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Abstract

Water-mediated linkages that connect landscape components are collectively referred to as hydrologic connectivity. These

linkages influence numerous watershed processes including biogeochemical cycling, spatial vegetation patterns, and stream

runoff generation. The concept of hydrologic connectivity also informs environmental management and underpins regulations

protecting waterways. However, to date, there is no consensus on how to quantitatively assess connectivity. Here, we develop and

test a framework to quantify hydrologic connectivity within a landscape. We define connectivity as a continuous variable (from 0

to 1) that represents the vector strength between any two points in the landscape (a source to a target). To measure this vector

strength, we analyzed hydrologic and geochemical indicators within a montane river-floodplain system across a dynamic range

of streamflows. In addition to applying hydrologic and geochemical indicators, we tested the ability of microbiome membership

to provide further insight into connectivity dynamics. From these data, we generated complementary time series of lateral

connectivity (between the river and the floodplain) and longitudinal connectivity (along the river from upstream to downstream).

We then quantified key parameters associated with connectivity regimes among waterbodies including connectivity strength and

stability, and timing and speed of changes in connectivity. The application of a microbial index for connectivity provided new

insight into flowpath residence times that was not apparent using more traditional hydro-geochemical approaches. The proposed

connectivity framework moves beyond binary qualitative descriptions of connectivity and provides a coupled conceptual and

empirical approach to quantify the spatiotemporal variability of hydrologic connectivity.
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1. Abstract  20 

Water-mediated linkages that connect landscape components are collectively referred 
to as hydrologic connectivity. These linkages influence numerous watershed processes 22 

including biogeochemical cycling, spatial vegetation patterns, and stream runoff 
generation. The concept of hydrologic connectivity also informs environmental 24 

management and underpins regulations protecting waterways. However, to date, there 
is no consensus on how to quantitatively assess connectivity. Here, we develop and test 26 

a framework to quantify hydrologic connectivity within a landscape. We define 
connectivity as a continuous variable (from 0 to 1) that represents the vector strength 28 

between any two points in the landscape (a source to a target). To measure this vector 
strength, we analyzed hydrologic and geochemical indicators within a montane river-30 

floodplain system across a dynamic range of streamflows. In addition to applying 
hydrologic and geochemical indicators, we tested the ability of microbiome membership 32 

to provide further insight into connectivity dynamics. From these data, we generated 
complementary time series of lateral connectivity (between the river and the floodplain) 34 

and longitudinal connectivity (along the river from upstream to downstream). We then 
quantified key parameters associated with connectivity regimes among waterbodies 36 

including connectivity strength and stability, and timing and speed of changes in 
connectivity. The application of a microbial index for connectivity provided new insight 38 

into flowpath residence times that was not apparent using more traditional hydro-
geochemical approaches. The proposed connectivity framework moves beyond binary 40 

qualitative descriptions of connectivity and provides a coupled conceptual and empirical 
approach to quantify the spatiotemporal variability of hydrologic connectivity.   42 

 

2. Significance Statement 44 

Hydrologic connectivity has become an important conceptual framework for 
understanding how the movement of water influences landscape scale processes. 46 

Despite this popularity, we currently lack a standardized quantitative approach for 
measuring connectivity. Historically, the most common approach has been to measure 48 

only the presence or absence of connectivity. In this paper, we provide a new 
framework of connectivity that quantifies connectivity between locations as a continuous 50 

metric that can vary in magnitude both in space and time, and be derived using field 
indicators. We further, develop a new technique for measuring connectivity using water-52 

column microbiomes, which provide an information dense tracer that integrates 
information about water sources and travel times in landscapes.  54 

 

3. Introduction 56 

Hydrologic linkages of matter and energy within landscapes are important regulators of 
physical (1), biogeochemical (2) and biological processes (3). These linkages, defined 58 

as hydrologic connectivity, are a fundamental landscape property that connect multiple 
watershed components (e.g., uplands, streams, floodplains, hyporheic zones, 60 

groundwater) that emerge from interactions of topographic, climatic, geologic, biotic, 
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and anthropogenic controls (4). Hydrologic connections operate simultaneously across 62 

multiple dimensions: vertical (surface-groundwater), lateral (river-floodplain & river-
hillslope), longitudinal (upstream to downstream), and temporal (5). The magnitude and 64 

directionality of connectivity can vary depending on the spatial and temporal scale being 
considered (2). Equally as important as identifying when surface water features are 66 

connected is identifying when they are not connected, known as disconnectivity or 
isolation, which plays a critical role in a suite of important hydrologic and 68 

biogeochemical processes (6, 7) and in the maintenance of habitat complexity and 
biodiversity (3). For example, isolated wetlands, or wetlands with no surface water 70 

connection to the stream network, have been shown to control water quality (8) and 
regulate streamflow (9) at regional to continental extents.  72 

 

3.1 Quantifying Hydrologic Connectivity 74 

Quantifying hydrologic connectivity reveals how physical landscape features are 
connected through space and time. The physical template that determines potential 76 

connectivity pathways is known as structural connectivity (10). However, for hydrologic 
connectivity (hereafter connectivity) to be achieved, flow must overcome resistance, 78 

impedances, and losses along those pathways (11). Thus, connectivity may only occur 
under specific hydrologic conditions driven by internal (e.g., soil moisture conditions) 80 

and external (e.g., precipitation or snowmelt) factors (12). Assessing connectivity 
requires a framework that can quantify the degree to which material and energy moves 82 

among landscape components (1, 13). Common field methods to measure connectivity 
include hydrologic measurements (e.g., soil moisture, water levels, streamflow), 84 

geochemical and isotopic end-member mixing analysis and conservative tracer 
experiments (14–16). However, different measurements provide information about 86 

different aspects of connectivity and are often only applicable at specific spatial or 
temporal scales, hindering between study comparisons and therefore the direct 88 

translation of connectivity assessments to policy and management decisions (17).   

