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Abstract

A recent study by Agard and Emanuel (2017) proposed a simple equation for a quantity that scales with convective available

potential energy (CAPE) that can be directly calculated from a limited number of environmental sounding parameters without

lifting a hypothetical air parcel. This scaling CAPE was applied in a specific idealized framework, but the extent to which it

can predict true CAPE in the real world has not been tested. This work uses reanalysis data over the U.S to demonstrate that

this scaling CAPE does indeed scale very closely with CAPE, following a linear relationship with a scaling factor of 0.44. We

then explain why they scale together via a step-by-step derivation of the theoretical assumptions linking scaling CAPE and

real CAPE and their manifestation in the historical data. Overall, this work demonstrates that CAPE can be predicted from

large-scale environmental parameters alone, which may be useful for a wide range of applications in weather and climate.
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Key Points:5

• CAPE can be predicted from environmental sounding parameters without lifting6
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Abstract12

A recent study by Agard and Emanuel (2017) proposed a simple equation for a quan-13

tity that scales with convective available potential energy (CAPE) that can be directly14

calculated from a limited number of environmental sounding parameters without lifting15

a hypothetical air parcel. This scaling CAPE was applied in a specific idealized frame-16

work, but the extent to which it can predict true CAPE in the real world has not been17

tested. This work uses reanalysis data over the U.S to demonstrate that this scaling CAPE18

does indeed scale very closely with CAPE, following a linear relationship with a scaling19

factor of 0.44. We then explain why they scale together via a step-by-step derivation of20

the theoretical assumptions linking scaling CAPE and real CAPE and their manifesta-21

tion in the historical data. Overall, this work demonstrates that CAPE can be predicted22

from large-scale environmental parameters alone, which may be useful for a wide range23

of applications in weather and climate.24

Plain Language Summary25

Convective available potential energy (CAPE) is a key parameter commonly used26

to measure the potential for thunderstorms. Its calculation requires lifting a hypothet-27

ical air parcel through a column of atmosphere. This work combines theory and reanal-28

ysis data to demonstrate that CAPE can be predicted using environmental data alone.29

This can make it easier to quickly estimate CAPE in data and to understand the pro-30

cesses that create CAPE in our atmosphere.31

1 Introduction32

Convective available potential energy (CAPE), a measure of conditional instabil-
ity of the environment, is a key thermodynamic parameter in atmospheric research. It
is proportional to the theoretical maximum vertical wind speed within the atmospheric
column, and hence serves as an indicator of the potential intensity of deep convection
if it is triggered (Holton, 1973). In practice, regular CAPE is estimated by the vertically-
integrated buoyancy of a boundary-layer parcel ascending from the level of free convec-
tion (LFC) to the equilibrium level (EL) (Doswell III & Rasmussen, 1994), given by

CAPE =

∫ zEL

zLFC

g
Tvp − Tve

Tve
dz (1)

where g is the acceleration due to gravity, z is height above ground level, Tvp is the vir-33

tual temperature of the rising air parcel and Tve is that of the surrounding environment.34

Thus, calculating CAPE requires lifting a hypothetical parcel through a column of at-35

mosphere defined by known vertical profiles of air temperature and moisture.36

Recently, Agard and Emanuel (2017, hereafter AE17) proposed a simple equation
for a quantity that scales with CAPE, here denoted CAPEAE17, based on an idealized
two-layer model for the atmospheric column. The AE17 model includes a dry adiabatic
free troposphere overlying a cooler, moist, well-mixed boundary layer. Their proposed
quantity scales with the difference between surface moist static energy (Msfc

ve ) and free
tropospheric dry static energy (DFT

ve ) multiplied by difference in the natural logarithm
of virtual temperatures between boundary-layer top (TBLT

ve ) and tropopause (T trop
ve ):

CAPEAE17 = (Msfc
ve −DFT

ve )ln
TBLT
ve

T trop
ve

(2)

