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Abstract

Land surface water is a key component of the global water cycle. Compared to remote sensing by satellites, both temporal

extension and spatial continuity is superior in modeling of water surface area. However, overall evaluation of models representing

different kinds of surface waters at the global scale is lacking. We estimated land surface water area (LSWA) using the

Catchment-based Macro-scale Floodplain model (CaMa-Flood), a global hydrodynamic model, and compared the estimates

to Landsat with 3” spatial resolution at the global scale. Results show that the two methodologies show agreement in the

general spatial patterns of LSWA (e.g., major rivers and lakes, open-to-sky floodplains), but globally consistent mismatches

were found under several land surface conditions. CaMa-Flood underestimates LSWA in high northern latitudes (e.g., the

Canadian Shield) and coastal areas, as the presence of isolated lakes in local depressions or small coastal rivers is not considered

by the model’s physical assumptions. In contrast, model-estimated LSWA is larger than Landsat estimates in forest-covered

areas (e.g., Amazon basin) due to the opacity of vegetation for optical satellite sensing, and in cropland areas due to the lack

of dynamic water processes (e.g., re-infiltration, evaporation, water consumption) and constraints of water infrastructure (e.g.,

canals, levees). These globally consistent differences can be reasonably explained by the model’s physical assumptions or optical

satellite sensing characteristics, and applying filters (e.g., floodplain topography mask, forest and cropland mask) to the two

datasets allows the remaining local-scale discrepancies to be attributed to locally varying factors (e.g., channel parameters,

atmospheric forcing).
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 Land surface water area is estimated globally at 3″ spatial resolution using CaMa-Flood 13 

and compared with Landsat. 14 

 Agreement and mismatch between model and satellite data exhibit spatial features 15 

associated with topography and land cover conditions.  16 

 Applying appropriate filtering masks to model and satellite results enables reasonable 17 

comparison of water surface areas. 18 
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Abstract 20 

Land surface water is a key component of the global water cycle. Compared to remote sensing 21 

by satellites, both temporal extension and spatial continuity is superior in modeling of water 22 

surface area. However, overall evaluation of models representing different kinds of surface 23 

waters at the global scale is lacking. We estimated land surface water area (LSWA) using the 24 

Catchment-based Macro-scale Floodplain model (CaMa-Flood), a global hydrodynamic model, 25 

and compared the estimates to Landsat with 3″ spatial resolution at the global scale. Results 26 

show that the two methodologies show agreement in the general spatial patterns of LSWA (e.g., 27 

major rivers and lakes, open-to-sky floodplains), but globally consistent mismatches were found 28 

under several land surface conditions. CaMa-Flood underestimates LSWA in high northern 29 

latitudes (e.g., the Canadian Shield) and coastal areas, as the presence of isolated lakes in local 30 

depressions or small coastal rivers is not considered by the model’s physical assumptions. In 31 

contrast, model-estimated LSWA is larger than Landsat estimates in forest-covered areas (e.g., 32 

Amazon basin) due to the opacity of vegetation for optical satellite sensing, and in cropland areas 33 

due to the lack of dynamic water processes (e.g., re-infiltration, evaporation, water consumption) 34 

and constraints of water infrastructure (e.g., canals, levees). These globally consistent differences 35 

can be reasonably explained by the model’s physical assumptions or optical satellite sensing 36 

characteristics, and applying filters (e.g., floodplain topography mask, forest and cropland mask) 37 

to the two datasets allows the remaining local-scale discrepancies to be attributed to locally 38 

varying factors (e.g., channel parameters, atmospheric forcing).  39 

 40 

1 Introduction 41 

Land surface water area (hereafter LSWA) is of paramount importance to the survival of 42 

all life forms (Karpatne et al., 2016). Water not only provides habitat for aquatic organisms, but 43 

also affects various aspects of human life, such as for drinking and agricultural, domestic and 44 

industrial purposes (Vorosmarty and Sahagian, 2000). LSWA is highly dynamic and variations 45 

therein can be used as a direct indicator of climate change (Williamson et al., 2009) or human-46 

induced changes (Pekel et al., 2016). LSWA is thus an essential variable in ecological, 47 

hydrological, climatic and economic studies (Hirabayashi et al., 2013; Raymond et al., 2013; 48 

Willner et al., 2018). For such applications, accurate water information at adequate 49 

spatiotemporal resolution is crucial.  50 

Estimation of LSWA relies on three methods: ground surveys, remote sensing and 51 

models. Among these methods, ground surveys cannot fully describe the water dynamics due to 52 

their slow updating frequency (Carroll et al., 2009; Lehner and Döll, 2004) and the significant 53 

cost of covering a large spatial domain. Remote sensing using satellites is an outstanding method 54 

that can provide regular large-scale observations of water surfaces. Various satellites have been 55 

used to identify LSWA, including Landsat (Pekel et al., 2016; Qi et al., 2009), MODIS (Ji et al., 56 

2018; Lai et al., 2014), and a combination of passive and active microwave satellites (Prigent et 57 

al., 2007; Schumann and Moller, 2015). Hydrodynamic models provide another method for 58 

determining water area and dynamics. Hydrodynamic models provide a powerful tool that can 59 

produce continuous water maps over time and space, regardless of weather (e.g., cloudy) or 60 

vegetation cover. Moreover, models are the only way to hindcast the water surface in the past 61 

before satellites were launched (Lewin and Hughes, 1980) and forecast the future changes when 62 
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no observational results exist (Hirabayashi et al., 2013). Over the past two decades, several 63 

hydrodynamic models have been developed (e.g., LISFLOOD-FP, HEC-RAS, MIKE-Flood, 64 

DELFT3D, CaMa-Flood) and tested under various conditions (Bates and De Roo, 2000; 65 

Pappenberger et al., 2005; Patro et al., 2009; Dingle et al., 2020; Yamazaki et al., 2011). For a 66 

detailed review of flood inundation models, refer to Teng et al. (2017).  67 

Modeling of river hydrodynamics builds on a process chain from climate forcing to 68 

runoff and then to routing. While simulation of river discharge is relatively straightforward, as it 69 

is explained mainly by the basin-integrated water budget, simulation of modeled LSWA is more 70 

difficult, as it is affected by local topography in addition to the basin-wide water budget. 71 

Therefore, estimates of LSWA contain multiple sources of uncertainties and require validation 72 

against observational results, which are generally satellite-derived inundation maps. Due to the 73 

need for high-quality large-scale topography data and model parameters as well as high 74 

computational capacity, most validations have been conducted for small catchments (e.g., the 10-75 

km Alzette River (Schumann et al., 2007) and 60-km Severn River (Horritt, 2006)). These 76 

studies mainly compared inundation during specific flood events within a short period against 77 

inundation maps at a relatively high spatial resolution (Horritt, 2000, 2006; Khan et al., 2011; 78 

Revilla-Romero et al., 2015; Schumann et al., 2007; Try et al., 2018; Wilson et al., 2007), with a 79 

primary focus on evaluating whether the model could reasonably reproduce the flooding 80 

distribution in the region of interest. 81 

However, those local studies are insufficient for determining the capacity of a model to 82 

represent the water surface extent under different conditions. For example, previous local studies 83 

have generally investigated the ability of a model to map inundation in the form of open-to-sky 84 

floodplains, and have not tested model performance on other water forms (e.g., normal rivers, 85 

thawing lakes, and man-made water areas such as dam reservoirs and irrigated fields), which 86 

account for a large portion of global water surface (Lehner and Döll, 2004). In addition, model 87 

validation at the local scale cannot attribute simulation errors to globally consistent issues related 88 

to the model assumptions or satellite characteristics or to locally varying error sources such as 89 

topography, channel parameters and input forcing data. Therefore, application and validation at 90 

large scales, from continental to global, are required to clarify the applicability of hydrodynamic 91 

models under various conditions and for different water forms.  92 

By reducing the spatial resolution and improving the computation capacity, flood model 93 

applications have been expanded to the scales of large river basins (Try et al., 2018; Wilson et 94 

al., 2007), continents (Decharme et al., 2008; Schumann et al., 2016) and global (Decharme et 95 

al., 2012, Yamazaki et al., 2011). Global Inundation Extent from Multi-Satellites (GIEMS) data, 96 

which were first released in 2007 and have been occasionally updated (Prigent et al. 2007; Papa 97 

et al., 2010, Prigent et al., 2020), provide the most frequently used referenced satellite inundation 98 

maps for validation of model performance over large areas and long term. Wu et al. (2019) 99 

compared global modeling results with fractional water cover retrieved from enhanced 100 

brightness temperatures acquired by the Soil Moisture Active Passive (SMAP, Chaubell et al., 101 

