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Abstract

Short term aftershock incompleteness (STAI) can strongly bias any analysis built on the assumption that seismic catalogs

have a complete record of events. Despite several attempts to tackle this issue, we are far from trusting any dataset in the

immediate future of a large shock occurrence. Here we introduce RESTORE (REal catalogs STOchastic REplenishment), a

Python toolbox implementing a stochastic gap-filling method, which automatically detects the STAI gaps and reconstructs the

missing events in the space-time-magnitude domain. The algorithm is based on empirical earthquake properties and relies on

a minimal number of assumptions about the data. Through a numerical test, we show that RESTORE returns an accurate

estimation of the number of missed events and correctly reconstructs their magnitude, location and occurrence time. We also

conduct a real-case test, by applying the algorithm to the Mw 6.2 Amatrice aftershocks sequence. The STAI-induced gaps are

filled and missed earthquakes are restored in a way which is consistent with data. RESTORE, which is made freely available, is

a powerful tool to tackle the STAI issue, and will hopefully help to implement more robust analyses for advancing operational

earthquake forecasting and seismic hazard assessment.
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Abstract10

Short term aftershock incompleteness (STAI) can strongly bias any analysis built on the11

assumption that seismic catalogs have a complete record of events. Despite several at-12

tempts to tackle this issue, we are far from trusting any dataset in the immediate future13

of a large shock occurrence. Here we introduce RESTORE (REal catalogs STOchastic14

REplenishment), a Python toolbox implementing a stochastic gap-filling method, which15

automatically detects the STAI gaps and reconstructs the missing events in the space-16

time-magnitude domain. The algorithm is based on empirical earthquake properties and17

relies on a minimal number of assumptions about the data. Through a numerical test,18

we show that RESTORE returns an accurate estimation of the number of missed events19

and correctly reconstructs their magnitude, location and occurrence time. We also con-20

duct a real-case test, by applying the algorithm to the MW 6.2 Amatrice aftershocks se-21

quence. The STAI-induced gaps are filled and missed earthquakes are restored in a way22

which is consistent with data. RESTORE, which is made freely available, is a power-23

ful tool to tackle the STAI issue, and will hopefully help to implement more robust anal-24

yses for advancing operational earthquake forecasting and seismic hazard assessment.25

1 Introduction26

It is well known that analyzing an incomplete seismic catalog could severely bias27

studies aimed to: 1) estimate the Gutenberg-Richter parameters, their uncertainty, to-28

gether with their variation in space and/or time (e.g. Knopoff et al., 1982; Schorlem-29

mer et al., 2003; Woessner & Wiemer, 2005; Mignan & Woessner, 2012b; Marzocchi et30

al., 2020); 2) estimate the Epidemic-Type Aftershock Sequence (ETAS model: Ogata,31

1988, 1998) parameters by maximum-likelihood techniques (Helmstetter et al., 2005, 2006;32

Hainzl et al., 2013; Omi et al., 2014; Seif et al., 2017; Zhuang et al., 2017); 3) perform33

a statistical analysis of earthquake data (e.g. Helmstetter et al., 2006; Christophersen34

& Smith, 2008; Iwata, 2008; Brodsky, 2011; Felzer et al., 2015; Stallone & Marzocchi,35

2019). The first two types of studies, in particular, have application in operational earth-36

quake forecasting and seismic hazard assessment (Woessner et al., 2015), this implying37

that complete recording of seismic events is of primary importance in any analysis of this38

kind. Unfortunately, a careful estimation of the magnitude of completeness Mc is a nec-39

essary but not sufficient condition for a robust seismicity analysis. As a matter of fact,40

temporal changes in Mc can occur, mainly due to short term aftershock incompleteness41

(STAI from now on) (Ogata & Katsura, 1993; Kagan, 2004; Mignan & Woessner, 2012b;42

Omi et al., 2013), which arise from the under-reporting of small events after large earth-43

quakes. These fluctuations, although transient, can severely alter the final results. For44

instance, (Zhuang et al., 2017) demonstrate how severe can be the influence of short-term45

missing aftershocks on the estimation of the ETAS parameter α (which is linked to earth-46

quakes triggering capability). A solution to this issue would be improving the detection47

of early aftershocks of a large earthquake. This is possible by implementing waveform-48

based techniques (Peng et al., 2006, 2007; Enescu et al., 2007, 2009; Peng & Zhao, 2009).49

