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Abstract

The COVID19 pandemic led to dramatic changes in economic activity in 2020. We use estimates of emissions changes for

2020 in two Earth System Models (ESMs) to simulate the impacts of the COVID19 economic changes. Ensembles of nudged

simulations are used to separate small signals from meteorological variability. Reductions in aerosol and precursor emissions,

chiefly Black Carbon (BC) and sulfate (SO$ 4$), led to reductions in total anthropogenic aerosol cooling through aerosol-cloud

interactions. The average overall Effective Radiative Forcing (ERF) peaks at +0.29$\pm$0.15 Wm$ˆ{-2}$ in spring 2020.

Changes in cloud properties are smaller than observed changes during 2020. Impacts of these changes on regional land surface

temperature range up to +0.3K. The peak impact of these aerosol changes on global surface temperature is very small (+0.03K).

However, the aerosol changes are the largest contribution to COVID19 emissions induced radiative forcing and temperature

changes, dominating ozone, CO$ 2$ and contrail effects.
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Key Points:9

• COVID19 induced lockdowns significantly altered emissions of aerosols, leading10

to simulated changes in cloud properties in two Earth System Models11

• Aerosol Cloud Interactions from reduced emissions result in significant increases12

in radiative forcing, up to +0.29±0.15 Wm−2
13

• Aerosol radiative forcing reductions are the largest contributor to surface temper-14

ature changes15
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Abstract16

The COVID19 pandemic led to dramatic changes in economic activity in 2020. We use17

estimates of emissions changes for 2020 in two Earth System Models (ESMs) to simu-18

late the impacts of the COVID19 economic changes. Ensembles of nudged simulations19

are used to separate small signals from meteorological variability. Reductions in aerosol20

and precursor emissions, chiefly Black Carbon (BC) and sulfate (SO4), led to reductions21

in total anthropogenic aerosol cooling through aerosol-cloud interactions. The average22

overall Effective Radiative Forcing (ERF) peaks at +0.29±0.15 Wm−2 in spring 2020.23

Changes in cloud properties are smaller than observed changes during 2020. Impacts of24

these changes on regional land surface temperature range up to +0.3K. The peak im-25

pact of these aerosol changes on global surface temperature is very small (+0.03K). How-26

ever, the aerosol changes are the largest contribution to COVID19 emissions induced ra-27

diative forcing and temperature changes, dominating ozone, CO2 and contrail effects.28

Plain Language Summary29

The COVID19 pandemic has changed emissions of gases and particulates that af-30

fect climate. In general, human emissions of particles cool the planet by scattering away31

sunlight in the clear sky and by making clouds brighter to reflect sunlight away from the32

earth. This paper focuses on understanding how changes to emissions of particulates (aerosols)33

affect climate. We use estimates of emissions changes for 2020 in two climate models to34

simulate the impacts of the COVID19 induced emission changes. We tightly constrain35

the models by forcing the winds to match observed winds for 2020. COVID induced lock-36

downs led to reductions in aerosol and precursor emissions, chiefly soot or Black Car-37

bon (BC) and sulfate (SO4). This is found to reduce the human caused aerosol cooling:38

creating a small net warming effect on the earth in spring 2020. Changes in cloud prop-39

erties are smaller than observed changes during 2020. The impact of these changes on40

regional land surface temperature is small (maximum +0.3K). The impact of aerosol changes41

on global surface temperature is very small and lasts over several years. However, the42

aerosol changes are the largest contribution to COVID emissions induced radiative forc-43

ing and temperature changes, dominating ozone, CO2 and contrail effects.44

1 Introduction45

The COVID-19 pandemic resulted in ‘lockdowns’ worldwide in the first half of 2020.46

These changes to the global economy and movement of people changed fossil fuel and47

transport use (IEA, 2020), altering CO2 emissions, as well as emissions of aerosols and48

aerosol precursors (Le Quéré et al., 2020). Observations confirm that these changes had49

impacts on the atmosphere. There were regional changes in industrial emissions (R. Zhang50

et al., 2020) and pollutant levels dropped (Venter et al., 2020), even accounting for me-51

teorology (Goldberg et al., 2020). Aerosol optical depth was reduced (Diamond & Wood,52

2020). Some regions however may have experienced more pollution (Le et al., 2020) due53

to complex chemical buffering and meteorology. The changes to fossil fuel use and trans-54

port impacted anthropogenic aerosols like Black Carbon (BC, colloquially ‘soot’) and55

sulfate (SO4). Forster et al. (2020) extended emissions estimates from Le Quéré et al.56