 90 

3.1.1 Incorporating Microbial Indicators of Hydrologic Connectivity 

A useful synthetic framework should be able to incorporate information from multiple 92 

sources including emerging approaches such as microbial indicators of connectivity. 
Recent work has demonstrated that analysis of microorganisms can be a valuable tool 94 

in hydrologic research because membership of aquatic microbiomes are intimately 
coupled with hydrologic processes (18–20). Microorganisms are generally passive 96 

dispersers in aquatic systems and dispersal effects are primarily driven by the 
directional flow of water (21). As a result, downstream aquatic microbiomes have been 98 

shown to be similar to the microbiomes within shallow soils (22) and deeper 
groundwater (23) that generate streamflow. However, as surface water ecosystems 100 

become disconnected and residence times of those systems increase, community 
assembly is increasingly affected by ecological dynamics (e.g. competition, predation) 102 

that result in changes in the local microbiome (22, 24). At any one point in time, aquatic 
microbiome membership is the balance between immigration and emigration, which are 104 
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primarily controlled by hydrologic flow states and aquatic network structure, and 
microbial growth and mortality, which are affected by in situ environmental drivers (e.g., 106 

resources and temperature) (25–27). As hydrologic flow states and aquatic network 
structure also influence hydrologic connectivity, the membership of aquatic microbiomes 108 

has the potential to reflect connectivity status. The recent advances in analytical 
techniques and bioinformatic pipelines to characterize the microbiome have made 110 

analyses of environmental microbiomes both affordable and accessible (28). These 
increasingly commonplace analyses of microbiomes coupled with the ubiquity of 112 

microorganisms, make microbial analyses a potentially powerful tool for assessments of 
hydrologic connectivity at a wide range of temporal and spatial scales. To assess 114 

microbiome membership as a potential indicator of connectivity, we also characterized 
microbiome membership over the course of a seasonal hydrograph within our 116 

connectivity framework. 

 118 

4. Hydrologic Connectivity Framework 

To quantify hydrologic connectivity, we first identified a source site and consider the 120 

magnitude of connectivity between this source and multiple target sites. The magnitude 
of this connectivity can vary over short timescales (hours to seasons) as hydrologic and 122 

environmental conditions change through time (12). The long-term (years to decades) 
patterns of shifts in connectivity depend on both landscape structure and local hydro-124 

climatic regimes. Some fluvial landscapes can exhibit stable connectivity over years to 
decades. For example, a spring fed stream with constant discharge is strongly 126 

connected to the originating spring whereas a geographically isolated wetland might 
never have surface connectivity with rivers in the same watershed. However, many 128 

landscapes often exhibit more dynamic connectivity in time and/or across spatial 
gradients. For example, hydrologic connectivity between upland portions of the 130 

landscape to the river network is heterogeneous in time and space and is controlled by 
wetness patterns and watershed morphology (29, 30). In high-relief landscapes, spatial 132 

patterns of watershed hydrology (e.g., soil moisture and groundwater) are often 
organized by watershed topography. For example, water tends to concentrate in 134 

hillslope valley bottoms and these landscape positions can be hydrologically connected 
to the river corridor for large portions of the year (31). Conversely, the ridgetops 136 

between valley bottoms, tend to shed water and may only connect to the river corridor 
during the wettest periods. Similarly, rivers connect and disconnect to different parts of 138 

their floodplains during hydrologic events based on flood hydraulics and river-floodplain 
geomorphology. High physical complexity in floodplain systems creates heterogeneity in 140 

connectivity across the landscape that can be the principal driver of many of the 
characteristic riparian ecological processes (32, 33).   142 

 

While connectivity can be considered as a binary attribute, (i.e., the presence or 144 

absence), here, we define the connectivity magnitude as connectivity strength (σ) and 
quantify this as a continuous variable ranging from 0 and 1. Connectivity strength 146 

denotes the degree of influence of the source on the target. To measure connectivity 
strength, we assumed that when strong hydrologic connectivity was present, source and 148 
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target water compositions would be more similar than when connectivity was weak or 
absent. This is a commonly used assumption embedded in source water mixing 150 

approaches which use aqueous geochemistry to assess hydrologic connectivity (15, 
34). For microbial communities, we expected that when hydrologic connectivity was 152 

strong, the membership of the water column microbiome would be more similar 
because the target community would be strongly influenced by immigration from the 154 

source community. Conversely, when hydrologic connectivity was weak/absent, we 
expected inter-species interactions would be the dominant influence on microbiome 156 

membership and the source and target would become less similar over time. Using this 
approach we generated time series of connectivity strength (σ) that enabled us to 158 

consider both spatial and temporal connectivity to define a landscape’s connectivity 
regime. 160 

 

To test our framework’s ability to describe spatiotemporal patterns of connectivity, we 162 

focused on measuring hydrologic connectivity among multiple surface water features of 
a montane floodplain. We combined data from a network of high frequency water level 164 

sensors and flow tracer injections with weekly sampling for aqueous geochemistry and 
microbiome membership. We collected individual samples for aqueous geochemistry 166 

and microbiome membership at eleven sites over the course of a single season’s 
hydrograph. A single sampling site along the main river channel at the inflow of the 168 

river-floodplain was defined as our “source” site and the other 10 sites served as 
“target” sites within the context of our framework (Figure 1B). We used this experimental 170 

design to test the proposed framework including generating a time series of connectivity 
strength and quantifying a range of connectivity attributes including the stability, timing 172 

and spatial structure of hydrologic connections within the floodplain.  
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 174 

Figure 1: (a) Hyetograph (from SNOTEL #1042), stage and sodium (Na) concentrations 
at inflow site and (b) North St Vrain river-floodplain map. Red line in (a) is snow water 176 

equivalent (SWE), red diamonds in (a) indicate dates of tracer injection experiments. 
River flows hydro periods are categorized as (I) rising limb, (II) peak flows, (III) falling 178 

limb, and (IV) recession. Map shows simplified depiction of surface water major river 
braids (dark grey) and floodplain surface features including ponds, wetlands and side 180 

channels (lighter grey).   