However, even in these cases, the detection capability of the missing events is far from50

being optimal. A quick fix could be to draw out earthquakes occurred after a large shock,51

for as long as the time required to the magnitude of completeness to return to the av-52

erage value estimated for the whole catalog. Alternatively, one could model the magni-53

tude of completeness as a function of time Mc(t) and keep only those events whose mag-54

nitude is ≥Mc(t) (e.g. Helmstetter et al., 2006; Lippiello et al., 2012). However, these55

approaches are not trivial, since they rely on user-defined criteria for identifying the crit-56

ical events to be removed. Furthermore, a cut-and-run strategy could yield to a severe57

diminishment of the analyzed data, which is not always desirable. More recently, (Zhuang58

et al., 2017, 2019) have proposed a stochastic algorithm to replenish the portions of a59

seismic catalog where smaller events are missing. This approach is based on empirical60

distribution functions that approximately describe the time-magnitude range of data where61

the catalog is assumed to be complete. Furthermore, it cannot be easily extended to the62
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spatial domain and the detection of the area where the record is incomplete is based on63

visual inspection. Here we present RESTORE, a Python toolbox based on a stochastic64

gap-filling method, which reconstructs missing events in the space-time-magnitude do-65

main and implements an automatized recognition of the critical regions with missing events66

(no input required from the user). RESTORE is built on well-known empirical proper-67

ties of earthquake data and relies on a fully data-driven approach, which severely min-68

imizes the number of assumptions and approximations about the data.69

2 The algorithm70

RESTORE (REal catalogs STOchastic REplenishment) allows to generate time,71

location and magnitude of those earthquakes that have not been detected by the seis-72

mic network due to the overlap of earthquake signals in seismic records after the occur-73

rence of a large earthquake. Given the transient characteristic of STAI, the replenish-74

ment of missing data only pertains to limited portions of the catalog, i.e. those being75

affected by the occurrence of a large event. First, the temporal variability of Mc is as-76

sessed by means of a sliding overlapping windows approach, which collects estimates of77

Mc at the end of each window. Since the window has a fixed number of events k and its78

shift δk is constant, estimates of Mc are elapsed by δk events. The algorithm implements79

a statistic-based approach to pinpoint those time intervals where a threshold value for80

the magnitude of completeness M∗c is significantly exceeded (”STAI gaps” from now on).81

For each interval, fluctuations in the completeness magnitude, represented by the δk-shifted82

moving-window estimates of Mc, are accounted for to reconstruct the missing earthquakes:83

the higher the estimated Mc, the higher the number of earthquakes to be replenished.84

It follows that the moving-window approach is functional for both the identification of85

STAI gaps and for their discretization. The latter is essential for a high-resolution tem-86

poral reconstruction of Mc inside the STAI gaps. The algorithm evaluates, for each mag-87

nitude bin in each step, the difference between the observed counts and the counts pre-88

dicted by the Gutenberg-Richter relationship. This approach returns the simultaneous89

estimation of both the number and magnitudes of missing events at the bin level: the90

first is derived from the difference between observed and estimated counts, whereas the91

second is derived from the magnitude value in the bin. Occurrence time and location of92

the simulated events are reconstructed implementing Monte Carlo sampling techniques93

(inverse method, (Devroye, 1986)). More specifically, occurrence times are simulated from94

an uniform distribution whose support are the time limits of the δk-step. The latter is95

based on the assumption that earthquake detection rate can be assumed constant within96

intervals including few events, i.e within very short time intervals. In other words, the97

probability of missing events within a δk-step can be considered time-independent if the98

step width is much shorter than the whole STAI gap width. As regards the spatial in-99

formation, latitude and longitude of missing events are assigned with a probability that100

increases as the average rate of earthquake increases, the latter being derived from a Gaus-101

sian smoothing kernel. In the following, we examine the algorithm steps in more detail.102

2.1 Query user inputs103

The user is required to load the catalog as a csv file, in ZMAP format (i.e., Lon-104

gitude, Latitude, Year, Month, Day, Magnitude, Depth, Hour, Minute, Second). Alter-105

natively, he/she can download it from web services based on FDSN specification, by pro-106

viding the parameters listed in Table 1, left column. There are two main requirements107

for the correct implementation of RESTORE. First, the magnitude type in the seismic108

catalog must be the moment magnitude Mw (a bin size of 0.1 is assumed by default).109

This is required since magnitude scales other than the moment magnitude are inappro-110

priate for rigorous statistical analyses (Kagan, 2013). Second, the catalog should include111

a period of seismic quiescence before the onset of one or more relatively strong seismic112

sequences. This is necessary for the estimation of the reference value for the magnitude113
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Table 1. RESTORE input parametersa.