(2020) using Google mobility data to generate a nearly worldwide dataset of emissions57

reductions.58

BC and SO4 aerosols are important for climate (Bellouin et al., 2020), both for di-59

rect scattering (SO4) and absorption (BC) of radiation, as well as for their indirect ef-60

fect on clouds. Aerosols act as Cloud Condensation Nuclei (CCN) and are locations for61

nucleating liquid drops and ice crystals. Decreases in aerosols would tend to result in fewer62

cloud drops (Twomey, 1977), which would result in dimmer low clouds, and more ab-63

sorption of radiation (warming). Decreases in drop numbers and increases in drop size64

further affect cloud microphysics potentially increasing precipitation and altering cloud65
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lifetime (Albrecht, 1989). Any reduction of anthropogenic aerosols would reverse their66

effect on cooling the planet from anthropogenic emissions over the industrial era (Bel-67

louin et al., 2020). Yang et al. (2020) note simulated increases in surface temperature68

as a result of aerosol reductions. Diamond & Wood (2020) looked at initial results form69

early lockdowns in China on aerosols and found small and not very significant changes70

in cloud microphysics. Weber et al. (2020) also found limited effects of hypothesized changes71

in emissions with a chemical model.72

In this study we use estimates of emissions changes based on observations and fo-73

cus particularly on Effective Radiative Forcing (ERF) due to aerosols: Direct Aerosol74

Radiation Interactions (ERFARI) and indirect Aerosol Cloud Interactions (ERFACI).75

To explore these questions we use a constrained configuration of two Earth System Mod-76

els focusing on the atmosphere, which can also tell us something about temperature changes,77

at least over land.78

Our hypothesis is that we can use constrained models nudged to meteorology to79

reduce noise and get detectable signals. We further hypothesize that the signal will be80

small, or not significant in many (most) regions, and the magnitude of the physical sig-81

nals can be compared to observations. We hypothesize that the reduction of aerosols may82

be detectable, and may generate a positive Effective Radiative Forcing (ERF) from re-83

ductions in aerosols. Depending on regime and location, this may affect surface temper-84

ature and temperature extremes in 2020, and even precipitation. The integrated effect85

of these ERF changes over time may also be detectable on surface temperature. The changes86

in GHG emissions (CO2, CH4) are expected to be on the order of 20% (IEA, 2020), which87

is small on the short term ERF, but may be detectable on longer timescales. For a com-88

parison of the impact between short and long term ERF we will use climate model em-89

ulator estimates to understand the impacts on ERF and surface temperature.90

Methods are described in Section 2, Results are divided into specific effects of aerosols91

leading to changes in ERF (Section 3) and subsequent effects on climate (Section 4). Con-92

clusions are in Section 5.93

2 Methods94

2.1 Models95

We perform simulations with two different ESMs. One is the Community Earth96

System Model version 2 (CESM2), (Danabasoglu et al., 2020). The atmospheric model97

in CESM is the Community Atmosphere Model version 6 (CAM6), described by Get-98

telman et al. (2020). CAM6 features a detailed 2-moment cloud microphysics scheme (Get-99

telman & Morrison, 2015) coupled to an aerosol microphysics and chemistry model (Liu100

et al., 2016), as detailed in Gettelman et al. (2019). We also perform simulations with101

the ECHAM6.3–HAM2.3 model (Neubauer et al., 2019), which couples the HAM aerosol102

module (K. Zhang et al., 2012; Stier et al., 2005) to the ECHAM6 atmospheric general103

circulation model (Stevens et al., 2013) and also uses a 2 moment cloud microphysics scheme104

(Lohmann & Neubauer, 2018).105

2.2 Simulation and Emissions106

For CESM we use the standard resolution (∼1◦ horizontal resolution, 32 levels to107

3hPa), in a nudged configuration as described by Gettelman et al. (2020). The model108

timestep is 1800s. Winds, Sea Surface Temperatures (SST) and temperatures are relaxed109

to NASA Modern-Era Retrospective analysis for Research and Applications, version 2110

(MERRA2) (Molod et al., 2015), available every 6 hours. The system is run with spec-111

ified (nudged SSTs), but an interactive land surface model (the Community Land Model112

version 5 in CESM2, Danabasoglu et al. (2020)). Simulations are spun up for the year113
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2019, and then 20 ensemble members are launched from January 1, 2020 to August 31,114