The Dve and Mve are given by Dve = cpTve +gz and Mve = cpTve +gz+Lvr, respec-37

tively, where cp and Lv are the specific heat of air and the latent heat of vaporization38

of water, and r is the water vapor mixing ratio. Note that Eq.2 is slightly different from39

the original formulation in AE17, as we use the free tropospheric mean dry static energy40
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(DFT
ve ) rather than a constant Dve of dry adiabatic free troposphere. In addition, we use41

virtual temperatures rather than temperatures for Dve and Mve to be consistent with42

definitions of CAPE in Eq.1 (detailed in Section 3). The CAPEAE17 formula suggests43

that CAPE may to first order be determined by a limited number of environmental pa-44

rameters within the boundary-layer and free troposphere. One significant benefit of this45

outcome is that this quantity may be calculated strictly from environmental sounding46

data without the need to lift a hypothetical air parcel.47

Using this idealized framework, AE17 found that peak continental transient CAPE48

is expected to increase with global warming. Recent work used the AE17 framework to49

develop a simple physical model for a steady sounding for numerical simulations of se-50

vere convective storms (Chavas & Dawson, 2020). However, it remains unclear to what51

extent CAPEAE17, which represents CAPE in a highly idealized framework as we show52

below, directly predicts true CAPE in real soundings. Moreover, AE17 did not present53

a formal derivation of the relationship between CAPEAE17 and CAPE.54

To fill this gap, this work seeks to answer the following question: How closely does55

CAPEAE17 scale with CAPE in real soundings, and why? To answer this question, we56

first directly compare CAPEAE17 with CAPE over the U.S using reanalysis data and show57

that CAPEAE17 does indeed scale closely with regular CAPE (Section 2). We then pro-58

vide a step-by-step theoretical derivation and application to sounding data to explain59

why they scale together (Section 3). We end with a summary and discussion (Section60

4).61

2 CAPE vs. CAPEAE1762

We begin with an explicit comparison of CAPE and CAPEAE17 in terms of 1) cli-63

matological extremes over the U.S, and 2) diurnal evolution during a significant tornado64

outbreak over the southern U.S.65

2.1 Data66

We use the 3-hourly surface and model-level (72 vertical levels) Modern-Era Ret-67

rospective analysis for Research and Applications version 2 (MERRA-2) reanalysis data68

for the period 2000–2019 in this work (Gelaro et al., 2017) (data accessed in March 202069

from https://disc.gsfc.nasa.gov/datasets/M2I1NXASM 5.12.4/summary for the sur-70

face data and from https://disc.gsfc.nasa.gov/datasets/M2I3NVASM 5.12.4/summary71

for the model-level data). The horizontal grid spacing of MERRA-2 is 0.5◦×0.65◦ in lat-72

itude and longitude. The model-level MERRA-2 data performs well in reproducing a rea-73

sonable magnitude and spatial distribution of CAPE over North America, though with74

a slight underestimation when compared against radiosonde data (Taszarek, Pilguj, et75

al., 2020). MERRA-2 also provides direct estimations of atmospheric properties at boundary-76

layer top and tropopause; this is especially useful for the calculation of CAPEAE17. Tegtmeier77

et al. (2020) found realistic representations of MERRA-2 derived boundary-layer top and78

tropopause temperatures as compared to radiosonde observations, with a small mean bias79

of less than 1 K; this may induce a bias percentage of less than ∼1% in CAPEAE17. Our80

domain of analysis focuses on the contiguous U.S, as it is a major hot spot for severe thun-81

derstorm environments in the world (Brooks et al., 2003).82

We generate a 20-year dataset of CAPE using Eq.1 and CAPEAE17 using Eq.2 from83

the MERRA-2 reanalysis data over the U.S. Though CAPE estimation is sensitive to the84

origin of an air parcel, we select the near-surface parcel defined by 2-m temperature and85

moisture for simplicity, similar to past work (Riemann-Campe et al., 2009; Seeley & Romps,86

2015; Li et al., 2020). Future work may seek to test alternate levels.87
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 (a) 
         r =0.98
 CAPE = 0.44.(CAPEAE17–522)

    (b)  
   CAPE

            (c)  
0.44.(CAPEAE17–522)

[J kg-1]

   N = 3565

Figure 1. (a) Extreme values of CAPE (Eq.1) vs. CAPEAE17 (Eq. 2) over the contiguous

U.S. Extreme values are defined as the 99th percentile of their respective full-period (2000–2019)

time series from the MERRA-2 reanalysis data at each grid point (gray dots). Sample size is

N=3565. Blue line denotes the linear least squares fit with linear correlation coefficient (r).