 182 

5. Methods 

5.1 Field Sample Collection and Lab Analysis  184 

We collected weekly water samples from May 05, 2018 to September 25, 2018 at a total 
of eleven surface water sites within a river-floodplain system along the North St. Vrain 186 

River, Colorado (Figure 1). The river has a snowmelt driven hydrograph with late 
spring/early summer snowmelt peak flows and summer streamflow recession (35). The 188 

river has a multi-thread planform within the river-floodplain system. There were four 
sampling sites along the river including at the upstream (Inflow) and downstream 190 

(Outflow) boundaries of the river-floodplain reach and along two major channel threads 
within the river-floodplain system (Main-Mid & Main-Braid). The floodplain has high 192 

spatial heterogeneity and a mosaic of ponds, side channels and wetlands (36). To 
capture this heterogeneity, we included four side channel sites (Side-01 to Side-04), two 194 

connected pond sites that had an upstream surface connection to the river (Pond-Con-
01 & Pond-Con-02) and one isolated pond (Pond-Iso) with no surface channel 196 
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connection to the river. All sites were sampled weekly throughout the study period for a 
total of 21 sampling events.  198 

 

A total of 227 water samples were collected for aqueous geochemistry, filtered within 24 200 

hours with a 0.45-μm PVDF filter (Millipore, HVLP04700) and frozen until analysis for 
major ions using a Dionex ICS-3000 ion chromatograph at the US Forest Service Rocky 202 

Mountain Research Station in Fort Collins, Colorado. A subset of 215 water samples 
from May to September were collected in sterile 60 mL falcon tubes for 16S rRNA 204 

amplicon analysis, kept cold until filtered within 12 hours onto a white polycarbonate 
GTTP 0.2-μm filter (Millipore, GTTP02500), flash frozen with liquid nitrogen and then 206 

stored in a -80°C freezer until analysis. To assess within site variability, for a subset of 
sites (Inflow, Outflow, Side-01, Pond-Con-01, and Main-Mid), we collected duplicate 208 

samples each week. At all other sites, only individual samples were collected.  

 210 

We extracted DNA from each filter with a MoBio PowerSoil® DNA Isolation Kit using 
standard protocols. The 16S rRNA gene (V4 region) was amplified using 515F and 212 

806R universal primers with the forward primer barcoded following the Earth 
Microbiome Project protocols (37). The forward primer 515F included the unique sample 214 

barcode following Parada et al. 2016 (38) and both primers included degeneracies as 
described in Parada et al. 2016 and Apprill et al. 2015 (39). For each sample, we ran a 216 

50 μL PCR reaction using an Invitrogen PlatinumTM Hot Start PCR Master Mix with 10 
μL of DNA. The PCR product was quantified and then pooled into a single pool in 218 

equimolar concentrations and cleaned using a MinElute® PCR Purification kit. Cleaned, 
pooled DNA was sequenced with a MiSeq reagent v2 500 cycle kit on the Illumina 220 

MiSeq platform at the Colorado State University Next Generation Sequencing Core 
facility. Sequence reads were analyzed using MOTHUR (40) and OTU counts defined at 222 

a 97% similarity of the sequence using the OptiClust algorithm. Generated OTUs were 
then aligned to a SILVA reference file (41).  224 

 
 226 

5.2 Hydrometric Field Measurements and Conservative Tracer Injection 

At all sites, we monitored water level at 15 minute intervals for the duration of the study 228 

using either TruTrack Capacitance Rods or HOBO U20L Pressure Transducers. To 
capture relative stage dynamics, we standardized mean daily stage as a z-score by 230 

normalizing mean daily stage by the seasonal mean and standard deviation of water 
levels across the period of record at each individual site. Precipitation and snow water 232 

equivalent records were downloaded from the Wild Basin SNOTEL, #1042, (2914 m), 
located within the watershed.  234 

 

To determine how river-floodplain connectivity changed as a function of streamflow we 236 

conducted instantaneous NaCl injection experiments at high (June 13, 2018) and 
intermediate flows (July 30, 2018) at a site on the main stem 125m above the Inflow 238 

site. The change in injected tracer concentration through time (i.e., tracer breakthrough 
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curve) was measured at six sites (Table 1) using Campbell CS547A-L conductivity 240 

loggers and background corrected using pre and post-injection measurements. Time to 
peak (TTP) was measured as the time from injection to peak conductivity at a site and 242 

modal velocity (Vm) was calculated as the estimated flow path distance from the 
injection site (DISTf) divided by the TTP.  244 

 

Table 1: Tracer experiment results at target sites for high and intermediate flow NaCl 246 

tracers injected at the Inflow site. NR indicates that no tracer arrival was observed at the 

target site.  248 

          
High Flow 
(June 13, 

2018) 

Intermediate 
Flow (July 30, 

2018) 

    
Inflow 
Stage 
(mm:): 

635 384 

Site Site Type 
Elev 
(m) 

Surface 
Connection 

to Inflow 

DISTf1 
(m) 

TTP2 
(min) 

Vmod3 
(m/s) 

TTP2 
(min) 

Vmod3 
(m/s) 

Outflow 
Major 

Channel 
2535 Yes 2228 46 0.78 85 0.43 

Main-Mid 
Major 

Channel 
2543 Yes 1175 23 0.87 41 0.48 

Side-01 Side Channel 2548 Yes 607 35 0.29 NR NR 

Pond-
Con-01 

Connected 
Pond 

2542 Yes 1040 196 0.09 NR NR 

Pond-
Con-02 

Connected 
Pond 

2545 Yes 734 101 0.12 NR NR 

Pond-Iso 
Isolated 

Pond 
2550 No - NR NR NR NR 

 
1) Estimated surface flow path distance from the injection site. Note there is no surface channel 250 
connection between Inflow and the Isolated Pond (Pond-Iso)  
2) Time to Peak 252 
3) Modal Velocity – calculated as DISTf / TTP 

 254 

5.3 Connectivity Strength Metrics 

To calculate connectivity strength using aqueous geochemistry, we first normalized ion 256 

concentrations by their mean and standard deviations and conducted a principle 
component analysis (PCA) on all major ions present including sodium, chloride, 258 

calcium, magnesium, potassium and sulfate ions. Analytical results included several 
outlying values for chloride and potassium that were removed due to suspected 260 

contamination. To maintain a balanced dataset, these values were replaced with linearly 
interpolated values using reported values from the previous and subsequent weeks at 262 

the same site. We examined PCA eigenvalues and eigenvectors (Table S1), and based 
on variable loadings, we chose to include two principle components (PCs) for further 264 
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analysis that represented two major water source components. At each sampling date, 
within the 2 dimensional PC space (PC1 and PC2), the log transformed Euclidean 266 

distance was calculated between a given target site geochemical composition and the 
composition at the Inflow (i.e., source site) (Eq. 2). This value was then rescaled to 268 

between 0 and 1 using a min-max normalization and reversed to calculate a chemical 
similarity score as follows (Eq. 1 & 2).  270 