2018) mission. However, both of these applications fail to provide information on smaller water 102 

bodies due to their coarse spatial resolutions of 25 km and 9 km, respectively, and therefore they 103 

cannot answer the question of whether such water surfaces are well represented by global flood 104 

models. Moderate Resolution Imaging Spectroradiometer (MODIS, 500 m; Li et al., 2018) and 105 

Landsat (30 m; Pekel et al., 2016) products might be useful for answering this question, as they 106 

provide global water surface area data at a much finer spatial resolution, which can adequately 107 
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represent individual water bodies. However, these two new products have not yet been utilized 108 

for large-scale model validation.  109 

As noted above, various types of water bodies are formed and impacted by different 110 

external forcing factors and land surface conditions (Lehner and Döll, 2004; Pekel et al., 2016, Ji 111 

et al., 2018). Satellite-derived results from different sources will deviate in their estimates of 112 

water extent, depending on the location and size of the water bodies, as well as the weather and 113 

land surface conditions at the time of observation (Aires et al., 2018; Huang et al., 2018; 114 

Lamarche et al., 2017; Notti et al., 2018, Pham-Duc et al., 2017). Although multiple satellite-115 

derived results have been used for validating hydrodynamic model performance, we have not 116 

sufficiently investigated when applying to validation how good the satellites themselves can 117 

identify different water types at a large scale. Meanwhile, hydrodynamic models have specific 118 

physics and limitations, and it is not possible to represent all types of water bodies accurately 119 

using existing model structures and physical assumptions. Therefore, when making comparisons 120 

between model and satellite results, pre-processing of the data is necessary. For example, 121 

Decharme et al. (2012) subtracted cropland area from GIEMS data to validate their model 122 

performance more reasonably, as their model did not include human processes. However, the 123 

importance of data processing is neglected in most current studies, making interpretation of the 124 

agreement or mismatch between model and satellite difficult and sometimes misleading.  125 

In this study, we estimate global LSWA using the Catchment-based Macro-scale 126 

Floodplain model (CaMa-Flood), a global hydrodynamic model, at a much finer spatial 127 

resolution (3″) than previous global-scale model validation studies. The estimation focuses not 128 

only on floods but also includes other water forms under normal conditions. Evaluation is 129 

conducted against the Landsat water-occurrence product (Pekel et al., 2016). We discuss where 130 

the model and Landsat measurements agree and where globally consistent mismatches occur that 131 

can be reasonably explained by the limitations or characteristics of the model or satellite, rather 132 

than locally varying error sources. Then, we introduce various filtering masks and land cover 133 

conditions used to make reasonable and adequate comparisons of water surface areas between 134 

models and satellites. Finally, we provide instructions for making appropriate comparisons, 135 

including areas where the comparison of raw values from models and satellites are valid, the 136 

types of water surfaces that cannot be captured by model simulations, and the filters that should 137 

be applied to conduct appropriate comparisons. 138 

2 Materials and Methods 139 

2.1 Satellite products 140 

2.1.1 Landsat 141 

The historical water surface occurrence data used in this study were generated by Pekel et 142 

al. (2016) based on three million Landsat satellite images obtained between 1984 and 2015. The 143 

months in which water was present were recorded. Water occurrence was estimated as the ratio 144 

of months with water to the entire time period, excluding time points with invalid data (missing 145 

data, cloud or snow cover). This exclusion will affect the accuracy of estimates, especially in 146 

tropical regions where the cloud index is high and at high latitudes where snow cover is 147 

common. Due to the availability of its high-resolution and long-term data, the Landsat water-148 

occurrence product has been used as a reference for water classification (Ji et al., 2018; Senyurek 149 

et al., 2020). The original Landsat water-occurrence product has spatial resolution of 1″ (~30 m 150 



manuscript submitted to Water Resources Research 

 5 

at the equator), which is aggregated to 3″ (~90 m) to match the minimum spatial resolution of 151 

CaMa-Flood. Details of the processing of the Landsat water-occurrence product can be found in 152 

the original report (Pekel et al., 2016). 153 

2.1.2 GIEMS 154 

The GIEMS product is derived from a series of satellite sensors, primarily passive 155 

microwaves (Special Sensor Microwave/Imager, SSM/I), with additional data from visible and 156 

near-infrared observations and active microwave measurements. GIEMS is originally calculated 157 

on an equal-area grid of 0.25° at the Equator, and has been interpolated in this study to regular 158 

grids of 0.25°×0.25° for comparison with the other products. GIEMS is available monthly, and 159 

the latest version, GIEMS-2, extends the available period to 1992–2015 (Prigent et al., 2020). 160 

For details of data processing, see previous reports (Prigent et al., 2001, 2007, 2020). In this 161 

study, Landsat water-occurrence data were used as the primary reference, with GIEMS as a 162 

supplementary dataset to explain differences in water surface areas between the model and 163 

Landsat.  164 

2.2 CaMa-Flood 165 

CaMa-Flood is a global hydrodynamic model for continental-scale rivers. River networks 166 

are discretized into irregular unit catchments with sub-grid topographic parameters of river 167 

channels and floodplains. River discharge and other flow characteristics can be calculated using 168 

the local inertial equations along the river network map (MERIT Hydro, Yamazaki et al., 2019). 169 

Water storage in each catchment unit is the prognostic variable, and is determined using the 170 

water balance equation. The water level and flooded area are identified from the water storage in 171 

each unit catchment based on the sub-grid topographic information. Detailed descriptions of 172 

CaMa-Flood can be found in the original papers by Yamazaki et al. (2011, 2012, 2014).  173 

2.2.1 Model settings  174 

The overall workflow of this study is illustrated in Figure 1. We ran CaMa-Flood 175 

globally from 2001 to 2014. The unit catchment in CaMa-Flood was set to 0.1° spatial resolution 176 

(~10 km), meaning that only one unit catchment was assigned to each 0.1°×0.1° grid. This 177 

resolution is high for global studies, but still inadequate, especially in coastal regions and 178 

mountainous headwater catchments where multiple small rivers occur within a grid. As an input 179 

runoff for CaMa-Flood, we used eartH2Observe runoff data produced by the land surface 180 

hydrological model HTESSEL and forced with WFDEI weather boundary conditions (Balsamo 181 

et al., 2009). Runoff was provided at 0.25° resolution, and therefore was distributed to each unit 182 

catchment according to the areal proportion of the unit catchment in the corresponding grid.  183 

2.2.2 Downscaling 184 

Although 0.1° is a high spatial resolution for global modeling, it is insufficient for 185 

representing small water bodies and rapid changes in the water surface area (Fluet-Chouinard et 186 

al., 2015; Winsemius et al., 2013). Therefore, the CaMa-Flood outputs were downscaled to 3″ 187 

using high-resolution topography information (MERIT DEM), which is directly comparable to 188 

the high-resolution Landsat occurrence product. The downscaling process was based on the 189 

fundamental assumptions of CaMa-Flood that the movement of water within a unit catchment is 190 

instantaneous and that the water surface is flat within the unit catchment at each time step. The 191 
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area of lowest elevation is inundated first, until the total water volume approximates the 192 

estimated water storage of the unit catchment. To reduce the computational cost, we first 193 

calculated the depth-duration curve (i.e., the cumulative number of days on which the water level 194 

was above different elevations at an interval of 0.1 m) for each unit catchment in each year. 195 

Downscaling was conducted by projecting the number of days when the water surface elevation 196 

of the flooded unit catchment exceeded the ground elevation of the corresponding 3″ DEM pixel. 197 

The downscaled inundation water extent was determined using the same flood duration for a 198 

given elevation. The final result is approximately equal to the result from direct downscaling 199 

(i.e., first downscaling the simulated flood depth for each day and later aggregating the 200 

inundation days), but this process saved significant time, as the number of repeats used for 201 

downscaling was efficiently reduced.  202 

 203 

 204 

Figure 1. Flow chart of data preparation for water surface area from CaMa-Flood and two other 205 

data types derived from satellite remote sensing (Landsat and GIEMS). 206 

 207 

2.3 Occurrence selection  208 

Water occurrence ranges from 0% in non-water areas to 100% in permanent water areas. 209 