Black line denotes one-to-one fit. (b) Spatial distribution of extreme CAPE. (c) Predicted spatial

distribution of extreme CAPE using the linear regression equation shown in (a).

2.2 Results88

We first compare the representation of the climatological spatial distribution of ex-
treme values of CAPEAE17 against CAPE, as severe thunderstorms are typically asso-
ciated with large values of CAPE (Brooks et al., 2003). We define extreme values by the
99th percentile of the full-period (2000–2019) time series of a given quantity at each grid
point, in line with past work (Singh et al., 2017; Tippett et al., 2016; Li et al., 2020; Taszarek,
Allen, et al., 2020). Results show that extreme CAPEAE17 scales very closely with ex-
treme CAPE (Figure 1a; r = 0.98), with linear regression given by

CAPE ≈ 0.44 (CAPEAE17 − 522) (3)

We then apply Eq.3 to predicted extreme CAPE from extreme CAPEAE17 (Figure 1c),89

which produces a spatial pattern that is quantitatively very similar to the observed ex-90

treme CAPE (Figure 1b).91

To further demonstrate how closely the two quantities scale, we present a case study92

comparison of their diurnal evolution during April 25, 2011, which is the first day of a93

three-day significant tornado outbreak event in the southeastern U.S (Knupp et al., 2014).94

The diurnal variation of CAPE indicates an initial generation of CAPE over southeast-95

ern Texas in the early morning (0900–1200 UTC; Figure 2a,b), followed by a strong en-96

hancement at around 1500 UTC over eastern Texas (Figure 2c) and an eastward prop-97

agation of high CAPE in the afternoon (Figure 2d–f). The high CAPE values in the afternoon–98

evening over the southeastern U.S are associated with a swath of over 50 tornado reports99

extending from eastern Texas into the mid-Mississippi Valley (reference to the SPC Storm100

Reports: https://www.spc.noaa.gov/exper/archive/event.php?date=20110425).101

Compared to CAPE, CAPEAE17 successfully reproduces the detailed spatial patterns102

and diurnal variations during the day (Figure 2g–l), with pattern correlation r ≥ 0.90103
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Figure 2. Spatial distributions of (a–f) CAPE vs. (g–l) predicted CAPE, using the equation

in Fig 1(a), at (top–bottom) 0900, 1200, 1500, 1800, 2100, and 0000 UTC on April 25, 2011 from

the MERRA-2 reanalysis data. The r denotes pattern correlation coefficient between CAPE and

CAPEAE17 conditioned on gridpoints with CAPE ≥ 100 J kg−1.

at each UTC time, though Eq. 3 slightly overestimates CAPE in the morning (Figure104

2g,h vs. a,b) and slightly underestimates CAPE in the afternoon (Figure 2j,k vs. d,e).105

Overall, our comparisons for both climatological extremes and the diurnal varia-106

tion associated with a tornado outbreak case demonstrate a tight relationship between107

CAPEAE17 and CAPE distributions. This indicates that CAPE can be approximately108

predicted from CAPEAE17 via a simple linear equation. While this section focused on109

extreme values of CAPE to demonstrate its spatial variability, We show in Section 3 that110

such a close linear relation between CAPE and CAPEAE17 extends to the full distribu-111

tion of CAPE.112
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3 Theoretical foundation113