2020, with a small round off perturbation (10−10K) to temperature. The perturbation115

generates a slightly different evolution of the atmosphere in each ensemble member. Nudg-116

ing keeps the atmosphere in a similar state, but the perturbation samples the random117

noise within that state, and enables estimates of the statistical significance of differences.118

Statistical significance is defined using the False Discovery Rate (FDR) method of Wilks119

(2006), which reduces patterned noise.120

ECHAM-HAM simulations are run over the same period with ∼2◦ horizontal res-121

olution and 47 levels to 0.01hPa. These simulations used climatological SSTs and are122

nudged to the ERA5 (Hersbach et al., 2020) meteorological winds, but not atmospheric123

temperatures. The same emissions scenario (from Forster et al. (2020)) is run as for CESM124

using monthly emissions. An ensemble of 17 members is similarly created with small ini-125

tial perturbations. The ECHAM-HAM simulation set up is most similar to the CESM126

‘NoT’ ensemble described below.127

We use the Shared Socioeconomic Pathway (SSP) 245 as the ‘control’ simulation128

without effects of emissions changes due to COVID-19. We then apply the 2020 sector129

activity estimates from the methods of Forster et al. (2020) to SSP2-4.5 gridded emis-130

sions data. Emissions data are available as monthly (https://doi.org/10.5281/zenodo.3957826)131

and daily (https://doi.org/10.5281/zenodo.3952959) averages. Daily averages are a run-132

ning 7 day mean to remove any day-of-week effects. ECHAM-HAM and the CESM ‘COVID-133

19’ scenario use monthly averages. We generate ensembles of simulations for both con-134

trol and COVID-19 perturbations.135

Several sets (ensembles) of simulations are run in CESM with the same nudging136

methodology to understand sensitivity to the methodological choices in setting up the137

simulations. The ‘COVID-19’ ensemble uses monthly data and nudged winds and tem-138

peratures (the same as the ECHAM-HAM ensemble). Additionally, for CESM, we ad-139

just the simulations with two sets of additional simulations (20 ensemble members for140

both the control and perturbation). The ‘NoT’ ensembles (Control and COVID emis-141

sions) are run without nudging temperatures (but still nudging SST). The ‘NoT’ ensem-142

bles enable an assessment of changes in vertical temperature structure and surface tem-143

perature over land, and are most similar to the ECHAM-HAM ensemble. We also per-144

form a CESM ensemble with daily instead of monthly emissions (‘Daily’). Since lock-145

downs were sudden and varied in different countries, as well as because meteorology might146

be correlated with emissions, this might yield different answers.147

These simulations allow a fast temperature adjustment. The ECHAM-HAM and148

CESM ‘NoT’ ensembles allow more freedom for temperature adjustment. The resulting149

perturbations in radiative fluxes are thus an Effective Radiative Forcing (ERF) and we150

will refer to them that way. Our goal is to define the ERF produced from the hypoth-151

esized emissions changes. Finally, we will use the FaIR model (Smith et al., 2018) as ap-152

plied by Forster et al. (2020) to turn the monthly ERF into a hypothesized surface tem-153

perature change. This study differs from previous work by Yang et al. (2020) by using154

an updated modeling framework, with ensemble statistics, multiple ESMs and with a more155

extensive sampling period and emissions reductions, as well as a more comprehensive look156

at surface temperatures.157

3 Results: Aerosol Effective Radiative Forcing158

Figure 1 illustrates the zonal mean perturbation in aerosols as a result of the COVID159

lockdowns. The shading shows the standard deviation of the ensemble members for each160

of 4 ensembles (3 from CESM and one from ECHAM-HAM). The variability around the161

ensemble mean is much larger without temperature nudging, as expected. The changes162

in Aerosol Optical Depth (Figure 1A) are significant, driven mostly by sulfate (Figure 1B)163
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and Black Carbon (BC) changes (Figure 1C). ECHAM-HAM simulations (Figure 1, red164

line) have similar structure to CESM (compare to the NoT simulation, blue in Figure 1).165

ECHAM-HAM has higher AOD changes in the sub-tropics (Figure 1A), driven by BC166

(Figure 1C) with less difference in sulfate burden (Figure 1B). Differences result from167

reductions in Northern India and Eastern China (see Figure S1 and S2). There are small168

but significant changes in some latitudes in clearsky net shortwave fluxes in both mod-169

els (Figure 1D) representing the direct effect of aerosols. These come from increases (warm-170

ing) due to reductions in sulfate and cooling due to reductions in BC. There is little sig-171

nificant change in zonal mean shortwave Cloud Radiative Effects (SW CRE) in March172

