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Abstract

Precipitation flag (precipitating or not; stratiform or convective) is a key parameter for us to make betterretrieval of precipita-
tion characteristics as well as to understand the cloud-precipitation physicalprocesses. The Global Precipitation Measurement
(GPM) Core Observatory’s Microwave Imager (GMI)and Dual-Frequency Precipitation Radar (DPR) together provide ample
information on globalprecipitation characteristics. As an active sensor in particular, DPR provides an accurate precipitation-
flag assignment, while passive sensors like GMI were traditionally believed not to be able to tell apartprecipitation types.
Using collocated precipitation flag assignment from DPR as the “truth”, this project employs machinelearning models to train
and test the predictability and accuracy of using passive GMI-only observationstogether with ancillary atmosphere informa-
tion from reanalysis. Precipitation types are classified intothe following classes: convective, stratiform, convective-stratiform
mixed, no precipitation, and otherprecipitation. Sub-sampling with different probabilities is employed to construct a balanced
trainingdataset. A variety of classification algorithms are tested, including Support Vector Machines, NaiveBayes, Random
Forests, Gradient Boosting, and Neural Networks (Multilayer Perceptron Network), andtheir results are evaluated and com-
pared. The trained model has ~ 85% of prediction accuracy for everytype of precipitation. High-frequency channels (166 GHz
and 183 GHz channels) and 166 GHzpolarization difference are found among the most important factors that contribute to the

modelperformance, which shed light on future instrument channel selection.
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BACKGROUND
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Figure 1. Details of GPM Core Observatory Scan; light-blue is GMI scan and green is DPR scan

NASA's Global Precipitation Measurement (GPM) mission's Core Observatory Satellite has two sensors:

« Microwave Imager (GMI)

o Features for training

o Passive Microwave Sensor

o Dual-Frequency Precipitation Radar (DPR)



o Active Sensor

o Precipitation Flag

Note the difference in scan-width of the two sensors. Goal of the project is to use ONLY passive microwave data to determine
precipitation type.
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Figure 2. Convective and Stratiform Precipitation
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In this project, we differentiate between 5 different types of precipitation:

o No Precipitation
o Convective

o Stratiform

o Mixture

o Other



PURPOSE

o Convective vs. Stratiform
o More accurate precipitation measurements/forecasts

o Diurnal cycles of convective and stratiform rain

o Machine Learning
o Understanding of complex precipitation mechanisms not required

Purpose of this project is to separate convective and stratiform precipitation using machine learning models trained on passive
microwave data. Previous ML solutions were based on a heavily biased training samples (since no-precipitation scenes are much
more frequent than precipitation scenes), so one aim of the project was to overcome the inherent data bias.

Figure 3. GPM Satellite Data Visualization



METHODS

FEATURES

Feature Name
Cloud Liguid Water Path clwp

Surface emissivity emis

Latitude/Longitude lat/lon

Brightness Temperature tc
Surface Skin Temperature ts
Total Column Water Vapor
**Polarization Difference PD
Surface Type tysfc
Convergence Robustness Factor chi

Universal Time utc

Figure 4. Features (GMI-only); ** represent hand-engineered feature; gray features unused

o Wide variety of atmospheric information given from GMI data.

o Surface emissivity and brightness temperature have 13 channels (see Figure 5 below):
o Each channel is its own feature in the ML model (instead of 8, ~30 features)

o Frequencies and polarization of channels shown on figure on the right
o Many channels of identical frequencies have different polarizations (vertical and horizontal).
o

We take advantage of these polarizations by adding a hand-engineered feature: Polarization Difference.

# of Channels
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Figure 5. Channel Frequencies and Polarization

POLARIZATION DIFFERENCES
Polarization Differences (hand-engineered feature):

¢ Difference between _brightness temperature values of vertical and horizontal polarizations: tc[V]— tc[H]

e Frequencies used: 10.65, 89.00, 166.0 GHz
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Figure 6. Distribution of Polarization Differences by flag (89.00, 166.0 GHz)

TRAINING AND VALIDATION DATASETS

Training Dataset (2017 data):

o 84 days of data
o 7 days/month

o Randomly selected days

o Sub-sample daily data

o Avoid bias caused by data imbalance (since ~95% of daily data is non-precipitating)

Validation Dataset (2017 data):

o 12 days of data
o 1 day/month



o Randomly selected days

o No sub-sampling
o Resemble distribution of real-world data

Training Validation
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Figure 7. Training and Validation Label Frequencies; all labels from DPR sensor

MACHINE LEARNING MODELS

We use train and test 6 different machine learning models:

1. Naive Bayes Classifier

2. Support Vector Machine

3. Softmax Regression

4. Random Forest

5. Gradient Boosting Classifier
6. Neural Network

All of the models are created, trained, and evaluated using Scikit-learn.

7811264



ANALYSIS

CASE STUDY: SQUALL LINE

DPR - Precipitation Type Predictions
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Figure 8. Squall line precipitation labels; DPR (given) labels on left, predictions on right

To better understand the project results and its significance, we examine a case study.

On the left is the DPR precipitation flag data for a squall line, which is a line of adjacent thunderstorms. Because the width of the
DPR swath is limited, we can’t see the entire squall line from the active sensor’s data.

The right figure (**Note the different x-axis scales**) shows the precipitation flag predictions made by the random forest model

for the same squall line. Since predictions are based off of GMI data, we get a wider view of the convective system with its
various precipitation flags.

FEATURE IMPORTANCES
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Figure 9. Feature importances for random forest model

The figure above shows a list of the feature importances for the random forest model.

From here, we see that the high frequency channels are the most important features for distinguishing between precipitation
types. We also see that the polarization differences that we added to the data are very helpful for classification.



RESULTS

Area Under ROC Curve
(AUC ROC)

Classifier Overall Accuracy (%)
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CONCLUSION

o Multiple successful models with good performance
o ~85% accuracy

o >0.93 AUC score

o Overcame inherent data imbalance

« Demonstrated relative significance of features

o Higher frequencies more important
o Polarization Differences very helpful

o Future instrument channel selection

« Future Work

o Focus on improving (or removing) “Mixed” class

o Add nearby-pixel associations
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ABSTRACT

Precipitation flag (precipitating or not; stratiform or convective) is a key parameter for us to make better
retrieval of precipitation characteristics as well as to understand the cloud-precipitation physical
processes. The Global Precipitation Measurement (GPM) Core Observatory's Microwave Imager (GMI)
and Dual-Frequency Precipitation Radar (DPR) together provide ample information on global
precipitation characteristics. As an active sensor in particular, DPR provides an accurate precipitation
flag assignment, while passive sensors like GMI were traditionally believed not to be able to tell apart
precipitation types.

Using collocated precipitation flag assignment from DPR as the “truth”, this project employs machine
learning models to train and test the predictability and accuracy of using passive GMI-only observations
together with ancillary atmosphere information from reanalysis. Precipitation types are classified into
the following classes: convective, stratiform, convective-stratiform mixed, no precipitation, and other
precipitation. Sub-sampling with different probabilities is employed to construct a balanced training
dataset. A variety of classification algorithms are tested, including Support Vector Machines, Naive
Bayes, Random Forests, Gradient Boosting, and Neural Networks (Multilayer Perceptron Network), and
their results are evaluated and compared. The trained model has ~ 85% of prediction accuracy for every
type of precipitation. High-frequency channels (166 GHz and 183 GHz channels) and 166 GHz
polarization difference are found among the most important factors that contribute to the model
performance, which shed light on future instrument channel selection.