 𝐸𝐷𝑖 =  𝑙𝑜𝑔 (√(𝑃𝐶1𝑠𝑖
− 𝑃𝐶1𝑡𝑖

)2 + (𝑃𝐶2𝑠𝑖
− 𝑃𝐶2𝑡𝑖

)2) (Eq. 1) 

  σ𝑖 = 1 − (
𝐸𝐷𝑖− min (𝐸𝐷)

max(𝐸𝐷)−min (𝐸𝐷)
)   (Eq. 2) 272 

Where EDi is the logged Euclidian distance within the PCA space at a given sampling 
date, the subscripts si and ti refer respectively to PC scores at the Inflow site and a 274 

target site, σi is the connectivity strength at a given sampling date and ED is the 
complete dataset. 276 

 

To calculate connectivity strength using microbiome membership, we first removed 278 

samples with limited sequences (<1000 reads), trimmed operational taxonomic units 
(OTUs) to remove samples not observed more than 3 times in 20% of the samples, and 280 

relativized OTU counts by the total OTUs in the sample. All 16S amplicon analyses 
were conducted using the phyloseq package in R (42). Due to lack of duplication at all 282 

sites, we further merged duplicate samples into mean values to simplify subsequent 
analysis. On each sample date, we calculated a similarity score using the Bray-Curtis 284 

similarity index (BC) between a given site (i.e., target) and the inflow (i.e., source), as 
follows (Eq. 3). 286 

𝐵𝐶𝑠𝑡 =
2𝐶𝑠𝑡

𝑆𝑠+𝑆𝑡
      (Eq. 3) 

Where C is the sum of the lesser counts of OTUs found at both sites while Ss is the total 288 

number of sequence reads at the Inflow site and St is the total number of sequence 
reads at the target site. We also conducted a principle coordinate analysis (PCOA) 290 

using the BC dissimilarity index to visualize microbiome membership in lower 
dimensional space.  292 

 

5.4 Logistic Curve Fitting 294 

To better understand hydrologic connectivity dynamics at our field system, we evaluated 
connectivity data across the hydrograph from peak to low flow conditions (May 16, 2018 296 

– Sep 25, 2018).  During this period, we posited that connectivity strength (σ) between 
the inflow and river-floodplain sites could either be stable or shift from high to low 298 

connectivity strength states, and therefore be represented by a sigmoidal function, here 
described in the form of a four parameter logistic function. Using the drc package in R 300 

(43), we fit a four parameter logistic equation to our connectivity strength timeseries 



Submitted to Proceedings of the National Academy of Sciences 

10 
 

derived from both geochemical composition and microbial membership, as follows (Eq. 302 

4). 

σ = c + 
𝑑 −𝑐

1+exp (𝑣∗(𝑡−𝑒))
  (Eq. 4) 304 

Where σ is the connectivity strength, d is the upper asymptote, c is the lower asymptote, 
v is the slope at the inflection point, t is time, and e is the value of t when σ is halfway 306 

between d and c (Table 2). The difference between d and c describes the change in the 
magnitude of connectivity strength (Δ). When the system is stable, (Δ = 0), σ = d = c. 308 

When there is a change in connectivity strength (Δ > 0), then the value e can be used to 
describe the timing of this change and v describes the speed of the change (Table 2). 310 

To identify if the logistic fit was an appropriate model over our seasonal timescale, we 
compared the root mean square error of the residuals (RMSE) to that of a null model 312 

represented by the horizontal line σ = a where a was the mean value of σ across the 
time period. We then compared parameter estimates from the logistic fit between 314 

metrics and between sites and assessed their uncertainty using each parameter’s 
standard errors and p-values.  316 

 

Table 2: Connectivity regime parameters and associated symbols.   318 

Connectivity Regime 
Parameters Parameter Symbol   

Connectivity Strength σ 

Timescale t 

Magnitude of Changes in 
Connectivity Strength 

Δ 

Timing of Changes in 
Connectivity Strength 

e 

Speed of Changes 
Connectivity Strength   

v 

Maximum Connectivity 
Strength 

c (max) 

Minimum Connectivity 
Strength 

d (min) 

 

  320 
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6. Results 

6.1 Hydrometric Monitoring and Tracer Experiment: 322 

Stream levels in the North St Vrain River followed a seasonal pattern consistent with 
snow driven hydrographs of the Southern Rockies with rising streamflow starting in late 324 

April, peak flows in late May to early June and falling streamflow throughout the summer 
(Figure 1A). Several summer convective storm events occurred in July and August but 326 

did not strongly influence the seasonal hydrograph (Figure 1A). Using stage and 
geochemical patterns at the Inflow (Figure 1A), we categorized four distinct hydro 328 

periods: (I) rising limb (May 01, 2018 – May 15, 2018); (II) peak flow (May 16, 2018 – 
June 18, 2018); (III) falling limb (June 19, 2018 – July 10, 2018); and (IV) recession 330 

(July 11, 2018 – Sept 30, 2018) (Figure 1). Analysis of patterns in standardized mean 
daily stream levels indicated strongly coherent hydrologic dynamics at the major 332 

channel sites while floodplain sites followed the broad seasonal pattern of the Inflow site 
but also demonstrated distinct site specific behavior (Figure 2). 334 

 

Figure 2: Time series of relative stage (top row) and connectivity strength (σ) using 336 

geochemical (middle row) and microbial (bottom row) metrics. Stage values are 

standardized as normalized by the mean and standard deviation across the period of 338 

record at each site.  
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 340 

At side channel sites (Figure 1B), water levels followed similar patterns to the main 
channel during the rising limb and peak flows (Figure 2). During the falling limb and into 342 

the recession, water levels at the side channels generally exhibited a steep drop and 
were subsequently less responsive to main channel level fluctuations. Both of the 344 

surface connected ponds (Pond-Con-01 & Pond-Con-02) and the isolated pond (Pond-
Iso) had high water levels starting in May that plateaued for much of the season before 346 

declining during the falling limb at Pond-Con-02 and during the recession at Pond-Con-
01 and Pond-Iso (Figure 2). The high water levels in pond sites during the rising limb 348 

suggest sampling began after ponds had already mostly filled with groundwater, local 
snowmelt, and streamwater. Pond-Con-01 and Pond-Cond-02 went dry in mid-350 