(Figure 1E), with a reduction seen in Liquid Water Path (LWP) (Figure 1F) in both mod-173

els, mostly due to reduced drop number (Figure 1G), at nearly constant drop size (not174

shown). The net effect results in small increases in Top Of Atmosphere (TOA) net ra-175

diation flux (Figure 1H). March is the month that the lockdowns began outside of China,176

and simulations with daily emissions (COVID Daily) show significant differences in sul-177

fate and BC from the ensemble with monthly mean emissions since the changes happened178

towards the end of March 2020. Other months show little difference between daily and179

monthly emissions simulations.180

Most lockdowns outside of China occurred between March and June 2020. Figure 2181

shows the global monthly mean evolution of the quantities from Figure 1. Shading in-182

dicates one standard deviation of global means across each ensemble. Note that the ECHAM-183

HAM and CESM ‘NoT’ ensembles have the highest variance because they do not nudge184

temperature. Figure 1 illustrates the increase in reductions until May, and then the be-185

ginning of a recovery in June 2020. ECHAM-HAM simulations were 7 months, CESM186

simulation 8 months. Daily emissions (Green) only differ substantially in March. The187

evolution of the fields is consistent with the zonal mean picture: reductions in aerosols188

(Figure 2A), driven by sulfate (Figure 2B) and black carbon (Figure 2C), yield an in-189

crease in clearsky flux of up to 0.1 Wm−2 globally in May. Sulfate burden differences190

are lower in ECHAM-HAM, but most other quantities are consistent between models.191

Large ECHAM-HAM AOD variance in June 2020 is due to dust storms in some ensem-192

ble members. There are changes in SW Cloud Radiative Effect (Figure 2E) peaking in193

April and May, driven by decreases in LWP (Figure 2F), decreases in Cloud Drop num-194

ber (Figure 2G) and resulting in a combined Top Of Atmosphere (TOA) flux averaged195

over April–June 2020 in the two ESMs without temperature nudging of +0.29±0.15Wm−2
196

(Figure 2H). The uncertainty is 2 standard deviations around the ensemble mean for the197

ensembles without temperature nudging (Blue for CESM and Red for ECHAM in Fig-198

ure 2). Figure 3A shows the pattern of TOA changes for May, which are significant only199

in isolated regions over land and ocean North of 45◦N latitude in the CESM ensemble.200

ECHAM-HAM has a larger global mean perturbation to cloud drop number, consistent201

with Figure 1.202

The spatial distribution and significance of these changes is illustrated in Supple-203

mentary Figure S1 for CESM with temperature nudging and Supplementary Figure S2204

for ECHAM-HAM without temperature nudging. Aerosol changes are significant in most205

regions for both models, and clearsky flux differences are significant over most of the North-206

ern Hemisphere in both models. Liquid water path, cloud drop number and cloud forc-207

ing changes are significant over mid and high latitudes of the northern hemisphere in CESM,208

and there are also some significant differences over the S. Hemisphere sub-tropics and209

Mid-latitudes for liquid water path and cloud drop number when temperatures are nudged210

(Figure S1) in CESM. This likely results from changes in human and industrial emis-211

sions in the S. Hemisphere. TOA flux differences are significant over higher latitudes of212

the N. Hemisphere with temperature nudging, with lots of noise in the tropics. There213

is little TOA flux change in the S. Hemisphere, likely because of reduced solar insola-214

tion in May heading into S. Hemisphere winter. As expected, there is more significance215

to TOA fluxes in CESM with temperature nudging (Figure S1 H) than without (Fig-216

ure 3A).217
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Figure 1. Zonal mean perturbations as a result of the COVID19 lockdowns averaged over

March 2020. Shading shows the standard deviation of the ensemble members and solid line is the

mean. CESM COVID ensemble (COVID, orange), no temperature nudging (COVID NoT, blue),

daily emissions with temperature nudging (COVID Daily, green) and ECHAM-HAM simulations

without temperature nudging (ECHAM-HAM, red). A) Aerosol Optical Depth , B) Total Col-

umn Sulfate (SO4), C) Total Column Black Carbon (BC), D) Clear sky Net SW Flux at TOA,

E) SW Cloud Radiative Effect (CRE), F) Liquid Water Path (LWP), G) Cloud Top Number