We next provide a theoretical derivation and explanation of the intermediate steps114

and assumptions that link CAPE to CAPEAE17. We demonstrate each step both for a115

single example radiosonde sounding (Figure 3) and statistically for all U.S gridpoints in116

the full-period (2000–2019) MERRA-2 reanalysis database (Figure 4). Here the exam-117

ple sounding was observed at 0000 UTC 07 June 2011 at the SGF (Springfield, MO) sta-118

tion; we obtain it from the sounding database of the University of Wyoming (http://119

weather.uwyo.edu/upperair/sounding.html).120

3.1 A dry static energy view of CAPE121

As CAPEAE17 is a function of an environmental static energy surplus between the122

boundary layer and free troposphere, we first derive an alternative formula for estimat-123

ing CAPE based on the parcel and environmental profiles of dry static energy rather than124

temperature.125

We begin from the environmental dry static energy relation (Dve), Dve = cpTve+
gz. The environmental moist static energy (Mve) is given by Mve = cpTve +gz+Lvr.
Heat capacities and latent heats are assumed to be constant. Counterparts for the par-
cel are given by Dvp and Mvp. Note that these static energies include the virtual tem-
perature effect to be consistent with definitions of CAPE in Eq.1 as shown below. This
virtual effect may add a small positive perturbation to regular static energies of approx-
imately 0.9% and 0.8% of near-surface dry and moist static energy, respectively, given
a surface temperature of 300 K and mixing ratio of 15 g kg−1, that will decrease with
height. We may rewrite the Dve equation for differential changes in height z as dz =
− cp

g dTve+
1
gdDve and substitute into Eq.1. Doing so yields an alternative formulation

of CAPE with limited approximations based on dry static energy profiles of the rising
air parcel and the environment (derivation in Appendix A):

CAPE ≈ Γd

Γ
D = −Γd

Γ

∫ TEL
ve

TLFC
ve

(Dvp −Dve)dlnTve (4)

where Γd = g/cp is the dry adiabatic lapse rate, Γ is the virtual temperature lapse rate126

of the environment from LFC to EL, and TLFC
ve and TEL

ve are environmental virtual tem-127

peratures at LFC and EL, respectively.128

How well does Γd

Γ D (Eq.4) compare to CAPE (Eq.1)? First, we compare Γd

Γ D against129

CAPE for our example sounding (Figure 3 inset). The two calculations yield similar val-130

ues of CAPE (3775 vs. 3902 J kg−1). The slightly high bias in Γd

Γ D relative to CAPE131

(+3.4%) is due to the assumption of constant environmental virtual temperature lapse132

rate (Γ) from LFC to EL (Eq.A5). Second, we compare the two quantities for all grid-133

points over the U.S in our MERRA-2 reanalysis dataset. The two quantities are indeed134

nearly identical (Figure 4a; r > 0.99) with linear regression given by CAPE= 0.98(Γd

Γ D+135

18). The Γd

Γ D formulation performs equally well in reproducing the detailed spatial dis-136

tribution of extreme CAPE over the U.S (Figure S1b vs. S1a).137

3.2 Scaling of CAPE with CAPEAE17138

To obtain the CAPEAE17 formula from Eq.4, we must assume that Dvp = Msfc
ve ,139

which yields140

Γd

Γ
DAE17 =

Γd

Γ
(Msfc

ve −Dve)ln
TLFC
ve

TEL
ve

(5)

where Dve =

∫ TEL
ve

TLFC
ve

(Dve)dlnTve∫ TEL
ve

TLFC
ve

dlnTve

is the log-temperature-weighted average dry static en-141

ergy of environment between LFC and EL. Though this assumption is not made explic-142

–6–
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trop
EL

LFC
BLT

Figure 3. The SGF (Springfield, MO) radiosonde observed virtual temperature (in red line)

and dew-point temperature (in green line) profiles at 0000 UTC 07 June 2011 in a Skew-T dia-

gram. Solid black line represents the virtual temperature profile of a surface air parcel ascending

adiabatically. Dashed black line represents the virtual temperature profile of the idealized parcel

ascending assuming that it converts all latent heat immediately to virtual dry static energy at

LFC and perfectly conserves its virtual dry static energy thereafter. The EL, LFC, trop, and