In this study, we aim to evaluate the abilities of the model and satellite data to capture different 210 

types of water bodies, and therefore we primarily examine areas with water occurrences greater 211 

than 10%. The water area above this threshold includes permanent water and most seasonal 212 

water. This threshold removes areas that are flooded only during very extreme flood events, to 213 

compare general trends between the model and the satellite data. This threshold also reduces the 214 

impact on water-area estimates of high sensitivity at the tail end of the low-occurrence criterion. 215 

Such a low threshold reduces the impact of cloud obstruction, as the affected areas are generally 216 

counted. The sum of the water areas with greater than 10% occurrence is the LSWA discussed in 217 

this study (Figure 1). The resolution is 3″, which is aggregated to 0.25° for better visualization 218 

and comparison with other products at 0.25° spatial resolution (e.g., GIEMS). Meanwhile, water 219 

surfaces with different occurrences can be mapped as needed for interpretation of the features 220 

present in model and satellite results for specific regions.  221 

 222 
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2.4 Spatial masking 223 

Using the data-processing steps described above, occurrence data from CaMa-Flood and 224 

Landsat are both available at 3″ resolution. However, due to the properties of the model and 225 

satellites, discrepancies in water surface area occur with typical spatial patterns at the global 226 

scale, which are associated with various land surface conditions. To facilitate comparison, we 227 

applied different filtering masks (maps, 3″) to water-surface products from these two sources 228 

(Figure 1). Therefore, differences are grouped within the same land surface condition, allowing 229 

the source of the difference to be attributed to the limitations or characteristics of the model or 230 

satellite.  231 

2.4.1 Land masking 232 

A land mask excluding all seawater areas was applied to the Landsat occurrence product 233 

prior to comparison, as some marine areas along coastlines are included in the Landsat dataset. 234 

The land mask was prepared from a global hydrography dataset (MERIT Hydro) (Yamazaki et 235 

al., 2019), which is also used as the baseline map for CaMa-Flood. Applying the land mask to 236 

Landsat data ensures that the two water-surface products cover the same spatial extent of land.  237 

2.4.2 CaMa-Flood floodplain masking 238 

The water surface in CaMa-Flood is based on a few assumptions. First, all water from the 239 

input runoff data directly enters the river channel, and the water surface is formed by surface 240 

runoff routed along river networks. Water bodies that are recharged from other sources (e.g., 241 

melting snow and ice, shallow groundwater appearing at the surface, tides, or pluvial flooding 242 

due to local rainfall) and local depressions other than river channels are therefore not modeled. 243 

Second, CaMa-Flood assumes that the water surface is flat within each unit catchment (Figure 2-244 

a); however, this assumption is invalid for rivers with high surface gradients, particularly 245 

mountainous springs. Third, because only one major river can be represented in each unit 246 

catchment, small coastal rivers are neglected in favor of major rivers. Underestimation of the 247 

water surface area is apparent at the local scale, especially where small water bodies (e.g., 248 

narrow rivers, small lakes, coastal rivers) are abundant. Although such water surfaces are 249 

relatively small, they can be captured by Landsat (Pekel et al., 2016). 250 

Therefore, we prepared a floodplain mask that defines the potential maximum extent that 251 

can be simulated by CaMa-Flood (red line in the schematic diagrams in Figure 2-b,c) based on 252 

CaMa-Flood sub-grid topography. This mask is accomplished through inundation area 253 

downscaling from the historical maximum floodplain water elevation estimated by CaMa-Flood 254 

from 2001–2014. We increased these values by 1.5 times and set all values below 2.0 m (but 255 

above 0) to 2.0 m to consider the impact of uncertainties in runoff forcing on CaMa-Flood 256 

(Figure 2-b,c). The floodplain mask was then applied to the Landsat occurrence product to 257 

separate the results within and outside the potential maximum extent covered by CaMa-Flood. 258 

CaMa-Flood does not represent water outside this floodplain mask due to its modeling structure, 259 

and therefore water outside the floodplain mask in Landsat is excluded from comparisons when 260 

the floodplain mask is applied. 261 

In addition, as CaMa-Flood calculates the hydrodynamics of only one major river within 262 

each unit catchment corresponding to a 0.1° grid box, only inundations of floodplains along the 263 

major river within each 0.1° grid box are simulated. Thus, inundations in small coastal river 264 
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basins are not represented due to the assumptions of CaMa-Flood, and are excluded from the 265 

floodplain mask to allow for direct comparison against the Landsat water map. 266 

 267 

 268 

Figure 2. Schematic diagrams of (a) the river and floodplain representations in CaMa-Flood, (b) 269 

the realistic river profile and floodplain mask applied in this study, and (c) the different water 270 

bodies (e.g., rivers, local depressions, streams from hill slopes, coastal rivers, irrigated fields) 271 

and the floodplain mask as well as an illustration of the results from Landsat. The floodplain is 272 

approximated as a monotonically increasing function in CaMa-Flood, and therefore land water 273 

surfaces on hill slopes, local depressions, irrigated fields and coastal rivers are not well 274 

represented. The floodplain mask was introduced to exclude water areas that are not represented 275 

by CaMa-Flood from the analysis. 276 

 277 

2.4.3 European Space Agency Climate Change Initiative (ESA CCI) land cover map 278 

The ESA CCI land cover map was utilized in this study to determine land surface 279 

conditions. Water surface areas with different land cover types were grouped and compared 280 

between the model and satellite results to illustrate the relationship of water surface area with 281 

land cover type (e.g., forests, croplands, wetlands). The original CCI product was at 300-m 282 

spatial resolution, which was interpolated to 3″ using a simple nearest-neighbor interpolation 283 

method.  284 

2.4.4 Tree density map      285 

A limitation of optical satellites is that clouds and thick vegetation cannot be penetrated, 286 

thus, the water under clouds and thick vegetation is difficult to be detected. In the Landsat 287 

occurrence product, images with cloud cover are removed, but the impact of vegetation cannot 288 

be eliminated from the observations (Pekel et al., 2016). Although the CCI land cover map also 289 

contains information regarding trees, it does not provide tree density, and the performance of 290 
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model or satellite data differs with the level of tree density. Therefore, we prepared a global tree 291 

density map (Hansen et al., 2013), which was originally at 3″ resolution. This high-resolution 292 

tree density was averaged to 0.25° for better visualization and comparison with other 0.25° maps 293 

(Figure S2). The density is a percentage value from 0 to 100, with higher values indicating 294 

denser vegetation. The maximum tree density is found in the Amazon River Basin, the Congo 295 

River Basin and the Indonesian Islands. Notably, the tree density value does not indicate the 296 

height of vegetation or the thickness of leaves, especially in high-latitude regions where needle-297 

leaved or short vegetation dominates.  298 

2.4.5 Static permanent water mask 299 

Although channel bathymetry is considered in the model simulation using sub-grid 300 

parameters, underwater topography is not considered in the downscaling procedure because the 301 

high-resolution MERIT DEM represents mean water surface elevations over all water body 302 

pixels. Thus, the downscaled flooded water depth represents the water depth above the MERIT 303 

DEM, and not water stored below the MERIT DEM surface. This process leads to 304 

underestimation of CaMa-Flood water surface area during low-water seasons when water 305 

remains within a sub-grid river channel. Therefore, we extracted the permanent water surface 306 

where the occurrence is 100% (dark blue line in Figure 2) from the Landsat data. Permanent 307 

water is present with high confidence. If necessary, CaMa-Flood results within the statistical 308 

permanent water mask can be determined during post-processing by modifying the transitory 309 

water (occurrence < 100%) to permanent water (occurrence = 100%).  310 

3 Results 311 

3.1 Global land surface water from the model and Landsat 312 

Figure 3 shows the global distribution of land surface water with occurrence greater than 313 

10%. The original dataset has 3″ (~90 m) spatial resolution, which is aggregated to a 0.25° (~25 314 

km) grid for better visualization. In total, the estimated water surface area is 3.98 million km
2
 315 

(hereafter Mkm
2
) in CaMa-Flood and 5.53 Mkm

2
 in Landsat. Except in Greenland, very little 316 

water surface is estimated by CaMa-Flood in mountainous (e.g., the Rocky Mountains and the 317 