Concentration and H) Net TOA Radiation Difference.
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Figure 2. Monthly global mean timeseries of differences due to COVID19 lockdowns. COVID

ensemble (COVID, orange), no temperature nudging (COVID NoT, blue), daily emissions with

temperature nudging (COVID Daily, green) and ECHAM-HAM simulations (ECHAM-HAM,

red). A) Aerosol Optical Depth , B) Total Column Sulfate (SO4), C) Total Column Black Car-

bon (BC), D) Clear sky Net SW Flux at TOA, E) SW Cloud Radiative Effect (CRE), F) Liquid

Water Path (LWP), G) Cloud Top Number Concentration and H) Net TOA Radiation Differ-

ence. Shading indicates one standard deviation of global means across the ensembles.
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Figure 3. May 2020 simulated climate changes as the difference between COVID-19 and

Control ensemble means without temperature nudging for A,C) Net TOA Radiation, B,D) Av-

erage Surface Temperature. A,B) CESM NoT ensemble C,D) ECHAM-HAM ensemble. Stippled

regions are significant differences using an FDR test at 90% confidence.

How do these changes compare to satellite observations? Diamond & Wood (2020)218

attempted to estimate changes over China in February 2020 using observations, and found219

no significance for changes in AOD on the order of ±0.2 and cloud drop radius changes220

of ±2 microns. Supplementary Figure S3 illustrates that simulated changes due to emis-221

sions would only be on the order of -0.05 AOD (significant) and +0.1 micron for effec-222

tive radius (mostly not significant over China in February). Thus simulated changes of223

the magnitude found here cannot be ruled out by observations given the large internal224

variability due to meteorology.225

4 Results: Climate Impacts226

Next we look at climate impacts of the emissions reductions. The reduction in aerosols227

causes a dimming of clouds and reduced clear sky scattering, leading to a net absorp-228

tion of radiation. This extends all the way to the surface. The short nudged simulations229

do not allow for a full climate response, but we can examine the radiative impacts in the230

atmosphere and the land surface in simulations without temperature nudging. The ocean231

surface temperature is fixed, but the land surface, and surface temperature over sea ice232

will respond to radiative and surface fluxes.233

Figure 3 shows surface climate differences resulting from the COVID emissions changes234

in the ensembles without temperature changes for May, the month of peak radiative ef-235

fect. Figure 3A,B are from the CESM NoT ensemble, while Figure 3C,D are from ECHAM-236

HAM (also without temperature nudging). Figure 3A,C show the net TOA radiative ef-237

fect pattern, with moderate warming (not significant) over most N. Hemisphere land re-238

gions, and a noisy pattern in the tropics. Figure 3B,D show the mean surface temper-239

ature. Over the region from 45-60◦N there is significant warming of on the order of +0.3240

K. It is largest over the US and Russia, where it reaches +0.3K in CESM (Figure 3C),241

slightly less in ECHAM-HAM (Figure 3D).242

For CESM, we have also examined the minimum and maximum temperature over243

the month of May (defined as the highest and lowest temperature found that month) and244

found the differences (not shown) are very similar to the mean temperature change, in-245

dicating no substantially different changes in temperature extremes.246
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The vertical structure of temperature (Figure S4), illustrates that over most regions247

examined there is warming at the surface or in the lower troposphere, generally below248

clouds that reflect radiation, and cooling in the upper troposphere (∼200hPa). Temper-249

ature changes aloft are larger than those at the surface. The mid troposphere cools over250

India due to reductions in BC (Figure S1 C) reducing absorption, while the reduction251

of scattering from sulfate and sulfate effects on clouds near the surface may be contribut-252

ing to warming through more penetration of solar radiation to the surface. These changes253

do not seem to have significant effects on precipitation, either by the decrease in stabil-254

ity (which would perhaps increase regional precipitation) or through increases in the sur-255

face radiation (which could increase total regional surface fluxes and increase precipi-256

tation).257

Simulations with fixed meteorology are not able to ascertain whether there would258

have been circulation effects due to the radiative changes. However, they are able to quan-259

tify an ERF (Figure 2H) and fast response surface temperature changes over land (Fig-260

ure 3B,D) due to aerosol perturbations.261

4.1 FaIR Model Temperature Effects262

To understand the medium to long term effects of the temperature changes and the263

relative magnitude of the Aerosol ERF due to COVID emissions changes, we use the FaIR264

climate model emulator version 1.5 (Smith et al., 2018), updating the aerosol ERF used265

in Forster et al. (2020). The FaIR model was set up to represent the response expected266

from the latest generation of climate models. The ERF for tropospheric ozone (O3), CO2267

and contrails are taken from Forster et al. (2020) and the Aerosol ERF is updated from268

this study using the CESM ERF as indicated in Figure 2H. After August the Aerosol269