BLT are denoted by brown lines. Inset table lists values of CAPE (grey shading; Eq.1); Γd
Γ
D

(Eq.4); Γd
Γ
DAE17 (Eq.5; approximates hatched region area = 10944 J kg−1); Γd

ΓFT CAPEAE17

is the same as Γd
Γ
DAE17 but using virtual temperatures at BLT and trop, with CAPEAE17

calculated from Eq.2. The inset table lists direct calculation of each quantity (black text) and

prediction of true CAPE (blue text) using the relevant linear regression equation. The Python

MetPy (May et al., 2008–2020) package is used to generate the parcel temperature profiles.

itly in AE17, it is an essential inference in order to derive CAPEAE17 for a real atmo-143

sphere. Physically, this assumption implies that the lifted air parcel immediately con-144

vert all latent heat to sensible heat at LFC. Hence, the parcel will experience a sudden145

jump in dry static energy Dvp (to be equal to Mvp) at the LFC, and above the LFC this146

quantity is conserved. Additionally, we must assume that the moist static energy of the147

surface parcel is conserved up to the LFC. Note that static energy is not perfectly con-148

served during adiabatic ascent because buoyancy acts as an enthalpy sink (Romps, 2015);149

because this static energy sink is not accounted for, the idealized parcel (Figure 3 black150

dashed) ends at a higher adiabat than the parcel following the regular moist adiabat (Fig-151

ure 3 black solid). Taken together, the assumption results in Dvp = Mvp = Msfc
ve .152

We further use our example sounding (Figure 3) to help understand this assump-153

tion conceptually. As noted above, the above assumption implies that all latent heat within154

an air parcel is immediately converted to sensible heat at the LFC. Thus, the parcel is155

immediately warmed dramatically at the LFC and then subsequently rises dry adiabat-156

ically from the LFC to the EL. In this way, then, Γd

Γ DAE17 is considered a “scaling” CAPE157

–7–



manuscript submitted to Geophysical Research Letters

       (a)  r =1.0
              b=0.98

       (b)  r =0.92
              b=0.32

       (c)  r =0.86
              b=0.30

       (d)  r =0.88
              b=0.44

0 0.5 501051 200100
Frequency count [per 1000]

   N = 41281199

Figure 4. Joint frequency fraction multiplied by 1000 (filled color) of (a) CAPE vs. Γd
Γ
D,

(b) CAPE vs. Γd
Γ
DAE17, (c) CAPE vs. Γd

ΓFT CAPEAE17, and (d) CAPE vs. CAPEAE17 (inset:
Γd

ΓFT vs. CAPE) for cases with CAPE ≥ 100 J kg−1 over all U.S gridpoints during 2000–2019

from the MERRA-2 reanalysis dataset (sample size N=41281199). Black line denotes one-to-one

line. Gray lines denote median (solid), interquartile range (dashed), and 5–95% range (dotted) of

CAPE. Blue line denotes the linear regression with the correlation coefficient of r.

because it represents a theoretical upper bound on how quickly a parcel can be warmed158

along its path (and hence on its integrated buoyancy). In the real atmosphere, latent heat159

is released gradually along the parcel path in accordance with the Clausius-Clapeyron160

relation that defines the moist adiabatic lapse rate. In a Skew-T diagram (Figure 3), this161

difference shows up as an expanded, angular region of positive buoyancy maximized above162

the LFC in Γd

Γ DAE17, which is larger than the true CAPE area. Thus, Γd

Γ DAE17 is sub-163

stantially larger than CAPE: Γd

Γ DAE17 =11411 J kg−1 vs. CAPE = 3775 J kg−1 (Fig-164

ure 3 inset). Γd

Γ DAE17 is slightly larger (+4.2 %) than the true value given by the hatched165

area (10944 J kg−1), due to the assumption of constant Γ as noted earlier.166

Though different in magnitude, Γd

Γ DAE17 is still highly correlated with CAPE (r=0.92)167

in the full reanalysis dataset over the U.S (Figure 4b), with linear regression given by168