CATALOG PARAMETERS (optional) INPUT PARAMETERS

Minimum magnitude Moving-window size
Minimum longitude Moving-window step
Maximum longitude Spatial map domain limits
Minimum latitude tseq
Maximum latitude b-value
Maximum depth α (Lilliefors test)

tstart
tend

aLeft: catalog parameters (to be provided only when downloading the catalog from
web services based on FDSN specification) - tstart: string representing the start time
of the catalog in a recognizably valid format; tend: string representing the end time
of the catalog in a recognizably valid format.
Right: RESTORE parameters - tseq: starting time of the seismic sequence
(i.e., end of the seismic quiescent period).

of completeness (M∗c ), which must not be affected by STAI. The parameters that need114

to be set for running RESTORE are reported in Table 1, right column. They will be ex-115

plained in more detail in the subsequent sections.116

2.2 Reference value for the magnitude of completeness117

The reference value M∗c must be evaluated for the seismically quiescent period pre-118

ceding the onset of one or more relatively strong seismic sequences. By default, it is es-119

timated as the first magnitude value such that the hypothesis of exponentially-distributed120

data cannot be rejected at a significance level α (Lilliefors test, Lilliefors, 1969; Clauset121

et al., 2009). Alternatively, the user could input his/her own value for M∗c , based on a122

priori information. RESTORE relies on Mc-Lilliefors, a Python routine which returns123

a robust and rigorous estimation of the magnitude of completeness by the Lilliefors test124

(Herrmann & Marzocchi, 2020b, 2020a). From now on, we always mean that the mag-125

nitude of completeness estimation has been performed by the Mc-Lilliefors routine.126

2.3 Temporal variations in Mc127

RESTORE implements a moving window approach to analyze the variation of the128

magnitude of completeness as a function of time. By default, the window size is k = 1000129

events (following Mignan & Woessner, 2012a), but it could be increased or decreased,130

depending on both the catalog size and the resolution the user needs to achieve. Intu-131

itively, a small window highlights short-term variation in Mc, but it could return a bi-132

ased estimate of Mc if the sample size is too small (due to the decreased power of the133

Lilliefors test); on the contrary, a larger window returns a faster and more robust esti-134

mate of Mc, but it is less sensitive to its transient fluctuations. The window is shifted135

by a step of δk events. By default, δk = 250 (following Mignan & Woessner, 2012a).136

The same considerations made for a larger/smaller window apply for a larger/smaller137

step. Mc is estimated and its values are collected at the end of each window. Since the138

window has a fixed number of events k and its shift δk is constant, estimates of Mc are139

elapsed by δk events.140
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2.4 Automatic detection of STAI gaps141

STAI gaps are identified as those where Mc ≥M∗c + 2σ, i.e. where Mc is signifi-142

cantly larger than the reference value. The bootstrap method (Efron, 1992) is implemented143

to estimate the uncertainty σ about the estimate of M∗c returned by the Lilliefors test.144

Specifically, σ is obtained from 200 bootstrap samples, as suggested in (Woessner & Wiemer,145

2005). The onset time of each gap is set equal to the time of the largest earthquake in146

the first step. Intuitively, it is the one responsible for the raise of the magnitude of com-147

pleteness among the δk events. The end time of each gap is coincident with the occur-148

rence time of the last event in the last step. In order to account for statistical fluctua-149

tions of the magnitude of completeness, small gaps - defined as those with a number of150

events < 2 ∗ δk - are removed.151

2.5 Simulation of missing earthquakes152

RESTORE implements a multi-scale approach for addressing the inherent prob-153

lem of multidimensionality of the seismic process:154

• Small scale: magnitude bin-level estimation of the number and magnitudes of miss-155

ing events (Section 2.5.1);156

• Medium scale: step-level estimation of the occurrence times of missing events (Sec-157

tion 2.5.2);158

• Coarse scale: STAI gap-level simulation of missing events epicenters (Section 2.5.3).159

