G. (2011). Towards
461	quantitative sea ice reconstructions in the northern North Atlantic: A combined biomarker
462	and numerical modelling approach. <i>Earth and Planetary Science Letters</i> , <i>306</i> (3), 137–148.
463	https://doi.org/10.1016/j.eps1.2011.04.011
464	Navarro-Rodriguez, A., Belt, S. T., Knies, J., & Brown, T. A. (2013). Mapping recent sea ice
465	conditions in the Barents Sea using the proxy biomarker IP25: implications for palaeo sea
466	ice reconstructions. <i>Quaternary Science Reviews</i> , 79, 26–39.
467	https://doi.org/10.1016/j.quascirev.2012.11.025
468	Nihashi, S., & Ohshima, K. I. (2015). Circumpolar Mapping of Antarctic Coastal Polynyas and
469	Landfast Sea Ice: Relationship and Variability. <i>Journal of Climate</i> , 28(9), 3650–3670.
470	https://doi.org/10.1175/JCLI-D-14-00369.1
471	Ohshima, K. I., Fukamachi, Y., Williams, G. D., Nihashi, S., Roquet, F., Kitade, Y., Tamura, T.,
472	Hirano, D., Herraiz-Borreguero, L., Field, I., Hindell, M., Aoki, S., & Wakatsuchi, M.
473	(2013). Antarctic Bottom Water production by intense sea-ice formation in the Cape
474	Darnley polynya. <i>Nature Geoscience</i> , 6(3), 235–240. https://doi.org/10.1038/ngeo1738
475	Parkinson, C. L. (2019). A 40-y record reveals gradual Antarctic sea ice increases followed by
476	decreases at rates far exceeding the rates seen in the Arctic. <i>Proceedings of the National</i>
477	<i>Academy of Sciences of the United States of America</i> , <i>116</i> (29), 14414–14423.
478	https://doi.org/10.1073/pnas.1906556116
479	Prodger, S., Russell, P., Davidson, M., Miles, J., & Scott, T. (2016). Understanding and
480	predicting the temporal variability of sediment grain size characteristics on high-energy
481	beaches. <i>Marine Geology</i> , 376, 109–117. https://doi.org/10.1016/j.margeo.2016.04.003

482	Rampen, S. W., Abbas, B. A., Schouten, S., & Sinninghe Damste, J. S. (2010). A comprehensive
483	study of sterols in marine diatoms (Bacillariophyta): Implications for their use as tracers for
484	diatom productivity. <i>Limnology and Oceanography</i> , 55(1), 91–105.
485	https://doi.org/10.4319/lo.2010.55.1.0091
486	Riaux-Gobin, C., Poulin, M., Prodon, R., & Treguer, P. (2003). Land-fast ice microalgal and
487	phytoplanktonic communities (Adélie Land, Antarctica) in relation to environmental factors
488	during ice break-up. <i>Antarctic Science / Blackwell Scientific Publications</i> , <i>15</i> (3), 353–364.
489	https://doi.org/10.1017/S0954102003001378
490	Riebesell, U., Schloss, I., & Smetacek, V. (1991). Aggregation of algae released from melting
491	sea ice: implications for seeding and sedimentation. <i>Polar Biology</i> , <i>11</i> (4), 239–248.
492	https://doi.org/10.1007/BF00238457
493	Rontani, JF., Belt, S. T., Vaultier, F., & Brown, T. A. (2011). Visible light induced photo-
494	oxidation of highly branched isoprenoid (HBI) alkenes: Significant dependence on the
495	number and nature of double bonds. <i>Organic Geochemistry</i> , 42(7), 812–822.
496	https://doi.org/10.1016/j.orggeochem.2011.04.013
497	Rontani, JF., Smik, L., Belt, S. T., Vaultier, F., Armbrecht, L., Leventer, A., & Armand, L. K.
498	(2019). Abiotic degradation of highly branched isoprenoid alkenes and other lipids in the
499	water column off East Antarctica. <i>Marine Chemistry</i> , 210, 34–47.
500	https://doi.org/10.1016/j.marchem.2019.02.004
501	Saggiomo, M., Poulin, M., Mangoni, O., Lazzara, L., De Stefano, M., Sarno, D., & Zingone, A.
502	(2017). Spring-time dynamics of diatom communities in landfast and underlying platelet ice
503	in Terra Nova Bay, Ross Sea, Antarctica. <i>Journal of Marine Systems</i> , <i>166</i> , 26–36.
504	https://doi.org/10.1016/j.jmarsys.2016.06.007
505	Schumacher, B. A. (2002). <i>Methods for the determination of total organic carbon (TOC) in soils</i>
506	<i>and sediments</i> . U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-
507	02/069 (NTIS PB2003-100822), 2002.
508	Scott, P., McMinn, A., & Hosie, G. (1994). Physical parameters influencing diatom community
509	structure in eastern Antarctic sea ice. <i>Polar Biology</i> , <i>14</i> (8), 507–517.
510	https://doi.org/10.1007/BF00238220
511	Smik, L. (2016). <i>Development of biomarker-based proxies for paleo sea-ice reconstructions</i>
512	(Doctoral dissertation). Retrieved from PEARL. (http://hdl.handle.net/10026.1/8169).
513	Plymouth: University of Plymouth.
514	Smik, L., Belt, S. T., Lieser, J. L., Armand, L. K., & Leventer, A. (2016). Distributions of highly
515	branched isoprenoid alkenes and other algal lipids in surface waters from East Antarctica:
516	Further insights for biomarker-based paleo sea-ice reconstruction. <i>Organic Geochemistry</i> ,
517	95, 71–80. https://doi.org/10.1016/j.orggeochem.2016.02.011
518	Spreen, G., Kaleschke, L., & Heygster, G. (2008). Sea ice remote sensing using AMSR-E 89-
519	GHz channels. <i>Journal of Geophysical Research, C: Oceans, 113</i> (C2).
520	https://doi.org/10.1029/2005JC003384
521	Stein, R., Fahl, K., Schreck, M., Knorr, G., Niessen, F., Forwick, M., Gebhardt, C., Jensen, L.,
522	Kaminski, M., Kopf, A., Matthiessen, J., Jokat, W., & Lohmann, G. (2016). Evidence for