CAPE ≈ 0.32(
Γd

Γ
DAE17 − 2188) (6)

–8–
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For the example sounding, Eq.6 predicts a CAPE value (2952 J kg−1) that is reasonably169

close to the true CAPE (3775 J kg−1) (Figure 3 inset). Eq.6 also performs very well in170

reproducing the spatial distribution of extreme CAPE over the U.S (Figure S1c vs. S1a).171

Physically, the factor 0.32 is a manifestation of the large difference in the temperature172

profile of the parcel as it rises for the idealized parcel as compared to the normal par-173

cel profile following the standard moist adiabatic lapse rate. The latter is a manifesta-174

tion of the Clausius-Clapeyron relation governing the rate at which condensation occurs175

as the parcel cools adiabatically, and hence the rate at which latent heat is gradually con-176

verted to sensible heat (dry static energy) as the parcel rises through the troposphere.177

This contrasts with the idealized parcel where Dvp is set equal to Mvp immediately at178

the LFC, which equates to an instantaneous conversion of all latent heat to dry static179

energy. Geometrically, the factor 0.32 visually represents the ratio of the true CAPE area180

(grey shading in Figure 3) to the idealized parcel CAPE area (hatched in Figure 3). In-181

deed, for the case shown in Figure 3, that ratio is 0.33.182

Finally, to produce a prediction with the original AE17 formulation (CAPEAE17),183

we must additionally assume that the temperatures of the EL and LFC may be replaced184

with that of the tropopause (trop) and boundary-layer top (BLT ), respectively. This re-185

places Γd

Γ DAE17 of Eq.5 with Γd

ΓFT CAPEAE17, where ΓFT is defined by the lapse rate of186

virtual temperature of the free troposphere between the BLT and trop. These approx-187

imations are more quantitatively reasonable for higher-CAPE cases supportive of deep188

convection, as in the example sounding (Figure 3). This final approximation ( Γd

ΓFT CAPEAE17)189

is estimated solely by environmental parameters without lifting a hypothetical air par-190

cel. We use the reanalysis dataset to examine its relationship to CAPE (Figure 4c), which191

indicates a close correlation (r=0.86) with a linear regression given by:192

CAPE ≈ 0.30(
Γd

ΓFT
CAPEAE17 − 1608) (7)

Hence the scaling factor is similar to that for Γd

Γ DAE17 above. For our example sound-193

ing, Eq.7 predicts a CAPE value (3232 J kg−1) again reasonably close to the true CAPE194

(3775 J kg−1) (Figure 3 insert). Eq.7 also quantitatively reproduces the spatial pattern195

of extreme CAPE over the U.S (Figure S1d vs. S1a).196

Ultimately, then, Eq.7 offers a scaling of CAPE that depends only on a limited num-197

ber of boundary-layer and free tropospheric variables. It differs from CAPEAE17 itself198

in the inclusion of the coefficient Γd

ΓFT . This factor does not appear in the idealized model199

of AE17 because their model assumes a dry adiabatic free troposphere (i.e., ΓFT = Γd),200

which yields Γd

ΓFT = 1.201

Given that CAPE was found to be predictable from CAPEAE17 alone in Section202

2 (Eq.3), this result implies that the free tropospheric lapse rate (ΓFT ) of the modern203

atmosphere does not vary too strongly and thus the factor Γd

ΓFT remains relatively con-204

stant. We use our reanalysis dataset to calculate the statistics of Γd

ΓFT as a function of205

CAPE (Figure 4d inset). The result is indeed a mean (± one standard deviation) value206

of 1.47±0.06, with variance decreasing as CAPE increases. The resulting mean free tro-207

pospheric lapse rate (ΓFT ) is roughly 6.7 K km−1, which is close to that of the U.S Stan-208

dard Atmosphere (COESA, 1976). These results indicate a relatively constant free tro-209

pospheric thermal structure at high values of CAPE, a result that is worthy of deeper210

investigation. As a result, we are able to directly scale CAPE with CAPEAE17 by as-211

suming that Γd

ΓFT is constant. We note that this behavior may differ in an alternate cli-212

mate state. As a final test, we compare CAPEAE17 with CAPE for cases with CAPE213