Andes Mountains) and dry regions (e.g., Northern Africa, Central Asia and central Austria) (gray 318 

in Figure 3-a). The lack of water estimates in such areas is either due to insufficient surface 319 

runoff to form water bodies in dry regions or due to difficulty in representing rivers in 320 

mountainous areas by CaMa-Flood. In the Landsat water-occurrence product, the corresponding 321 

regions have larger values than CaMa-Flood, although the absolute values are still small (light 322 

yellow in Figure 3-b). As a result, the difference between the two datasets is very small in 323 

mountainous and dry regions (gray in Figure 3-c). Both CaMa-Flood and Landsat can delineate 324 

rivers and lakes. Large water surface areas (dark blue in Figure 3-a,b) are shown for lakes (e.g., 325 

the Caspian Sea, the Great Lakes, Lake Victoria), large rivers (e.g., the Amazon, the Ob, and 326 

Yangtze) and delta regions (e.g., the Mekong, Ganges, and Indus Deltas). 327 
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 328 

Figure 3. Global land water surface areas with water occurrences greater than 10%. (a) Results 329 

from CaMa-Flood, and (b) results from Landsat. (c) Differences between CaMa-Flood and 330 

Landsat in terms of the fraction of each grid (0.25°). Original results are at 3″, and are 331 

aggregated to 0.25° gridded values for visualization. Areas with no water surface (= 0) are 332 

masked out. 333 

 334 

The two methodologies tested in this study showed good agreement in water surface area, 335 

especially over lakes (e.g., the Great Lakes, Caspian Sea, Lake Baikal, Lake Victoria, Tonle Sap 336 

Lake) (Figure 3-c). Strong agreement was also found along major rivers, aside from the Amazon 337 

and river deltas, for which differences were difficult to identify (Figure 3-c). The differences 338 

showed apparent spatial patterns (Figure 3-c). Lower estimates were obtained from CaMa-Flood 339 

than from satellite data for high-latitude regions, especially in the Canadian Shield and in the 340 

lower Ob River. Other differing regions included the Tibetan Plateau, the middle-lower reaches 341 

of the Yangtze and Ganges, and certain rivers in central Asia and northern Europe. In contrast, 342 

larger water surfaces were found along the Amazon and Indonesian rivers in CaMa-Flood. In 343 

addition, higher values were found in many river deltas such as those of the Nile, Mississippi, 344 

Congo, Tigris & Euphrates, Indus, and rivers in Southeast Asia. Two typical regions with high 345 
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values were in South Sudan and the lower Tarim River in China. These discrepancies 346 

(overestimation and underestimation) are explained and discussed in the following sections, 347 

along with additional masks and the topographic maps used in this study.  348 

3.2 Analysis with the CaMa-Flood floodplain mask 349 

The extent of the CaMa-Flood floodplain mask is shown in Figure 4-a. The floodplain 350 

mask is the theoretical boundary where CaMa-Flood may simulate inundation. As the floodplain 351 

mask has been enlarged from that used in real simulations, applying the floodplain mask does not 352 

change the results of CaMa-Flood. However, only part of the water surface in the Landsat dataset 353 

falls within the floodplain mask (Figure 4-b), with a total of 4.20 Mkm
2
 LSWA located within 354 

the floodplain mask.    355 

 356 

 357 

Figure 4. (a) Distribution of the CaMa-Flood floodplain mask over the globe (3″). (b) Landsat 358 

LSWA after applying the floodplain mask (0.25°). (c) The ratio of Landsat LSWA within the 359 

CaMa-Flood floodplain mask to total Landsat LSWA (0.25°). (d) The difference in the value of 360 

Landsat LSWA within the CaMa-Flood floodplain mask from the total Landsat LSWA (0.25°). 361 

 362 

Figures 4-c and 4-d show the proportion and amount of water surface in Landsat that falls 363 

within the floodplain mask relative to the total LSWA, respectively. At 0.25° spatial resolution, 364 

the areal ratio is near 1.0 for large lakes and rivers (Figure 4-c), indicating that these large-scale 365 

water types are well covered by the CaMa-Flood floodplain mask. Low ratios of water surface 366 

were found on hill slopes, especially in mountainous areas. An example is given of the upstream 367 

Missouri River (Figure 5). The yellow color shows the extent of the CaMa-Flood floodplain 368 

mask, which covers the main river channel and most smaller tributaries. CaMa-Flood and 369 

Landsat tend to produce the same water surface in the main channel (blue in Figure 5-a). 370 

Because the floodplain mask was already extended from the historical maxima of modeled flood 371 

extent, some small tributaries lack water in both the simulation results and satellite observations. 372 

Outside the CaMa-Flood floodplain mask (Figure 5-b), Landsat is able to detect small water 373 

areas scattered across hill slopes, which cannot be modeled by CaMa-Flood due to its physical 374 

assumptions. As shown in the enlarged topographic map (Figure 5-c), the water surface is not 375 
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continuous, and the distribution of the water surface is not consistent from lower elevations to 376 

higher elevations within each unit catchment. This inconsistency is caused by the unique kettle 377 

lake landform (Figure 5-d) of the Missouri Plateau, which was formed by retreating glaciers or 378 

draining floodwaters rather than surface river flows (Phillips and Gleckler, 2006). Another 379 

typical kettle lake landform is found in the Western Siberian Plain, near the Arctic Circle. 380 

However, for hill slopes other than this kettle lake landform, the main cause of water surface area 381 

underestimation in CaMa-Flood is the invalid assumption of a flat water surface used for 382 

downscaling.  383 

 384 

 385 

Figure 5. Water surface estimates from CaMa-Flood and Landsat for the source of the Missouri 386 

River: (a) comparison within the CaMa-Flood floodplain mask, and (b) comparison outside the 387 

floodplain mask. (c) Landsat water mask (occurrence > 10%) over the topography of the target 388 

region indicated in a and b. (d) Google Earth image of the target region marked in c.   389 

 390 

Because the water surface area on hill slopes is relatively small and not widely distributed 391 

throughout the world, the cumulative area difference is not apparent (Figure 4-d) in these 392 

regions. Instead, large differences are found in the Canadian Shield, where the coverage ratio is 393 

high. An enlarged map (Figure 6) shows that within the floodplain water mask, CaMa-Flood 394 

tends to have good ability to delineate large water bodies (lakes) and long rivers. The two 395 

methods have consistent results for large lakes (blue in Figure 6-a). However, many local water 396 

depressions are not represented in the floodplain mask (red in Figure 6-b). These smaller water 397 

bodies are fed by melt water (from glaciers, snow or permafrost; Gilbert and Shaw, 1994; Shilts 398 

et al., 1987, Van Huissteden et al., 2011) and likely by shallow groundwater, which are not 399 

considered in the forcing of CaMa-Flood. Therefore, the model results are significant 400 
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underestimations of water surface area compared to the Landsat product. Similar to the kettle 401 

lake landform, the distribution of wetlands in the Canadian Shield is scattered (Figure 6-c), and 402 

most local water depressions are not modeled in CaMa-Flood.  403 

 404 

 405 

Figure 6. Maps showing the consistency of the water surface prediction between CaMa-Flood 406 

and Landsat for the Canadian Shield. (a) Comparison within the CaMa-Flood floodplain mask, 407 

and (b) comparison outside the floodplain mask. (c) Google Earth image of the target region 408 

marked in c. 409 

 410 

Other typical regions where the CaMa-Flood floodplain mask cannot cover the water 411 

surface identified by the satellite include coastlines, especially those around mainland China and 412 

the Bay of Bengal (see example of the Indus Delta in Figure S3). On the one hand, the spatial 413 

resolution of CaMa-Flood is 0.1°, which insufficient to represent the large number of small 414 

rivers along the coast. On the other hand, water surface area is caused not only by land-origin 415 

water, but also tidal inundation of lowlands, which is not considered with the current settings of 416 

CaMa-Flood. These small coastal rivers and lowlands do not belong to CaMa-Flood catchments. 417 

By applying the floodplain mask, the total global water surface area for Landsat 418 

decreases from 5.53 Mkm
2
 to 4.20 Mkm

2
. The underestimation of water surface area is reduced 419 

from -1.55 Mkm
2
 (-28.1%) to -0.22 Mkm

2
 (-5.2%). However, applying the floodplain mask does 420 

not alter the spatial patterns of differences between the two results (Figure 7-a) relative to Figure 421 

3-c. Underestimation by CaMa-Flood occurs mainly at high latitudes, while overestimation is 422 

found mainly in low-latitude areas around the Equator (Figure 7-c). Although the masking effect 423 

is also stronger at high latitudes, the pattern is unaffected, likely because we used a floodplain 424 

mask with a relatively modest threshold (see Section 2.4.2) to account for potential errors in 425 

runoff forcing and avoid overestimating the predictive ability of CaMa-Flood. We can expect 426 

some water outside the CaMa-Flood simulation ability range to be included in the floodplain 427 

mask. The following sections will explain the remaining differences between the model and 428 

satellite results (e.g., underestimation at high latitudes, overestimation at low latitudes).  429 
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 430 