September while at Pond-Iso, levels dropped below our water level logger in early 
September and the pond went completely dry in late September (Figure 2).  352 

 

The tracer injection experiments conducted during high (June 13, 2018) and 354 

intermediate flows (July 30, 2018) demonstrated the presence or absence of surface 
water connectivity between Inflow and a subset of target sites (Table 1). We did not 356 

observe arrival of injected tracer at Pond-Iso during either experiment, providing strong 
evidence of a lack of surface connectivity between these sites (Table 1). Tracer arrivals 358 

at other sites were variable, and we only observed tracer arrival during both the high 
and intermediate flow injections at the Major Channel sites (Table 1). During the high 360 

flow tracer injection, tracer arrival was first observed at Main-Mid with a time to peak 
(TTP) of 22.5 minutes, followed by Side-01 (TTP: 35 min), Outflow (TTP: 46 min) and a 362 

more attenuated response at Pond-Con-02 (TTP: 101 min) and Pond-Con-01 (TTP: 196 
min) (Table 1). Modal velocity, which is defined as the most common velocity along a 364 

flowpath, was highly variable at connected sites (range: 0.09 - 0.87 m s-1, Table 1) 
indicating variable residence times along connected flow pathways. During the 366 

intermediate flow tracer, the tracer arrival was only observed at the Main-Mid site (TTP: 
40.8 min, Velm: 0.48 m s-1) and Outflow site (TTP: 85 min, Velm: 0.43 m s-1). As tracer 368 

injections cannot detect flowpaths with residence times longer than the window of 
detection, the lack of response at Side-01, Pond-Con-01 and Pon-Con-02 during the 370 

intermediate flow injection can’t confirm a complete absence of surface connectivity. 
However, these results do demonstrate that sites were not strongly connected with the 372 

Inflow site. 

 374 

6.2 Seasonal Dynamics in Aqueous Geochemical and Microbial Composition  

We conducted a principal component analysis to see which geochemical indicators 376 

were most indicative of connectivity. The primary principal component (PC1) 
corresponded to bulk ionic strength and explained 62.2% of variance and the secondary 378 

principal component (PC2) explained 17.8% of variance and was strongly driven by 
SO4

2- concentrations (Table S1). All ion concentrations were negatively related to PC1 380 

with Na+, Ca2+, Cl-, Mg2+, and K+ having moderate loadings (between -0.39 to -0.48). 
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SO4
2- had a strong positive loading on PC2 (0.84) while Ca2+and Mg2 had moderate 382 

negative loadings (-0.36 and -0.30, respectively).  

 384 

Figure 3: Temporal (a, b) and spatial (c,d) density plots and empirical cumulative 

distribution functions of connectivity strength (σ) between the Inflow site and target sites 386 

as derived from microbial membership. Temporal plots (a, b) show results from four 

target sites with distinct connectivity regimes through the full study period. Stable 388 

connectivity regimes tended toward unimodal distributions (eg. Outflow & Pond-Iso) with 

relatively low spread while sites with intermittent connectivity exhibited both strong 390 

(Side-01) and weak (Pond-Con-01) bimodality with broader distributions. Spatial plots 

(c,d) are aggregates of all sites by hydro period and illustrate shifting spatial patterns of 392 

connectivity within the river-floodplain system over varying hydrologic conditions. Peak 

river stage resulted in a high density of high σ values and low river stage during the 394 

recession had a bimodal distribution with a dominant modal peak at low σ values. 

Intermediate river stage during the falling limb exhibited a more dampened bi-modal 396 

distribution with increased overall heterogeneity throughout the river-floodplain system.  

 398 

Seasonal geochemical patterns at the Inflow site followed a snowmelt dilution pattern 
where geochemical ion concentrations (e.g., Na+) were lowest during peak flows (Figure 400 
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1A, S3). This geochemical pattern propagated strongly to sites with surface connections 
to the river during high flows resulting in high peak connectivity strength scores (Figure 402 

2 & 3). At lower flows, geochemical composition diverged between the Inflow site and 
the floodplain sites, resulting in lower connectivity strength scores (Figure 2 & 3). Pond-404 

Iso had distinct geochemistry from the Inflow throughout the season resulting in low 
connectivity strength scores across the study period. (Figure 2).   406 

 

We conducted a principal coordinates analyses (PCOA) to explore season dynamics in 408 

microbiome membership and identify microbiome membership’s utility as an indicator of 
connectivity. The PCOA of microbiome membership identified a major axis PCOA-1 that 410 

explained 33.7% of the variance in microbiome membership and a secondary axis that 
explained 16.1% of the variance (Figure S1). Additional axes all explained less than 412 

10% of the variance. Microbial membership at the Inflow site shifted slightly between the 
rising limb and falling limb with the highest variation observed during the recession 414 

period (Figure S2). During peak flows, sites with surface connections to the river had 
microbiomes similar to Inflow, resulting in high connectivity strength scores (Figure 2 & 416 

3, Figure S2). Major channel sites maintained their similarity to the Inflow for most of the 
study period with some divergence in the late recession. At side channels and 418 

connected pond sites, microbiome membership started diverging from the seasonal 
pattern at Inflow in either the falling limb or recession, resulting in lower connectivity 420 

strength scores later in the season (Figure 2 & 3). As with its geochemistry, Pond-Iso 
had distinct microbial membership from the Inflow site throughout the season that 422 

remained relatively stable resulting in low connectivity strength scores across the study 
period (Figure 2 & 3).   424 

 

6.3 Connectivity Shifts: Strength, Timing and Speed 426 

Parameters derived from the logistic fit to the connectivity strength time series (from 
peak flow through the recession) revealed divergent patterns among sites with 428 

differences in both the timing and magnitude of changes in connectivity strength. All 
sites had low to moderate root mean square error (RMSE) for the logistic fit 430 

(geochemical metric RMSE: 0.035 to 0.127, microbial metric RMSE: 0.033 to 0.102), 
which at all sites was lower than for the null model (Table S2). However, there were two 432 

cases where the logistic fit was only marginally better than the null model. This was true 
at Pond-Iso for the microbial metric (RMSE difference of 0.004) and at the Outflow site 434 

for the geochemical metric (RMSE difference of 0.006).  