≥ 100 J kg−1 for the entire MERRA-2 database over the U.S and find a strong linear214

correlation between them as well (r = 0.88; Figure 4d), with a linear regression of215

CAPE ≈ 0.44(CAPEAE17 − 1104). (8)

This outcome is quite similar to the linear regression model we get from extreme cases216

alone in Eq.3. This is also close to the results of simply substituting Γd

ΓFT =1.47±0.06 into217

–9–
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Eq.7, which yields a scaling factor of 0.44±0.02 and an offset of −1095±50. Using Eq.8218

also successfully predicts the approximate CAPE for the example sounding (3496 vs. 3775219

J kg−1; Figure 3 inset).220

4 Conclusions221

CAPE is a key thermodynamic parameter commonly calculated to evaluate the po-222

tential for deep convection within a given environment. AE17 proposed a simple formula223

for a quantity (CAPEAE17) that scales with CAPE that depends only on a limited num-224

ber of environmental variables and does not require lifting a hypothetical parcel. CAPEAE17225

represents an expression of CAPE for a highly idealized column in which the EL and LFC226

are exactly the tropopause and boundary-layer tops, the free tropospheric lapse rate is227

dry adiabatic, and the rising parcel instantly convert all latent heat to sensible heat at228

LFC; this requires idealizations of both the environmental and parcel thermal profiles.229

This work used a 20-year reanalysis dataset over the U.S to examine the extent to230

which this CAPE-like quantity can be used to predict true CAPE for real soundings, an-231

alyzing both the spatial distribution of climatological extremes and the diurnal varia-232

tion associated with a historical tornado outbreak case study. Results show a close scal-233

ing relationship between CAPEAE17 and CAPE, yielding a simple linear equation for234

predicting CAPE from environmental data. To understand the physics underlying this235

relationship, we provided a step-by-step derivation linking the two quantities, which may236

be summarized as:237

CAPE
a1
≈ Γd

Γ
D a2∼ Γd

Γ
DAE17

a3∼ Γd

ΓFT
CAPEAE17

a4∼ CAPEAE17 (9)

where (a1–a4) represent the assumptions: (a1) constant environmental virtual temper-238

ature lapse rate from LFC to EL; (a2) the rising parcel immediately converts all latent239

heat to sensible heat at the LFC; (a3) temperatures at the EL and LFC are equal to240

the tropopause and boundary-layer top, respectively; (a4) free tropospheric lapse rate241

of the present atmosphere does not vary strongly in space or time in environments with242

non-negligible CAPE.243

Though our assessment focused on the U.S. continent, CAPEAE17 also performs244

well in predicting CAPE over the Gulf of Mexico and nearby tropical ocean (Figure S2a–245

l). Additionally, we examined an existing analytical prediction for mean CAPE in the246

tropics (CAPER16; Eq. 17 in Romps (2016)), which also depends only on environmen-247

tal parameters. We find that CAPER16 does not reproduce the detailed spatial distri-248

bution and temporal evolution of high CAPE values for the case study over the U.S. con-249

tinent, though the performance is slightly improved over ocean (Figure S2m–r). The deriva-250

tion of CAPER16 assumes a zero-buoyancy plume under radiative–convective equilibrium.251

This assumption applies very well for describing the tropical mean state, which is gov-252

erned principally by the upward transfer of heat and moisture by persistent deep con-253

vection (and its associated entrainment) that allows for an accurate prediction of the free254

tropospheric thermodynamic structure from surface air properties alone. However, con-255

tinental convective environments involve the time-dependent buildup and storage of CAPE256

due to the presence of significant convective inhibition generated by the superposition257

of distinct airmasses as well as variability in land surface-air interactions (Carlson et al.,258

1983; Singh & O’Gorman, 2013; Romps, 2014, 2016; Agard & Emanuel, 2017). Hence,259