Figure 7. Map of differences between CaMa-Flood and Landsat data after masking (in terms of 431 

the fraction of grid area); (b) and (c) show the longitudinal and latitudinal summaries of the 432 

differences in area. Overestimation and underestimation are displayed in blue and red, 433 

respectively. The solid line represents the results before masking, while the dashed line 434 

represents the results after masking.  435 

 436 

3.3 Analysis of land cover types 437 

In this section, we discuss the types of water surfaces that can be captured by CaMa-438 

Flood or Landsat by investigating the relationship of water surface with land cover type. The 439 

total water surface area corresponding to different land cover types is illustrated in Figure 8, and 440 

related statistics are presented in Table 1. The land surface classes were applied to Landsat both 441 

before (gray) and after (blue) applying the floodplain mask. Application of the CaMa-Flood 442 

floodplain mask reduced the water surface extent obtained from Landsat by 0.36 Mkm
2
 (-10.7%) 443 

of water bodies (cci_code = 210), and by 0.96 Mkm
2
 (-44.8%) of other areas. The impact varied 444 

among land cover types (Figure 8-b, Table 1). The impact of masking was significantly greater 445 

in areas covered with permanent snow and ice (cci_code = 220, -90.8%). Water bodies present in 446 

areas with snow or ice land cover are generally located in local depressions or on high 447 

mountains, and therefore are considered to occur outside the floodplain mask. The impact of 448 

masking was also strong in areas covered with saline water (cci_code = 170, -65.1%) along the 449 

coastline, mainly due to the limitation of CaMa-Flood in representing small coastal rivers.  450 

Many small water bodies are found at high latitudes with needle-leaved tree cover 451 

(cci_code = 70, 0.25 Mkm
2
), sparse vegetation (cci_code = 150, 0.17 Mkm

2
), or lichens and 452 

mosses (cci_code = 140, 0.15 Mkm
2
) (see distributions in Figure S4). Such water bodies are 453 

difficult to simulate with CaMa-Flood, as 48.5%, 69.7%, and 59.2%, respectively, of the water 454 

surface area from Landsat is removed with the CaMa-Flood floodplain mask. The reason for this 455 

discrepancy was explained using the example of the Canadian Shield in the previous section, as 456 
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many water bodies within local depressions are excluded from CaMa-Flood. For other land cover 457 

types, the effect of masking is less significant. The main reason for this difference could be that 458 

small water bodies fed by local runoff are not represented in the model. The CaMa-Flood 459 

floodplain mask may also miss areas that are seldom flooded, causing further differences 460 

associated with masking. On the other hand, such small water bodies might not be precisely 461 

represented at the original resolution of the CCI (300 m).  462 

In terms of the differences between CaMa-Flood and Landsat after masking, excluding 463 

water bodies (cci_code = 210) and the aforementioned land cover types (cci_code = 70, 140 and 464 

150) at high latitudes, CaMa-Flood results were higher than Landsat results. The regions with the 465 

largest differences included forest-related regions (cci_code = 50), with an overestimation of 466 

0.25 Mkm
2
 (441.6%) in CaMa-Flood, and cropland-related regions (cci_code = 10 and 20, 467 

+0.09/0.08 Mkm
2
), with an overestimation ratio greater than 66%. For regions with short 468 

vegetation or wetlands, the modeled water surface in CaMa-Flood was generally larger than that 469 

from Landsat, except in regions concentrated at high latitudes. However, the reasons underlying 470 

the differences between CaMa-Flood and Landsat differed among land cover types. These 471 

reasons will be discussed in the following sections. 472 

 473 

 474 
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Figure 8. Comparison of LSWA among groups of land cover types. All land cover types other 475 

than water bodies (cci_code = 210) are grouped in the type "others" in (a). The orange bars 476 

represent the results of CaMa-Flood. The gray bars represent Landsat observations before 477 

application of the CaMa-Flood floodplain mask, and the blue section represents the results of 478 

Landsat after applying the floodplain mask. A list of cci_code values and definitions of the land 479 

cover types is attached (ESA, 2017). All land cover types can be categorized as cropland-related 480 

land cover types, forest-related land cover types, short vegetation, wetland-related land cover 481 

types and others including water bodies (shown in different colors in the list and figure). 482 

 483 

Table 1. Comparisons between LSWA estimates based on CaMa-Flood and those derived from 484 

Landsat data (unit: Mkm2). The areas for Landsat before and after application of the floodplain 485 

mask are both shown. Areas where the water area is larger than 0.1 Mkm2 are shown in bold. 486 

The colors represent different land cover type categories, as defined in Figure 8. C0: CCI land 487 

cover map codes; C1: water surface area in CaMa-Flood; C2 (C3): water surface area in Landsat 488 

before (after) applying floodplain mask; C4: the change ratio of the Landsat water surface with 489 

application of the floodplain mask (C4 = (C3-C2)/C2*100); C5: water surface area difference 490 

between CaMa-Flood and Landsat after application of the floodplain mask (C5 = C1-C3); C6: 491 

difference ratio between CaMa-Flood and Landsat (C6 = C5/C3*100). 492 

 493 

CCI code 
CaMa-

Flood 

Landsat 

(before 

masking) 

Landsat 

(after 

masking) 

Diff. due 

to masking 

(%) 

Diff. 

(Mkm2) 
Diff. (%) 

C0 C1 C2 C3 C4 C5 C6 

10 0.21 0.22 0.12 -47.3 0.09 80.7 

20 0.20 0.16 0.12 -27.9 0.08 66.6 

30 0.07 0.04 0.02 -44.7 0.05 244.4 

40 0.06 0.04 0.02 -43.1 0.04 187.7 

50 0.30 0.07 0.06 -23.1 0.25 441.6 

60 0.09 0.04 0.03 -40.2 0.07 259.2 

70 0.06 0.25 0.13 -48.5 -0.07 -54.8 

80 0.03 0.06 0.04 -36.9 -0.01 -14.6 

90 0.01 0.02 0.01 -42.0 0.00 0.5 

100 0.06 0.05 0.03 -42.2 0.03 88.4 

110 0.01 0.01 0.00 -46.1 0.00 81.9 

120 0.18 0.11 0.06 -44.4 0.11 186.0 

130 0.09 0.15 0.08 -48.9 0.02 20.9 

140 0.00 0.15 0.04 -69.7 -0.04 -89.6 

150 0.04 0.17 0.07 -59.2 -0.02 -34.1 

160 0.12 0.04 0.03 -22.9 0.09 283.3 

170 0.02 0.04 0.01 -65.1 0.00 29.5 

180 0.24 0.26 0.18 -32.3 0.07 39.2 

190 0.01 0.02 0.01 -52.6 0.00 11.6 

200 0.15 0.22 0.12 -43.3 0.02 19.4 

210 2.01 3.38 3.02 -10.7 -1.01 -33.4 

220 0.00 0.01 0.00 -90.8 0.00 30.9 

Summary 3.98 5.53 4.20 -24.0 -0.22 -5.3 

 494 
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3.3.1 Forest-related regions 495 

Optical sensors have difficulty detecting surface water when clouds or vegetation are 496 

present. Invalid data collected on cloudy days were removed when calculating the water 497 

occurrence based on Landsat. However, the impact of vegetation was not eliminated (Pekel et al., 498 

2016). A typical region affected by thick vegetation is the Amazon River Basin, where the tree 499 

density is unusually high (Figure 9-a). In this case, Landsat is able to detect water only along the 500 

main channels where tree density is relatively low (Figure 9-c). In contrast, CaMa-Flood can 501 

simulate floodplain water along the main channel (Figure 9-b), even in regions with thick 502 

vegetation. This improvement is related to the tree bias removal in the MERIT DEM, upon 503 

which CaMa-Flood is built (Yamazaki et al., 2017). In terms of the spatial pattern, at tree 504 

densities lower than 30%, CaMa-Flood and Landsat have high consistency for water surface 505 

estimation (blue in Figure 9-d), while at tree densities greater than 30%, only CaMa-Flood can 506 

model the water surface effectively (green in Figure 9-e). An histogram of the summed area 507 

(Figure 9-f) shows that when tree density is greater than 60%, the difference in water surface 508 

area between Landsat and CaMa-Flood will increase significantly. As noted above, GIEMS is 509 

based mainly on microwave observations, and thus can detect water covered with thick 510 

vegetation. Because GIEMS has relatively low spatial resolution (0.25°), the water surfaces from 511 