ERF is reduced to 66% of the June value for two years and then ramps to zero over 2022,270

assuming it takes a while for the world’s emissions to return to normal. Given the sim-271

ilarity of the ECHAM-HAM ERF, we expect results to be very similar.272

FaIR model simulations indicate that the aerosol ERF dominates over other COVID273

ERF perturbations, and that this produces the largest temperature response, far out-274

stripping cooling effects due to contrail, O3 and CO2 reductions. The CESM or ECHAM-275

HAM simulated aerosol ERF (Figure 2H) is larger than that assumed by Forster et al.276

(2020) (Figure 4C). The peak impact on global temperature would not be felt until 2022.277

The global estimate is quite small, but the regional temperature perturbations estimated278

here may be larger by a factor of 10 (Figure 3).279

5 Discussion and Conclusions280

In this work we have estimated the effects of COVID19 emissions changes in 2020.281

We use two ESMs with similar complexity of their cloud and aerosol schemes, but very282

different implementations. The two models, CESM and ECHAM-HAM, yield very sim-283

ilar quantitative responses to the same emissions perturbations. The unique aspect of284

this study is we use simulations constrained by actual meteorology over 2020 to remove285

the effects of meteorological noise from the simulations. This results in the ability to find286

statistically significant changes much smaller than could be seen in observations (Dia-287

mond & Wood, 2020), and differs in that regard from previous work. The limitation of288

the study is to use one set of emissions perturbation estimates from Forster et al. (2020),289

though that estimate has been compared to observations.290

In CESM, we assess several different approaches to the simulations. We look at whether291

including daily varying emissions matters for a tighter correlation with meteorology. This292

only seems to matter in March 2020 when the largest gradients occur. We also looked293

at the impact of nudging or not nudging temperature. Nudging temperature reduces the294

variance across the ensemble, with little change in mean properties.295
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Figure 4. FaIR model estimates of (A,C) Effective Radiative forcing and (B,D) component

temperature response for aerosols. Tropospheric ozone (purple), CO2 (orange), Contrails (red)

and Total (blue) from Forster et al. (2020). A,B use aerosol ERF from Figure 2, C, D use the

Aerosol ERF from Forster et al. (2020). O3, CO2 and contrails are updated from Forster et al.

(2020).
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Significant changes in simulated aerosol emissions lead to reductions in total an-296

thropogenic aerosol cooling through aerosol-cloud interactions in the simulations. Cloud297

drop numbers were reduced in the simulations and liquid water path decreases. This leads298

to a dimming of clouds and a net warming effect. The combined average ERF peaks at299

+0.29±0.15 Wm−2 in April–June 2020. The total anthropogenic ERF of these two mod-300

els is on the higher end of estimates of Bellouin et al. (2020), on the order of -1.3Wm−2
301

for ECHAM-HAM and -1.7Wm−2 for CESM Gettelman et al. (2019). The 20% differ-302

ence in total anthropogenic aerosol ERF is consistent with slightly smaller differences303

in ECHAM (Figure 2H).304

Though the simulations use fixed ocean temperatures, surface temperature over land305

can vary. Accordingly, the fast radiative response from clouds and aerosols does cause306

regional changes in surface temperature on the order of +0.3K, mostly at higher north-307

ern hemisphere latitudes. However, this result does not account for all the earth system308

dynamics or the slower response as the ocean interacts with radiation. To assess the longer309

term response but limit noise, we put the aerosol ERF derived here into the FaIR model310

estimates from Forster et al. (2020). The aerosol ERF estimates are larger than in Forster311

et al. (2020). The impact of these aerosol changes on global surface temperature is es-312

timated to be very small (+0.03K peak) and transient over several years. However, the313

aerosol changes are the largest contribution to COVID emissions induced radiative forc-314

ing and temperature changes, dominating ozone, CO2 and contrail cooling effects.315

We have sampled uncertainty over climate noise with ensembles and with respect316

to different ESM formulations of aerosols and clouds. Further work should be done to317

extend these records and to sample uncertainties in emissions changes as more data be-318

come available.319
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