2.5.1 Simulation of number of missing events and magnitudes160

For a given STAI gap, the algorithm stores as many Mc estimates as the number
of δk-steps in the gap. This information is used to evaluate the number of expected events
at the magnitude bin level by means of the following equation, which relies on the Gutenberg-
Richter frequency-magnitude relationship (we refer to Appendix 1 for its derivation):

N(M ≥MLB) = N(M ≥MUB) · 10b·mbin, (1)

where: 1) MLB (MUB) is the lower (upper) bound of the magnitude bin mbin, with mbin =
0.1 by default; 2) N(M ≥MLB) is the expected number of events with magnitude M ≥
MLB ; 3) N(M ≥MUB) is the observed number of events with magnitude M ≥MUB .
Equation 1 allows to extrapolate the expected number of events with magnitude M ≥
MLB , given the complete recording of events at magnitudes M ≥MUB . It is then straight-
forward to retrieve, for each bin, the expected number of events with magnitudes M =
MLB (MLB ≤M < MUB), given the complete recording of events at magnitudes M ≥
MUB :

N(M = MLB) = N(M ≥MLB)−N(M ≥MUB)

= N(M ≥MUB) · 10b·mbin −N(M ≥MUB)
(2)

Finally, the number of missing events in the bin is derived from the difference between161

the expected number of events in the bin, N(M = MLB), and the observed number of162

events in the bin. RESTORE recursively implements Equation 1 and Equation 2 in or-163

der to estimate the number and magnitudes of missing events for all the bins between164

M∗c - the reference value for the magnitude of completeness - and MS
c , the magnitude165

of completeness estimated within the step. The algorithm starts at the bin whose up-166

per bound is MS
c : since magnitudes in the step are complete above MS

c , Equation 1 and167

Equation 2 are implemented for the estimation of the number of missing events in the168

preceding bin. Then, variables are updated and the algorithm proceeds with the next169

preceding bin, following the recursive approach explained in Algorithm 1.170

–5–
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Algorithm 1: Magnitude simulation

1 for each STAI gap do
2 for each step in the gap do
3 MUB = M∗c ;
4 MLB = MUB −mbin;
5 N(M ≥MUB) −→ Counts of M ≥MUB in the step
6 for each bin in the step do
7 N(M ≥MLB) = N(M ≥MUB) · 10b·mbin

N(M = MLB) = N(M ≥MLB)−N(M ≥MUB) −→ Expected
number of magnitudes in the bin

8 n(M = MLB) −→ Observed number of magnitudes in the bin
9 Nghost = N(M = MLB)− n(M = MLB) −→ Number of missing events

in the bin
10 M = [MLB ] ∗Nghost −→ Vector of missing magnitudes in the bin
11 Update variables:
12 MUB = MLB ;
13 MLB = MUB −mbin;
14 N(M ≥MUB) = N(M ≥MLB)

15 end

16 end

17 end

171

2.5.2 Simulation of occurrence times172

Occurrence times are simulated from an uniform distribution whose support are173

the time limits of the δk-step. As already discussed, earthquake detection rate can be174

assumed constant within intervals including few events, i.e within very short time inter-175

vals. The main steps are summarized in Algorithm 2.176

Algorithm 2: Occurrence times simulation

1 for each STAI gap do
2 for each step in the gap do
3 while count ≤ Number of earthquakes missing in the step do
4 ti−1 = start time of the step;
5 ti = end time of the step;
6 U = RAND(0,1);
7 T = ti−1 + U · (ti − ti−1);
8 count + = 1;

9 end

10 end

11 end

177

2.5.3 Simulation of epicenter coordinates178

Latitude and longitude of missing events are assigned with a probability that in-179

creases as the rate of earthquakes increases, i.e. as the distance from the large event di-180

minishes. The rationale is based on kernel smoothing techniques, commonly implemented181

to forecast the density of future seismicity given the spatial distribution of past events182