CaMa-Flood and Landsat were also aggregated to 0.25° (Figure 9-g,h). Notably, CaMa-Flood 512 

values were similar to those in GIEMS, especially along the mainstream channel, whereas 513 

Landsat had low values in that map tile. The histogram plot (Figure 9-f) also shows similar 514 

values for CaMa-Flood and GIEMS, especially when the tree density is less than 90%. However, 515 

as GIEMS cannot detect small water surfaces easily due to its coarse spatial resolution, the water 516 

surfaces in smaller tributaries are not well captured when the water surface is less than 10% of 517 

the fractional coverage of equal-area grid cells (Figure 9-i, Papa et al., 2010). Such differences 518 

are mainly distributed in areas where the river density is very low and vegetation is dense (Figure 519 

9-b). As a result, the total water surface area obtained from GIEMS for tree densities above 95% 520 

is only half of the corresponding value from CaMa-Flood (Figure 9-f).  521 

Similar situations occur in Indonesia (Figure S5) and the Congo River Basin (see Figure 522 

S4, cci_code = 50 and 60), as CaMa-Flood has higher values than Landsat where the tree density 523 

is high. However, the results from CaMa-Flood are much closer to the GIEMS values, which are 524 

not affected by vegetation, indicating superior performance of CaMa-Flood compared to Landsat 525 

in these areas. CaMa-Flood results were higher than those of GIEMS over regions of very high 526 

tree density (>90%), where numerous small, narrow rivers may flow through forests.  527 

 528 
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 529 

Figure 9. Comparisons of surface water area in CaMa-Flood, Landsat, and GIEMS for the 530 

central Amazon River Basin. (a) Tree density; (b) and (c) surface water occurrences in CaMa-531 

Flood and Landsat at 3″; (d) and (e) indicate the consistency of water surface results from CaMa-532 

Flood and Landsat using categories of tree density lower and higher than 30%. (f) Histogram of 533 

the water surface areas in CaMa-Flood, Landsat and GIEMS in terms of tree density. (g-i) 534 

Spatial maps of water surface area (occurrence>10%) at 0.25° from CaMa-Flood, Landsat and 535 

GIEMS, respectively. 536 

 537 

3.3.2 Cropland-related regions 538 

In cropland-related areas (cci_code = 10 and 20), CaMa-Flood tends to estimate larger 539 

water surface areas than does Landsat (Figure 7-c). Such regions are mainly distributed around 540 

river deltas including those of the Nile, Indus, Mekong, Chao Phraya in Thailand, Irrawaddy in 541 

Myanmar (shown in Figure 10-a), and lower Mississippi. This difference is likely caused by 542 

man-made infrastructure that regulates river flows for human purposes.  543 

 544 
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Slight differences were found for agricultural and flood defense structures, as canals built 545 

for irrigation will alter natural topography and flow paths. In contrast, the construction of flood 546 

defenses (e.g., levees) only increases the height of the riverbank, while maintaining the natural 547 

river flow path. In low plains where agriculture is dense and developed, irrigation water is 548 

transferred by pumping water from rivers, which then flows through canals. These canals, 549 

especially the smallest ones, are not represented in the model, and therefore flowing water is 550 

assumed to spread over a large area rather than flowing through canals. On the other hand, due to 551 

the presence of canals, the flow path is no longer natural. Thus, the flow directions assumed from 552 

natural topography are invalid. The continuity of flow is also affected by numerous floodgates. 553 

These differences cause inaccuracy in the downscaling of flooding to the high-resolution 554 

inundation map. The effect of canals is especially apparent for river deltas in dry climates (e.g., 555 

the Nile River, the Tigris & Euphrates Rivers and the Lower Indus River). Levees are built to 556 

protect residences and farms from the effects of river floods or tides. In CaMa-Flood, the height 557 

of riverbanks is estimated through empirical regression, which does not represent the real 558 

conditions of the rivers (see Data and Methods). The presence and height of levees is also 559 

neglected, which increases the possibility of flooding in CaMa-Flood estimates. 560 

The Nile Delta has one of the highest population densities in the world. This region 561 

includes large urban areas (red color in CCI map, Figure 10-c), with major cities located along 562 

the main river channel. Although observational evidence is lacking, there must be levees along 563 

the river channel, resulting in the water surface estimated by Landsat aligning perfectly with the 564 

main channel (and canals) and not covering the riverbanks (Figure 10-b). In contrast, a high 565 

occurrence of water surface is estimated by CaMa-Flood along riverbanks and in flat plains used 566 

for agriculture (Figure 10-a, green color in Figure 10-d). As a result, the CaMa-Flood results 567 

show larger water areas compared to Landsat and GIEMS, which represent reality better. The 568 

constraint of levees is also found in the lower Mississippi River, where houses are built along 569 

tributaries (Figure S6), as well as in Baghdad, the capital city of Iraq, where the Tigris River 570 

flows through an urban area (Figure S7).  571 

 572 
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 573 

Figure 10. Comparisons of surface water areas based on CaMa-Flood and Landsat, as well as 574 

CCI land cover types, for the lower Nile Delta region: (a) and (b) show the water occurrences 575 

obtained from CaMa-Flood and Landsat, respectively; (c) is a land cover map; (d) shows the 576 

differences in water coverage between CaMa-Flood and Landsat (occurrence >10%); and (e) is a 577 

histogram of water surface area against tree density. 578 

 579 

Another possible reason for the overestimation of water surface area when using CaMa-580 

Flood relative to Landsat is the lack of water losses (e.g., re-infiltration, evaporation, water 581 

consumption) in the routing processes. This impact is stronger for rivers in dry regions (e.g., the 582 

Tarim, Tigris and Euphrates Rivers). In the example of the Tarim Basin (Figure 11), water 583 

surface areas are found with high occurrence at the foot of the Tian Shan Mountains and around 584 

a small tributary to the north of the main Tarim River stem. However, no large water surface is 585 

detected in the Landsat data. In this area, a large proportion of water is extracted for irrigation. 586 

Due to the local soil properties and high rate of potential evaporation, the amount of water 587 

remaining in some rivers will be much less than that calculated by CaMa-Flood. Therefore, only 588 

seasonal rivers (occurrence less than 90%) are identified using Landsat data (Figure 11-f). 589 

Discontinuous river flow in the lower Tarim has been reported in the media and documented in 590 

the literature (Xu et al., 2008). A similar situation can occur in the Tigris and Euphrates Rivers, 591 

as no supplemental water enters the lower river section before it reaches the lower delta. The loss 592 

of water to soil or evaporation to the atmosphere leads to a lower occurrence of small inundation 593 

areas in reality (Landsat) relative to the results of CaMa-Flood. Neglecting water consumption 594 

and evaporation also enhances the overestimation of CaMa-Flood results in the Nile Delta.  595 

 596 
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 597 

Figure 11. Comparisons of surface water areas based on CaMa-Flood and Landsat, as well as 598 

CCI land cover types for the lower Tarim River: (a) and (b) show water occurrences from CaMa-599 

Flood and Landsat, respectively; (c) is the land cover map; (d) shows the differences between 600 

water coverage from CaMa-Flood and Landsat (occurrence >10%); and (e) is a histogram of 601 

water surface area against occurrence level. (f) Google Earth image of the study region. 602 

 603 

Exceptions to this trend, where CaMa-Flood underestimates the irrigated water surface 604 

area, are around the lower Ganges River in Bangladesh and the lower Yangtze River in China 605 

(see Figure S4, cci_code = 20). These two regions have very high densities of rice paddy fields 606 

(Dong and Xiao, 2016). Standing water in the rice-growing season is not represented in CaMa-607 

Flood, while it is highly likely to be detected by Landsat. In these regions, soil moisture is much 608 

higher than elsewhere and the water surface area identified in GIEMS is higher than those of 609 

both CaMa-Flood and Landsat, as GIEMS may misclassify saturated soil as a water surface 610 

(Aires et al., 2018). Water surfaces in other areas of Northeastern China, the Lower Mekong 611 

Delta, and the Lower Irrawaddy River Delta are also underestimated by CaMa-Flood due to 612 

paddy fields (see Figure S4).  613 

3.3.3 Short vegetation and wetlands 614 

In regions with short vegetation or wetlands, extraction of the real topography or river 615 

bathymetry becomes more difficult. Biases in the topography will have strong impacts on water 616 

surface estimation in such areas. In particular, CaMa-Flood overestimates the water surface area 617 

in Sudd Swamp in the Nile Basin, which is one of the world's largest wetlands (Figure 12-a, 618 

shrub or grass, cci_code = 120 and 180). The Sudd Swamp region is extremely flat (blue in 619 