CAPER16 would not be expected to perform well for such environments.260

This work has significant practical benefits for the simple estimation of CAPE and261

for understanding the processes that create CAPE in our atmosphere. The principal end262

result of this work is a simple linear equation based on the 20-year reanalysis dataset over263

the U.S (Eq.8) to predict CAPE from CAPEAE17, which may be calculated strictly from264

environmental data without the need to lift a hypothetical parcel. Meanwhile, the close265

relationship between CAPE and CAPEAE17 indicates that there is significant potential266
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to use CAPEAE17 to understand how CAPE is generated within the climate system. This267

includes quantifying the roles of variability in surface moist static energy, free tropospheric268

dry static energy, and temperatures at the top of boundary layer and tropopause and269

the processes that govern each. This is a promising avenue of future research.270

Appendix A Derivation of Eq.4271

The equation for differential changes in environmental dry static energy may be272

written as dz = − cp
g dTve + 1

gdDve and substituting into Eq.1 yields273

CAPE =

∫ zEL

zLFC

g
Tvp − Tve

Tve
(−cp

g
dTve +

1

g
dDve) = D + T (A1)

This formulation decomposes CAPE into two terms. The first is given by

D = −
∫ zEL

zLFC

(
Tvp − Tve

Tve
)d(cpTve) = −

∫ zEL

zLFC

(Dvp −Dve)dlnTve (A2)

and represents differences in dry static energy integrated over changes in temperature.
The second is given by

T =

∫ zEL

zLFC

(
Tvp − Tve

Tve
)dDve (A3)

and represents integrated differences in temperature over changes in dry static energy.274

To further simplify Eq.A1, we can relate T and D by calculating their ratio. Using the275

definition of buoyancy, b =
Tvp−Tve

Tve
, we may write this ratio as276

T
D

=

∫ zEL

zLFC
(b) dDve

−
∫ zEL

zLFC
(b) d(cpTve)

= −(1 +
g

cp

∫ zEL

zLFC
(b) dz∫ zEL

zLFC
(b) dTve

)

= −(1 +
g

cp

b1

∫ zEL

zLFC
dz

b2

∫ zEL

zLFC
dTve

)

=
b1

b2

Γd

Γ
− 1 (A4)

where b1 =

∫ zEL
zLFC

(b) dz∫ zEL
zLFC

dz
and b2 =

∫ zEL
zLFC

(b) dTve∫ zEL
zLFC

dTve
represent the mean value of b between277

the LFC and EL weighted by height (z) and environmental virtual temperature (Tve),278

respectively. Γd = g/cp is the dry adiabatic lapse rate and Γ = −
∫ zEL
zLFC

dTve∫ zEL
zLFC

dz
= −TEL

ve −TLFC
ve

zEL−zLFC
279

represents the average environmental virtual temperature lapse rate from LFC to EL.280

If we take Γ to be constant between the LFC and EL, then b1 = b2, which yields

T
D

=
Γd

Γ
− 1 (A5)

Substituting this result into Eq.A1 yields

CAPE ≈ Γd

Γ
D = −Γd

Γ

∫ zEL

zLFC

(Dvp −Dve)dlnTve (A6)

This equation is shown to closely match the true CAPE in the main manuscript.281
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Figure S1. Extreme values of (a) CAPE compared to estimated CAPE from (b) Γd

Γ
D, (c)

Γd

Γ
DAE17, (d) Γd

ΓFT CAPEAE17, and (e) CAPEAE17 using their respective linear regression equation

shown in the left (blue text). The (a) and (e) are the same as Figure 1.
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Figure S2. As in Figure 2, but includes both the U.S. continent and tropical ocean area

for spatial distributions of (a–f) CAPE vs. (g–l) predicted CAPE from CAPEAE17, and (m–r)

CAPER16, at (top–bottom) 0900, 1200, 1500, 1800, 2100, and 0000 UTC on April 25, 2011 from

the MERRA-2 reanalysis data. The r indicates its pattern correlation coefficient with CAPE

conditioned on gridpoints with CAPE ≥ 100 J kg−1.
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