(e.g. Frankel, 1995; Helmstetter et al., 2006; Zechar & Jordan, 2010). Specifically, a Gaus-183

sian kernel (Zechar & Jordan, 2010) is used, which is a function of the smoothing dis-184

tance σ only. For each STAI gap, RESTORE extracts the pertaining subset from the cat-185

alog, that is all the events meeting the following two criteria: 1) their occurrence times186

range between the start and end time of the STAI gap; 2) their epicenter coordinates fall187
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within a rectangular grid representing the large shock ”influence area”. As a proxy for188

the latter, the algorithm uses the estimation of the subsurface rupture length through189

the relation proposed by (Mai & Beroza, 2000):190

Mo = 10
3
2 (Mw+10.7) · 10−7; (3)

Rl = 10−5.20+0.35·log(Mo) (4)

The grid is discretized in cells, whose width depends on the bin in the latitude and lon-
gitude direction sbin (sbin = 0.01 deg in both the directions, by default). The smooth-
ing kernel is defined as follow:

Kσ =
1

2πσ2
exp

(
−R2

2σ2

)
, (5)

where σ is the smoothing distance (set to 1 by default) and R is the distance of a given191

earthquake from a given grid node. The kernel smoothing technique offers an intuitive192

representation of seismicity clustering in space: as a matter of fact, events that are close193

in space will mainly contribute to the same (few) nodes in the grid. The events count194

at each grid node is estimated by summing up the contributions from all the events in195

the grid to that specific point. Normalizing the smoothed rate by the total rate yields196

the expected earthquake density over all the grid nodes. The latter is used as the ba-197

sis for assigning epicenter locations to a given grid point, i.e. with a probability that is198

proportional to the expected earthquake rate at that location. This is achieved by sim-199

ply applying the discrete version of the inverse method to the cumulative distribution200

of the normalized smoothed rate. Once an epicenter has been linked to a specific grid201

point XY , its latitude (longitude) is simulated from an uniform distribution whose sup-202

port is ([lat(XY ) − sbin, lat(XY ) + sbin] [lon(XY ) − sbin, lon(XY ) + sbin]). Main203

steps are summarized in Algorithm 3:204

Algorithm 3: Epicenters latitude and longitudes simulation

input: CUMSUM: Cumulative sum of the (sorted) smoothed rate
1 for each STAI gap do
2 while count ≤ Number of earthquakes missing in the STAI gap do
3 U = RAND(0,1);
4 for each grid point XY do
5 if CUMSUM(XY - 1) ≤ U < CUMSUM(XY) then
6 U2 = RAND(0,1);
7 LON = LON(XY − 1) + U2 · sbin;
8 LAT = LAT (XY − 1) + U2 · sbin;

9 end

10 end
11 count + = 1;

12 end

13 end

205

2.6 Output206

RESTORE replenishes the original catalog with the reconstructed events, by prop-207

erly taking into account the occurrence time of the latter. The resulting catalog is saved208

in ZMAP format and differs from the original one only for two aspects: 1) the depth col-209

umn is now a zeros vector, as this information has not been taken into account for the210

spatial simulation of missing earthquakes; 2) there is an additional column which flags211

events to 0 or 1, depending on whether they belong to the original catalog or they have212

been simulated. Additionally, several graphical outputs are returned:213
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• Time evolution of magnitude of completeness, with highlighted all detected STAI214

gaps (the plot neglects the seismic quiescent period);215

• Magnitudes versus sequential numbers for the original and replenished catalogs:216

this is a great, tough qualitative, tool to highlight STAI issues which could pos-217

sible affect earthquake magnitudes through time;218

• Magnitude versus time for 1) the original catalog and the reconstructed events;219

2) the original catalog only;220

• Spatial map of the original events with overlapping reconstructed events;221

• Magnitude-frequency distribution (MFD) for both the original and the replenished222

catalogs.223

Finally, the magnitude of completeness is estimated for both the original and the replen-224

ished catalogs. This provides an additional test for validating the outputs by RESTORE:225

intuitively, we expect the Mc estimated for the replenished catalog to be very close to226

the pre-sequence value M∗c . As for all the previous cases, this is done by means of the227

Lilliefors test. However, the user should keep in mind that the statistical power of the228

