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Abstract

The NOAA Physical Sciences Laboratory produces the Global Ensemble Forecasting System (GEFS) which comprises 11
ensemble members (1 control and 10 perturbation runs) for over a 36-year period (December 1984 to present), with forecasts
initialized every day for the next 16 days (first 8-day forecasts obtained from a high-resolution grid and the next 8-day forecasts
from a low-resolution grid). The system provides 36 variables related to a wide range of hydrometeorological processes. In
this study, we assess the predictability of precipitation within the context of statistical downscaling using a minimum set
of predictor variables (precipitation and temperature). We use feedforward backpropagation neural networks with a suite of
training algorithms to determine which variables (features) are of most relevance at different forecast lead times. The outcome

of this study will significantly benefit short-term flood forecasting using GEF'S data.
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OVERVIEW

« In this study, we carried out the statistical downscaling of GEFS forecasts.
« The forecasts skill was assessed across a wide range of lead times.

o The point-scale rain gauge measurements were used as the targets to match.

Figure 1: Framework
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STUDY AREA AND DATA

Study Area:

« Catchment: Elkhorn river basin

o Sub-catchments: Upper Elkhorn, North Fork Elkhorn, Logan, and Lower Elkhorn.
« Location: Northeast and north-central Nebraska

o Area of catchment: 17,871 km?

« Length of Elkhorn river: 466.71 km

Figure 2: Elkhorn river basin
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Data Collection:
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1. Climatological Data:

o For ground-Based Station: National Water Information System: USGS Water Resources (NWIS, 2020)

Figure 3: Meteorological stations in Elkhorn river basin
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o For Ensemble Data: Earth System Research Laboratories (ESRL): Global Ensemble Forecast System (GEFS-Reforecast-V2) (GEFS,2020)
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METHODOLOGY

Statistical Downscaling:

Figure 4: Statistical Downscaling Technique:

Large scale predictors
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Local predictands

Artificial Neural Network:

Figure 5: Neural Network diagram
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o The feedforward backpropagation network was developed with precipitation, minimum
temperature, and maximum temperature as input variables, which was trained using the
Levenberg-Marquardt algorithm.

o To capture the spatial variability, precipitation values from nine adjacent grid cells, with the gauge station located in the middle cell, were used as
inputs.

« Output variable: observed precipitation from ground-based stations.

o The sigmoid transfer function was used between the input and hidden layers, whereas the linear transfer function was used between the hidden and
output layers.

« Number of iterations: 500; number of neurons: 11; number of hidden layer: 1.

« In the calibration data set of 2009 to 2016, the training was carried out with 70%, validation with 15%, and testing with 15% of the data, and the
performance was further validated with the validation data set of 2017 to 2019.
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PRELIMINARY RESULTS

Result 1:

Figure 6: Station 1: Correlation coefficient between the ground-based precipitation target variable and GEFS precipitation and temperature input variables for all leads
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Table 1: Range of correlation for all bles, forecasts, and stations
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Discussion:

« Input variables from GEFS are correlated with the ground-based stations.

o All the correlation is within the mean range of [0.4, 0.6].

o The range of minimum and maximum correlation vary highly for each day forecast.

o The analysis also suggests that input variables derived from the low-resolution grid (Day +8 to +15) is poorly correlated in comparison with a high-

resolution grid (Day 0 to +7).

Result 2:

Figure 7: Station 1: Performance of calibrated and validated results of the trained neural network
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Station 1 - Calibration
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Discussion:

o The correlation coefficient was obtained from the statistical analysis of the output of the neural network by comparing predictors and predictands.
« For any given forecast day 0 to +3 showed a better correlation coefficient in comparison to the later forecast days.

o The model performance is dependent on the correlation between input variables and the output variables.
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OBJECTIVE & RESEARCH QUESTION

Objective:

Statistical downscaling using Artificial Neural Network technique of precipitation of various ensembles from GEFS forecasts.

Research question:

How does the predictability change with lead times while downscaling the ensemble precipitation forecasts from the GEFS system?

Study Area
Elkhorn Watershed Zone
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Elkhorn River Basin
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CONCLUSION

« Statistical downscaling technique using artificial neural network showed good performance for the first few days forecast.
« Further analysis of optimum network architecture needs to be carried out.

« Results of the correlation plot could be used to study how predictability varies along with the forecast lead time. More in-depth analysis is needed to

better understand predictability change.

« This is a preliminary assessment. Additional variables can be included to test if the performance can be improved.
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ABSTRACT

The NOAA Physical Sciences Laboratory produces the Global Ensemble Forecasting System (GEFS) which comprises 11
ensemble members (1 control and 10 perturbation runs) for over a 36-year period (December 1984 to present), with forecasts
initialized every day for the next 16 days (first 8-day forecasts obtained from a high-resolution grid and the next 8-day
forecasts from a low-resolution grid). The system provides 36 variables related to a wide range of hydrometeorological
processes. In this study, we assess the predictability of precipitation within the context of statistical downscaling using a
minimum set of predictor variables (precipitation and temperature). We use feedforward backpropagation neural networks
with a suite of training algorithms to determine which variables (features) are of most relevance at different forecast lead
times. The outcome of this study will significantly benefit short-term flood forecasting using GEFS data.
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