Figure 12-c) and the land surface gradient of the floodplain is very difficult to discern in the 620 

MERIT DEM, even after error removal. Downscaling to a high resolution (3″) results in 621 

overestimation of the inundation extent due to inaccurately flat topography (Figure 12-b). This 622 

effect is especially strong on estimates of water extent with occurrences greater than 95% (Figure 623 

12-d). For comparison, the water extent extracted from GIEMS is significantly smaller than that 624 

from CaMa-Flood, providing further evidence of overestimation by CaMa-Flood (Figure 12-e). 625 

On the other hand, the GIEMS result is larger than that of Landsat, indicating the shortcoming of 626 
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optical sensors for detecting water surfaces with vegetation cover. The re-infiltration of flooded 627 

water into the ground and evaporation are secondary reasons for the overestimation of CaMa-628 

Flood, as these natural processes are not considered in the model. Similar regions can be 629 

observed in Figure S4 with cci_code values of 120 and 180 in the Pantanal in Brazil, Niger 630 

Inland Delta, and other areas. 631 

   632 

 633 

Figure 12. Comparisons of surface water area estimates from CaMa-Flood, Landsat and GIEMS 634 

for the Sudd Swamp. (a) Land cover map; (b) and (c) show inundation maps (occurrence > 10%) 635 

from CaMa-Flood and Landsat at 3″ overlaid with the topographic map; (d) and (e) are 636 

histograms of water surface area against water occurrence and tree density, respectively. 637 

 638 

3.4 Statistical permanent water mask 639 

In the analysis described above, underestimation of water surface area by CaMa-Flood 640 

was as high as 1.01 Mkm
2
 (Figure 8, Table 1) in areas covered with water bodies (cci_code = 641 

210), which made the largest contribution to the difference between model and satellite results. 642 

However, because the CCI land cover map was originally at 300-m resolution and was 643 

interpolated to 3″ and because processing of CCI land cover classifications was based on a 644 

combination of observations, surveys and mathematical programs, the locations of water bodies 645 

were not precise (ESA, 2017). Therefore, in this section, the permanent water mask derived from 646 
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the Landsat occurrence product was applied to the CaMa-Flood results to investigate the ability 647 

of CaMa-Flood to estimate water surface areas within and outside the water mask.  648 

Within the permanent water mask, CaMa-Flood underestimates the water surface area by 649 

-1.03 Mkm
2
 in total for the globe (Figure 13-a, Table 2). The underestimates are mainly 650 

concentrated at high latitudes (e.g., the Canadian Shield, Lake Erie, the Lower Ob River Basin 651 

and two rivers in eastern Europe). Ignorance of water inputs to local depressions, which are 652 

treated as floodwaters and routed along rivers, may be the reason for this underestimation. For 653 

regions outside the permanent water mask (Figure 13-b), the spatial pattern of regions with 654 

overestimated CaMa-Flood values does not change after application of the permanent water 655 

mask. The underestimation by CaMa-Flood almost disappears with this mask, especially at high 656 

latitudes, indicating that underestimation by CaMa-Flood is primarily occurring within the 657 

permanent water mask. Underestimates obtained outside the permanent water mask are caused 658 

by rice paddy fields, which are identified as seasonal water areas in the Landsat product.  659 

As the permanent water extent is obtained from Landsat, we can modify CaMa-Flood in 660 

post-processing to compensate for the limitation of CaMa-Flood in estimating permanent water 661 

surfaces under certain conditions. If all places previously identified as permanent water in the 662 

Landsat data are marked as water surfaces in CaMa-Flood, the total water surface from CaMa-663 

Flood increases to 5.57 Mkm
2
, which has very little deviation from the Landsat result obtained 664 

without applying the floodplain mask (5.53 Mkm
2
, Table 2; because permanent water is 665 

sometimes outside the floodplain mask, we used the Landsat water extent without the floodplain 666 

mask for this comparison). Furthermore, the difference between the model and satellite results 667 

decreases to only 0.04 Mkm
2
.  668 

 669 

Figure 13. Difference in LSWA based on CaMa-Flood and Landsat within and outside the 670 

permanent water mask defined from Landsat data. The unit is area as a fraction of the grid size.  671 

 672 

 673 
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 674 

 675 

Table 2. Total water surface areas under different conditions (unit: Mkm2). 676 

 CaMa-Flood Landsat Var 

Original result     3.98 5.53 -1.55 

With CaMa-Flood floodplain mask   3.98 4.20 -0.22 

       Within permanent water mask        2.21 3.24 -1.03 

       Outside permanent water mask  1.77 0.96 0.81 

With permanent water in CaMa-Flood       5.57 5.53 0.04 

 677 

In summary, we obtained the total water surface area based on water occurrence greater 678 

than 10% under various conditions. The original water extents were 3.98 and 5.53 Mkm
2
 based 679 

on CaMa-Flood and Landsat, respectively, a difference of -1.55 Mkm
2
. Within the CaMa-Flood 680 

floodplain mask, Landsat identified a water extent of 4.20 Mkm
2
. The underestimation by CaMa-681 

Flood compared to Landsat was mainly within the permanent water mask at high northern 682 

latitudes (2.21 vs. 3.24 Mkm
2
), while overestimation by CaMa-Flood was distributed in tropical 683 

regions and croplands within river deltas. Applying the Landsat permanent water mask to the 684 

CaMa-Flood increased the CaMa-Flood result from 3.98 Mkm
2
 to 5.57 Mkm

2
, which reduced the 685 

difference between model and satellite results to 0.04 Mkm
2
. 686 

 687 

4 Discussion 688 

In this study, we investigated land water surface areas extracted from model simulations 689 

(CaMa-Flood) and compared the results with satellite-derived results, primarily from Landsat 690 

data. Due to the limitations of the model processes and assumptions for downscaling of low-691 

resolution model results in high-resolution inundation areas, CaMa-Flood is not able to represent 692 

all types of water bodies that exist in the real world. At the same time, the satellite-derived 693 

results also have limitations related to the properties of the sensors and land surface conditions. 694 

Therefore, when comparing the two types of results, we applied filters to allow for the most 695 

reasonable comparison. The agreements and mismatches between the model and satellite were 696 

discussed with example regions. The reliability of CaMa-Flood results and adaptions to ensure 697 

appropriate comparison of CaMa-Flood with other methods are discussed in this section.  698 

Only LSWA with occurrence estimates greater than 10% were selected for comparisons 699 

between the model and satellite methods in this study. This limitation markedly reduces the 700 

impact of clouds on the Landsat data, and also focuses the discussion on the types of water 701 

surfaces that can be captured by the model and satellite. Investigation of this broad occurrence 702 

range helps to control uncertainty due to model inputs and parameters. Meanwhile, 10% is not 703 

too close to 0%, where the modeled water extent is more sensitive to the threshold (see Figure 704 

12-d). One limitation of this study is that we did not investigate the water surface at a specific 705 

time, as the values in Landsat for each month are not measured simultaneously around the world. 706 



manuscript submitted to Water Resources Research 

 25 

We also did not investigate the temporal variability in water surface as conducted previously 707 

(Wu et al., 2019), as the variability in our results is more closely related to the runoff series than 708 

to the accuracy of the inundation model. However, now that the long-term water surface area has 709 

been evaluated, we have the confidence to investigate temporal variations further and make 710 

reliable comparisons using the filtering methods proposed in this study; such analysis will 711 

support more detailed discussion of local-scale or time-variant differences between the 712 

performance of the model and satellite.  713 

The modeled water extent is based on a few fundamental assumptions and therefore its 714 

applicability is limited to certain conditions. The floodplain mask generated using CaMa-Flood 715 

results shows the full extent of the area that CaMa-Flood is able to model. Overall, 24% of the 716 

water surface identified by Landsat (1.33 Mkm
2
) was excluded when the floodplain mask was 717 

applied. The excluded area is mainly distributed at high latitudes and in coastal regions, where 718 

numerous local depressions and small rivers occur. Ignorance of local runoff into local 719 

depressions rather than routed river flow (e.g., glacial meltwater and shallow groundwater in the 720 

Canadian Shield, tidal effects along the coastlines) also reduces the coverage of CaMa-Flood. 721 