523 524	ice-free summers in the late Miocene central Arctic Ocean. <i>Nature Communications</i> , 7, <u>11148. https://doi.org/10.1038/ncomms11148</u>
525	Stephens, B. B., & Keeling, R. F. (2000). The influence of Antarctic sea ice on glacial-
526	interglacial CO2 variations. <i>Nature</i> , 404(6774), 171–174. https://doi.org/10.1038/35004556
527	Sun, J., Liu, D., Ning, X., & Liu, C. (2003). Phytoplankton in the Prydz Bay and the adjacent
528	indian sector of the southern ocean during the austral summer 2001/2012 (in Chinese with
529	English abstract). <i>Oceanologia et Limnologia Sinica</i> , 34(5), 519–532.
530	https://doi.org/10.11693/hyhz200305007007
531	Sun, W., Han, Z., Hu, C., & Pan, J. (2016). Source composition and seasonal variation of
532	particulate trace element fluxes in Prydz Bay, East Antarctica. <i>Chemosphere</i> , 147, 318–327.
533	https://doi.org/10.1016/j.chemosphere.2015.12.105
534 535 536	Taylor, F., McMinn, A., & Franklin, D. (1997). Distribution of diatoms in surface sediments ofPrydz Bay, Antarctica. Marine Micropaleontology, 32(3-4), 209–229.https://doi.org/10.1016/S0377-8398(97)00021-2
537	Thomas, D. N. (2017). Sea Ice. John Wiley & Sons.
538	Van der Jagt, H., Friese, C., & Stuut, J. B. W. (2018). The ballasting effect of Saharan dust
539	deposition on aggregate dynamics and carbon export: Aggregation, settling, and scavenging
540	potential of marine snow. <i>Limnol. Oceanogr.</i> , 63(3), 1386–1394.
541	https://doi.org/10.1002/lno.10779
542	Vorrath, ME., Müller, J., Esper, O., Mollenhauer, G., Haas, C., Schefuß, E., & Fahl, K. (2019).
543	<u>Highly branched isoprenoids for Southern Ocean sea ice reconstructions: a pilot study from</u>
544	the Western Antarctic Peninsula. <i>Biogeosciences</i> , <i>16</i> (15), 2961–2981.
545	<u>https://doi.org/10.5194/bg-16-2961-2019</u>
546	Wang, H., Chen, Z., Wang, C., Liu, H., Zhao, R., Tang, Z., & Huang, Y. (2015). Characteristics
547	of grain size in surface sediments from the continental shelf, Prydz Bay, and implications
548	for sedimentary environment (in Chinese with English abstract). <i>Chinese Journal of Polar</i>
549	<i>research/Jidi Yanjiu</i> , 27(4), 421–428. https://doi.org/10.13679/j.jdyj.2015.4.421
550	Williams, G. D., Herraiz-Borreguero, L., Roquet, F., Tamura, T., Ohshima, K. I., Fukamachi, Y.,
551	Fraser, A. D., Gao, L., Chen, H., McMahon, C. R., Harcourt, R., & Hindell, M. (2016). The
552	suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay.
553	<i>Nature Communications</i> , <i>7</i> , 12577. https://doi.org/10.1038/ncomms12577
554	Yoon, H. I., Park, BK., Domack, E. W., & Kim, Y. (1998). Distribution and dispersal pattern of
555	suspended particulate matter in Maxwell Bay and its tributary, Marian Cove, in the South
556	Shetland Islands, West Antarctica. <i>Marine Geology</i> , <i>152</i> (4), 261–275.
557	https://doi.org/10.1016/S0025-3227(98)00098-X
558	Yu, P., Hu, C., Liu, X., Pan, J., & Zhang, H. (2009). Modern sedimentation rates in Prydz Bay,
559	Antarctic (in Chinese with English abstract). <i>Acta Sedimentologica Sinica</i> , 27(6), 1172–
560	1177.
561	Zheng, S. (2011). <i>Effects of sea ice and ice shelf on the ocean processes in Prydz Bay, Antarctica</i>
562	(in Chinese with English abstract; Doctoral dissertation). Retrieved from CNKI.
563	(https://cnki.net/lunwen-1011231298.html). Qindao: Ocean University of China.

Table 1. Average of the TOC, Mz, sorting, biomarker data, and satellite-derived austral summer and spring SIC in areas with different
 sea ice conditions.

	TOC	Sorting	Mean Size	Brassicasterol	HBI III	IPSO ₂₅	P _B IPSO ₂₅	SIC _{Spr}	SIC _{Sum}
	(%)	(φ)	(φ)	$(\mu g/g \text{ OC})$	(ng/g OC)	(ng/g OC)	(c=0.0031)	%	%
Fast ice zone	1.04 ± 0.84	1.88 ± 0.41	4.92±1.63	87.87±32.21	578.58±281.23	791.13±384.58	0.74 ± 0.07	47.48±19.37	47.48±19.37
Non-fast ice zone	0.90 ± 0.40	2.14±0.43	5.37±1.08	98.70±96.63	174.98±194.34	179.49±200.02	0.34±0.18	27.00±12.90	27.00±12.90