 436 

We used the model to assess the magnitude (Δ), timing (e) and speed (v) of 
connectivity changes at all sites. In general there was strong agreement for magnitude 438 

(r = 0.77) and timing (r = 0.82) between parameters estimated by the geochemical 
metric and those estimated by microbial metric but weak agreement between metrics for 440 

the speed parameter (r= 0.25) (Figure 4).  Magnitudes of changes were low at the 
isolated pond and sites along the main channel (Δg (aqueous geochemistry) range: 0.09 442 
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– 0.24, Δm (microbial) range: 0.14-0.21) and higher at all other sites where Δg ranged 
from 0.27 to 0.51 and Δm ranged from 0.39 to 0.53 (Figure 4, Table S3, S4). All side 444 

channels and Pond-Con-02 shifted connectivity states during the falling limb with shift 
timing ranging from day of year (doy) 173-178 for eg (aqueous geochemistry) and doy 446 

172-183 for em (microbial) while major channel sites shifted later on the hydrograph 
recession (eg 210-228, em 217-238). Despite the general agreement between both 448 

metrics for e, there was a large difference at Pon-Con-01 where the microbial metric 
revealed a connectivity change occurring 40 days prior to a detectable change from the 450 

geochemical metric. The maximum speed of connectivity changes as derived from the 
scalar parameter v also exhibited variable behavior between sites but had high 452 

parameter uncertainty, particularly for sites with higher speeds. However, for several 
sites that had lower speeds (v <0.25), parameter uncertainty was low and the microbial 454 

and geochemical metrics were in better agreement. 

 456 

Figure 4: Connectivity parameter values derived from logistic curve fitting from peak to 

recession hydro period including (a) Connectivity change magnitude (Δ), (b) connectivity 458 

change timing (e), and (c) connectivity change speed (v). Black line denotes 1:1 

between parameter values derived from geochemical and microbial metrics. Error bars 460 

denote standard errors. Parameters were moderately to strongly correlated between 

metrics for connectivity change magnitude and timing but weakly correlated for the 462 

connectivity change speed. 

 464 

7. Discussion 
 466 

The approach to quantifying connectivity presented here has three principal advantages 
to the current frameworks under which connectivity is assessed. First, defining 468 

connectivity strength as a metric between 0 and 1 treats connectivity as a continuous 
variable that can vary through time, which is more representative of how landscape 470 

connectivity occurs. This is an improvement over binary or categorical (i.e., connected 
or isolated) assessments of connectivity, as it is often treated in studies that infer 472 
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landscape connectivity from hydrologic time series analysis (16), geomorphic and 
streamflow thresholds (44) or classifications using clustering approaches (15). Second, 474 

the framework presented here can simultaneously quantify both lateral surface 
connectivity (i.e., between the river Inflow site and the floodplain) and longitudinal 476 

connectivity (i.e., upstream and downstream sites along a river) dynamics using the 
same metrics. This is in contrast to previous studies that defined connectivity in a 478 

manner that explicitly fixed a single dimension to connectivity or presented connectivity 
as a ratio between two dimensions of connectivity (45). Third, our framework enables 480 

multiple field-based empirical approaches to quantify connectivity, which allows for the 
application of connectivity metrics that are best suited for the system being studied. 482 

 
Connectivity parameters derived from the model fit enabled us to identify three major 484 

surface water connectivity regimes operating within the river-floodplain system during 
the study period (Figure 4). Sites were observed to be either: stable and highly 486 

connected (high σ, low Δ); stable and isolated (low σ, low Δ), or intermittently connected 
(variable σ, high Δ). The stable and highly connected sites were those longitudinally 488 

connected along the main stem of the river. Interestingly, even these sites exhibited 
evidence of a small shift toward decreased connectivity strength at or near base flow 490 

(Figure 2). The only site to demonstrate stable and isolated behavior was the site Pond-
Iso where we observed no surface connection to the main channel and consistently had 492 

low connectivity strength values despite being geographically near the river main stem, 
demonstrating that geographic proximity does not dictate high hydrologic connectivity.  494 

 

At sites with intermittent connectivity regimes, interactions between river flow dynamics 496 

and floodplain geomorphic structures generated variability in the timing and speed of 
changes in connectivity. Our analyses suggest much of the floodplain became 498 

disconnected from the main stem of the river during the falling limb in response to 
declines in river stage between June 18 to July 04 (Figure 1 & 3). However other sites 500 

including Pond-Con-01 and Main-Braid disconnected later during the recession period 
suggesting variability in the physical thresholds that must be exceeded to enable lateral 502 

surface flow (Figure 4). Most of the sites that disconnected during the falling limb 
exhibited fast changes (high v values) that occurred within 1-14 days suggesting that 504 

when stream levels dropped below a specific threshold, these sites rapidly shifted to a 
disconnected state. The high uncertainty observed for v at these sites may be because 506 

the one week sampling interval was not frequent enough to accurately describe the rate 
of disconnection. Accordingly, sampling designs need to be aligned with the temporal 508 

dynamics of the system being studied. For example, flashy hydrologic systems where 
water levels rise and fall very quickly will require fine resolution sampling that matches 510 

the temporal dynamics of the process. However, at other sites including Pond-Con-01, 
Main-Braid and Side-01, the shifts were gradual (low v values) taking more than three 512 

weeks for sites to reach a new disconnected stable state. We were unable to distinguish 
the mechanisms for these more gradual shifts with our current study design. Low v 514 

values may have been driven by gradual reductions in river water flows relative to other 
water sources, or some sites may have integrated behavior of multiple flowpaths that 516 

disconnect at different times.  
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 518 