Springs on hill slopes are not well represented in CaMa-Flood due to its limited spatial resolution 722 

and the invalid assumption of a flat-water surface used for downscaling. To overcome the 723 

shortcomings of CaMa-Flood in modeling those small water bodies, the model’s spatial 724 

resolution must be upgraded to represent more rivers. Currently, CaMa-Flood has a resolution of 725 

up to 1′ for routing, but this requires a dramatic increase in computational resources, as 726 

increasing the number of unit catchments requires shortening the optimal time step for the 727 

Courant–Friedrichs–Lewy (CFL) condition. Due to its computational expense, such an 728 

improvement can be applied only to specific regions, rather than globally.  729 

CaMa-Flood provides larger water extent estimates compared to Landsat data in forest-730 

related regions (e.g., the Amazon River), approximating the estimates of GIEMS. This difference 731 

indicates the advantage of this model compared to Landsat in areas with obstructions caused by 732 

vegetation or clouds. CaMa-Flood overestimates the water surface in cropland-related areas, as 733 

human water infrastructure (e.g., levees, canals, dikes) is not yet represented in the model. 734 

Moreover, because water consumption from the systems for various uses (especially agriculture) 735 

is not considered, river discharge can be overestimated in CaMa-Flood compared to reality, 736 

which leads to a larger modeled water extent. This impact is cumulative until the end of the river 737 

(delta). Ignorance of these natural water dynamics in the routing process also leads to 738 

overestimation of river flow in the model in lower delta areas (Dadson et al., 2010; Zhan et al., 739 

2019). To prove this assumption, validation against discharge observations can be employed. In 740 

addition to overestimations, ignorance of human interventions can also lead to underestimations 741 

by CaMa-Flood in areas comprised of rice paddy fields where standing water can be detected by 742 

satellites but is not modeled. The extent of water in reservoirs formed by dams is not considered 743 

and will also lead to underestimation, although the impact is negligible at the global scale. 744 

Therefore, new modules for natural processes (e.g., re-infiltration, evaporation), water 745 

infrastructure (e.g., levees, dikes) and human activities (e.g., irrigation, dam regulation) should 746 

be developed to better represent inundation processes.  747 

Based on our analysis, most of the LSWA differences between the model and satellite 748 

show distinct spatial features and can be readily explained based on globally consistent reasons. 749 

However, some locally varying conditions also affected the results. First, we estimated only the 750 

water surface driven by a single runoff input (see Section 2.2.1). The biases in atmospheric 751 
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forcing (i.e., WFDEI) and the Land Surface Model (i.e., HTESSEL) differ spatially among river 752 

basins (Pappenberger et al., 2010). Such biases are propagated to the LSWA estimates. Second, 753 

the channel parameters in CaMa-Flood (e.g., river width, river depth) are estimated through 754 

global regression with the estimated mean discharge with globally uniform roughness (Yamazaki 755 

et al., 2011, 2013). Thus, the bias from runoff generation is again propagated to estimates of the 756 

river channel parameters. On the other hand, the river channel parameters are affected by the 757 

type of material comprising the riverbed and riverbank, which varies significantly among river 758 

sectors (Dunne and Jerolmack, 2020). As these locally varying conditions are difficult to 759 

measure or correct for, we suggest the use of ensembles with multiple runoff inputs or parameter 760 

settings to evaluate the sensitivity of LSWA results and to possibly identify further globally 761 

consistent features.  762 

Given the limitations of the downscaling process and model modules, the estimated water 763 

extent shows deviations from the Landsat results, especially at high latitudes in the Canadian 764 

Shield region. Although Landsat has its own limitations, especially related to water, valuable 765 

information can be obtained from the Landsat-derived results (e.g., permanent water areas). 766 

Within the permanent water mask identified based on Landsat data (occurrence = 100%), the 767 

CaMa-Flood estimate is 1.03 Mkm
2
 smaller than the value from Landsat (3.24 Mkm

2
). However, 768 

because Landsat determines permanent water with high confidence, we can add a post-769 

processing step to CaMa-Flood whereby the water occurrence is modified to 100% for pixels 770 

identified as permanent water based on Landsat. In this case, the total water surface area 771 

estimated by CaMa-Flood increases to 5.57 Mkm
2
, showing very little deviation (0.04 Mkm

2
) 772 

from Landsat results (5.53 Mkm
2
). Although post-processing does not change the core structures 773 

or parameters of CaMa-Flood, this solution is an efficient way to obtain a reasonable result for 774 

total water surface area. Additional validation using available river discharge data and model 775 

calibration against observations is recommended for regional studies. Data assimilation using in 776 

situ or satellite-derived observations of water surface area would also be useful for improving the 777 

ability of CaMa-Flood to estimate water surface extent (Bates, 2012; Ogilvie et al., 2018; 778 

Schumann et al., 2009).  779 

Although the water surface area estimated using CaMa-Flood deviates from that of 780 

Landsat, CaMa-Flood offers great advantages over satellite results related to the following 781 

aspects. CaMa-Flood is flexible in its temporal scale and can provide hourly estimates if hourly 782 

forcing input data are available. This high temporal resolution is vitally important for evaluating 783 

rapid changes in water level or flood extent during flood events. However, due to its long revisit 784 

time (16 days), Landsat has difficulty capturing rapid changes. MODIS can provide daily results, 785 

but its spatial resolution is limited to 500 m, which is too large for flood estimates in normal 786 

rivers. MODIS is also significantly limited during floods with continuous rainfall due to 787 

widespread cloud cover. Moreover, when driven by runoff inputs corresponding to different 788 

scenarios, CaMa-Flood can be used to evaluate the impacts of various factors on water surface 789 

area or flood extent. For example, the effects of water consumption (e.g., agricultural usage) on 790 

the water surface or the individual contributions of climate variables (e.g., temperature or 791 

precipitation) to changes in the water surface could be explored in future studies. Models enable 792 

the projection of future water surfaces, which will be useful for evaluating future changes in 793 

flood exposure under various climate change scenarios (Hirabayashi et al., 2013). Such studies 794 

will be immensely helpful for evaluating the sustainability of water resources against the 795 

background of global warming.  796 

 797 
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5 Conclusions 798 

In this study, we estimated global land surface water area using a global hydrodynamic 799 

model (CaMa-Flood). The estimates of water extent exhibited good agreement in spatial patterns 800 

with Landsat-derived results. However, due to the limitation of the model’s original spatial 801 

resolution (0.1°), small depressions away from main river channels and small coastal rivers 802 

within a unit catchment are not represented due to the CaMa-Flood model’s physical 803 

assumptions. This results in underestimation of water surface area in CaMa-Flood compared to 804 

Landsat, especially at high latitudes (e.g., Canadian Shield) and for kettle landforms (e.g., the 805 

Missouri Plateau) where a cold climate dominates and in coastal areas where many small rivers 806 

are present. Water surfaces in irrigated areas (e.g., delta regions and irrigated districts) are 807 

generally overestimated due to ignorance of some natural processes (e.g., re-infiltration, 808 

evaporation) and human water regulation (e.g., canals, levees, water consumption) in CaMa-809 

Flood. Ignoring irrigation processes in paddy fields leads to underestimation by CaMa-Flood, as 810 

these seasonal water bodies are captured by Landsat. Water bodies covered with thick vegetation 811 

(e.g., the Amazon Basin, Indonesia) are better represented in the model, as these water bodies 812 

cannot easily be detected using optical satellite sensors due to the opacity of clouds and 813 

vegetation.  814 

Our analysis suggests that these globally consistent mismatches between CaMa-Flood 815 

and Landsat can be reasonably explained based on the model’s physical assumptions (e.g., unit 816 

catchment concept, downscaling) or limitations of satellite sensing (e.g., weak ability to detect 817 

water under vegetation). Applying additional filtering masks (e.g., CaMa-Flood floodplain mask, 818 

land cover map, and permanent water mask) to the two datasets helps to constrain the 819 

comparison to an appropriate extent, making it much easier to attribute their differences to 820 

specific causes. Uncertainties in the runoff forcing, model parameters and baseline topography 821 

are potential reasons for the remaining local-scale differences. In this global study, we show that 822 

a global hydrodynamic model can represent the areas of different water types and that 823 

appropriate comparisons can be made between models and satellite-derived results. By utilizing 824 

the findings of this study (e.g., suggested masks for appropriate comparison), more advanced 825 

analyses of global river model simulations (e.g., uncertainty attribution using land water surface 826 

extent data) will be possible. 827 
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