Estimations of connectivity strength derived from our framework were supported by the 
two injection experiments (Table 1). During the high flow tracer injection, we observed 520 

tracer arrival at all of the sites that had high connectivity strengths (range: σg: 0.57- 0.70, 
σm: 0.64-0.84). Conversely, we observed no tracer arrival at Pond-Iso, which had low 522 

connectivity scores (σg: 0.33, σm: 0.17). During the intermediate flow tracer injection, we 
only observed tracer arrival at the two main stem channel sites, which were also the 524 

only two sites that had high connectivity strength (range: σg: 0.63- 0.77, σm: 0.73-0.75) at 
the time of the injection experiment. Conversely, at all other sites we observed no tracer 526 

arrival during the intermediate flow injection, which was consistent with measured low 
connectivity strength values (range: σg: 0.25- 0.52, σm: 0.24-0.39) (Table 1, Figure 2). 528 

 

7.1 Characterization of the microbiome as an indicator for hydrologic connectivity  530 

We hypothesized that characteristics of each site’s microbiome could be used to infer 
hydrologic connectivity. Our results demonstrated strong general agreement between 532 

microbiome membership and hydrologic and geochemical indicators of connectivity. 
Microbiome membership was highly responsive to connectivity between the Inflow site 534 

and each target site. At high flow conditions, there was substantial hydrological 
connectivity across the river-floodplain systems and water column microbiome 536 

membership at multiple target sites within the floodplain was similar to those at the 
Inflow site. However, as flows decreased microbiome membership at many target sites 538 

rapidly became dissimilar from the Inflow site.  Further, the directionality of how 
microbiomes diverged from the Inflow site varied among sites (Figures S1 & S2). These 540 

between-site differences were likely driven in part by hydrologic factors such as 
distance along surface flow paths, residence times of flow paths, and contributions of 542 

other source waters and their associated microbiome. In addition, differences among 
each site’s environment are also likely to influence membership distinctly. Microbial 544 

communities are shaped not just by dispersal but also by local ecological dynamics that 
come to dominate microbiome assembly as residence time becomes greater than 546 

growth rate (46). As flow decreases and residence times increase in a water body, 
selection driven by local environmental conditions is likely to become a larger factor 548 

relative to dispersal (i.e., immigration and emigration) in determining microbiome 
membership (47), which could result in increasing dissimilarity between a source and 550 

target location.  

 552 

This shift towards a selection driven microbial community assembly may only be 
observable when residence times increase above a certain threshold, which might help 554 

explain the discrepancy in timing of connectivity shifts observed at Pond-Con-01 
between the microbial and geochemical connectivity metrics (Figure 2 & 4). At Pond-556 

Con-01, the connectivity strength estimated by microbiome membership (σm) began to 
decline gradually during the falling limb as river flow declined. This preceded a decline 558 

in the connectivity strength estimated by geochemical composition (σg) by 
approximately forty days, which declined at the same time as stage in the pond began 560 
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falling. Pond-Con-01 was located along a lateral surface flowpath that passed through 
several beaver ponds before reaching the site. As a result, even at peak river flows, 562 

water velocities through Pond-Con-01 were low, and travel times were long, relative to 
other sites (Table 1). As river flow declined during the falling limbs, residence times 564 

increased as inflows to the pond declined but pond levels and volume remained stable. 
Through this period, the stable levels and persistence of high geochemical connectivity 566 

strength suggest a surface connection to the river was maintained, but the degree of 
influence of the river on the pond microbiome declined. As we only observe this 568 

behavior at a single site, we suggest a key next step to applying the microbial 
connectivity metric (σm) more widely will be identifying how residence time thresholds in 570 

different systems and applications interact with microbial membership. 

 572 

7.2 Quantifying Spatiotemporal Variability in Hydrologic Connectivity  

Improved quantitative assessment of hydrologic connectivity dynamics across differing 574 

systems will enhance our ability to interpret and predict complex system behavior. By 
treating connectivity strength as a continuous variable, we can characterize hydrologic 576 

connectivity as a distribution of connectivity strengths with spatial and temporal 
dimensions (Figure 3). Quantifying connectivity in a spatiotemporal context will improve 578 

our ability to predict the net effects of complex landscape components on downstream 
waters. Assessing connectivity in a spatiotemporal context is also critical for identifying 580 

control points in a landscape that may have disproportionate influence on hydrologic 
and biogeochemical properties of the ecosystem (48). In watershed scale studies that 582 

investigate upland to stream connectivity (49) this approach could help rank the relative 
contributions of differing hillslopes (i.e., uplands) on processes such as streamflow 584 

generation and solute export. In ecological studies that link connectivity to biodiversity 
(3), habitats can be better described by quantifying distributions of their hydrologic 586 

connectivity with other components in their landscape.   

 588 

8. Summary 

We developed and tested a framework to assess hydrologic connectivity between a 590 

source and target site within a landscape using field based indicators. The framework 
provides the ability to move beyond binary assessment of connectivity and quantify 592 

spatial and temporal distributions of connectivity.  This approach generates a deeper 
understanding into the variability of landscape scale hydrologic processes. We illustrate 594 

the utility of this approach within a montane river-floodplain system by quantifying the 
presence, stability and timing of surface connectivity and disconnectivity between the 596 

river Inflow and sites located both longitudinally down river and laterally on the 
floodplain during the snowmelt hydrograph recession. While the specific indicators of 598 

connectivity may vary among systems, quantifying common parameters and 
spatiotemporal distributions to describe the connectivity regime of landscapes within this 600 

framework will facilitate inter-system comparisons.  

 602 



Submitted to Proceedings of the National Academy of Sciences 

19 
 

Our work also demonstrates that aquatic microbiomes can be utilized for inference into 
hydrologic connectivity. By examining similarity in microbial membership, we accurately 604 

assessed the presences/absences of surface flows from the main channel. We also find 
preliminary evidence that aquatic microbiomes can provide additional information on 606 

residence time dynamics along connected flow paths. Further efforts are needed to test 
how this metric operates within differing temporal and spatial scales. We also suggest 608 

that future work implement finer-scale OTU-level analysis rather than a coarse 
community level similarity metric, which we believe can increase the ability to detect 610 

weaker flow paths and potentially be used as a multi-tracer to simultaneously measure 
numerous sources of connectivity.  612 
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Table S1: Geochemistry PCA Eigenvectors and % Variance Explained 13 

Ions PC1 PC2 PC3 PC4 PC5 PC6 

Na -0.48 0.13 -0.01 0.55 -0.30 -0.59 

K -0.46 0.01 0.42 -0.36 0.63 -0.29 

Mg -0.44 -0.30 -0.39 0.41 0.41 0.48 

Ca -0.40 -0.36 -0.44 -0.60 -0.38 -0.11 

Cl -0.44 0.23 0.51 -0.05 -0.42 0.56 

SO4 -0.13 0.84 -0.47 -0.18 0.13 0.06 

% Variance Explained 0.62 0.18 0.13 0.05 0.02 0.01 

 14 

 15 

Table S2: Root Mean Square Error of Residuals for Logistic and Null Models.  16 
 17 

  Geochemistry Microbial 

Sites Logistic Null Logistic Null 

Main-Braid 0.095 0.215 0.056 0.181 

Main-Mid 0.127 0.159 0.052 0.072 

Outflow 0.088 0.094 0.075 0.110 

Pond-Con-01 0.050 0.123 0.075 0.187 

Pond-Con-02 0.054 0.138 0.084 0.215 

Pond-Iso 0.035 0.062 0.052 0.056 

Side-01 0.085 0.162 0.033 0.227 

Side-02 0.092 0.182 0.102 0.248 

Side-03 0.087 0.227 0.053 0.229 

Side-04 0.067 0.162 0.094 0.201 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 
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Table S3: Logistic Parameters (± standard errors) for Geochemical Metric.  29 

 30 

    Geochemistry 

Site Site Type c d Δ v e 

Main-Braid Major Channel 
0.27 ± 
0.07 

0.78 ± 
0.03 

0.5 ± 
0.08 

0.11 ± 
0.05 

223.86 ± 
5.86 

Main-Mid Major Channel 
0.56 ± 
0.06 

0.81 ± 
0.04 

0.24 ± 
0.07 

0.77 ± 
1.04 

228.32 ± 
3.09 

Outflow Major Channel 
0.6 ± 
0.04 0.7 ± 0.03 

0.1 ± 
0.05 

0.22 ± 
0.33 

209.73 ± 
14.6 

Pond-Con-
01 

Connected 
Pond 

0.22 ± 
0.19 

0.63 ± 
0.03 

0.42 ± 
0.19 

0.07 ± 
0.05 

232.98 ± 
14.41 

Pond-Con-
02 

Connected 
Pond 

0.37 ± 
0.02 

0.64 ± 
0.02 

0.27 ± 
0.03 

0.44 ± 
0.32 

178.33 ± 
1.97 

Pond-Iso Isolated Pond 
0 ± 0.05 

0.18 ± 
0.01 

0.18 ± 
0.05 

0.15 ± 
0.07 

245.25 ± 
6.89 

Side-01 Side Channel 
0.34 ± 
0.03 

0.65 ± 
0.04 

0.31 ± 
0.05 

0.19 ± 
0.12 

185.53 ± 
5.29 

Side-02 Side Channel 
0.38 ± 
0.03 

0.71 ± 
0.04 

0.34 ± 
0.05 

0.87 ± 
0.85 

176.02 ± 
1.6 

Side-03 Side Channel 
0.21 ± 
0.04 

0.71 ± 
0.06 

0.51 ± 
0.07 

0.13 ± 
0.1 

176.64 ± 
3.74 

Side-04 Side Channel 
0.19 ± 
0.02 

0.53 ± 
0.03 

0.34 ± 
0.04 

0.31 ± 
0.23 

172.99 ± 
2.61 
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Table S4: Logistic Parameters (± standard errors) for Microbial Metric.  33 

 34 

  Microbial 

Site Site Type c d Δ v e 

Main-Braid Major Channel 
0.27 ± 
0.07 0.8 ± 0.02 

0.53 ± 
0.08 

0.11 ± 
0.04 

237.79 ± 
3.99 

Main-Mid Major Channel 
0.67 ± 
0.03 0.8 ± 0.02 

0.14 ± 
0.03 

0.22 ± 
0.16 

231.73 ± 
7.1 

Outflow Major Channel 
0.63 ± 
0.05 

0.85 ± 
0.03 

0.21 ± 
0.06 

0.1 ± 
0.07 

217.4 ± 
11.02 

Pond-Con-
01 

Connected 
Pond 

0.31 ± 
0.05 

0.74 ± 
0.06 

0.43 ± 
0.08 

0.08 ± 
0.05 

192.87 ± 
6.06 

Pond-Con-
02 

Connected 
Pond 

0.3 ± 
0.02 

0.72 ± 
0.03 

0.42 ± 
0.04 

1.27 ± 
1.1 

174.36 ± 
2.87 

Pond-Iso Isolated Pond 
0.25 ± 
0.04 

0.35 ± 
0.01 

0.09 ± 
0.04 

0.17 ± 
0.15 

236.89 ± 
7.94 

Side-01 Side Channel 
0.37 ± 
0.01 

0.86 ± 
0.01 

0.49 ± 
0.02 

0.21 ± 
0.04 

182.78 ± 
1.13 

Side-02 Side Channel 
0.27 ± 
0.06 

0.73 ± 
0.06 

0.46 ± 
0.08 

0.61 ± 
1.08 

180.23 ± 
5.4 

Side-03 Side Channel 
0.25 ± 
0.02 

0.73 ± 
0.02 

0.48 ± 
0.03 

0.7 ± 
0.49 

175.88 ± 
1.19 

Side-04 Side Channel 
0.29 ± 
0.03 

0.68 ± 
0.04 

0.39 ± 
0.05 

1.01 ± 
0.76 

172.19 ± 
2.29 
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 37 

Figure S1: PCOA of Site Microbiomes by Site Type 38 
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 39 

Figure S2: PCOA of Site Microbiomes by Hydro Period 40 
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 42 

Figure S3: PCA of Geochemical Data with Loadings 43 

  44 



 8 

 45 

Figure S4: PCA of Geochemical Data by Site Type 46 
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 48 

Figure S5: PCA of Geochemical Data by Hydro Period 49 
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 52 

Figure S6: Logistic Curve Fits of Connectivity Strength Derived From Geochemical 53 

Metric 54 

 55 
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 56 

Figure S7: Logistic Curve Fits of Connectivity Strength Derived From Microbial Metric 57 
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