Lillieforst test (and, more in general, of the Kolmogorov-Smirnov test) greatly increases229

with the sample size (Stallone, 2018; Marzocchi et al., 2020). It follows that for a large230

number of events, which can be the case for the replenished catalog, the Lilliefors test231

becomes very sensitive to even slight deviations from an exponential distribution. This232

is not necessary ideal, since the detected departures could actually arise from magnitude233

errors. We therefore strongly recommend to inspect the magnitude of completeness of234

the replenished catalog by alternative methods as well, as those implemented in the ZMAP235

software (Wiemer, 2001).236

3 Synthetic test237

As a validation test, we implement numerical modeling, which enables us to con-
trol the number of missing events and their collocation in the magnitude-time-space do-
main. The goal is to check whether the algorithm is capable of reconstructing this in-
formation with an acceptable degree of accuracy. First, we simulate a seismic catalog
by implementing the stochastic program described in (Felzer et al., 2002), which sim-
ulates the ETAS model (Ogata, 1988) as a branching process. In the original code, earth-
quakes with a magnitude larger than 6.5 are modeled as planar sources. We change that
by modeling all the events as point sources. We use the program to simulate a 2-years-
long catalog in Southern California, with magnitudes ranging from 2 to 6.9. We leave
unchanged the remaining parameters needed for the simulation as indicated in the code.
The b-value is set equal to 1. Since our next step is to simulate incompleteness of after-
shocks following the largest earthquake in the catalog, we select a subset of the simu-
lated dataset, which ranges from 1 year before to 3 months after the occurrence of the
largest earthquake (M = 6.9). After this step, the original catalog includes 11,169 events.
We simulate the STAI issue for the largest event by following the approach described in
(Ogata & Katsura, 2006). Specifically, earthquakes are filtered out at a magnitude-dependent
rate, according to the cumulative normal distribution:

F (M |µ, σ) =

∫ M

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx, (6)

where µ and σ are constant: the first is the magnitude with a detection rate of 50%; the238

latter is the standard deviation of the normal distribution. F (M |µ, σ) is the probabil-239

ity of detection at magnitude M . See (Stallone, 2018) for more details. For our simu-240

lations, we set µ = 3 and σ = 0.2; we assume that the magnitude of completeness is241

restored to the reference value 3 days after the occurrence of the large event. The cat-242

alog after STAI modeling includes 7,744 events. Figure 1 shows the frequency-magnitude243

distribution for the original (white circles) and incomplete (yellow circles) catalog, for244

which the STAI issue has been modeled. Figure 2 plots the magnitude of events as a func-245
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Figure 1. Frequency-magnitude distribution for the original synthetic catalog before STAI

modeling (white circles) and after STAI modeling (yellow circles).

tion of time (over a period of 0-3 days from the mainshock) for the original (white cir-246

cles) and incomplete (yellow circles) catalog.247

As a next step, we implement RESTORE for reconstructing the missing events in248

the magnitude-time-space domain. We leave the default values for the window size (1000249

events) and the step (250). The reference value for the magnitude of completeness equals250

the minimum magnitude in the synthetic catalog, i.e. 2.0. We set the b-value for the Gutenberg-251

Richter law to 1. Figure 3 shows some of the graphical outputs returned by the algorithm.252

We observe that occurrence times, magnitude range and locations of missing events have253

been correctly reconstructed. The replenished catalog includes 11, 199 events, i.e. 30 events254

more than the original synthetic catalog. The magnitude of completeness estimated by255

the Lilliefors test is 2.8 and 2.1 for the incomplete and replenished catalog, respectively.256

In order to further inspect the algorithm performance, we compare the frequency-magnitude257

distribution for 1) the original synthetic catalog before STAI modeling; 2) the original258

synthetic catalog after STAI modeling; 3) the replenished catalog. Results are shown in259

Figure 4. This comparison further proves the good performance of the algorithm when260

reconstructing missing events in the magnitude-time-space domain.261

4 Real-case test (Amatrice earthquake)262

We apply RESTORE to the 24 August 2016 Mw 6.2 Amatrice earthquake. The263

downloaded catalog covers the period from 1st January 2016 to 30 September 2016 and264

includes 18,623 events. We leave the default values for the window size (1000 events) and265

the step (250). The seismically quiescent period ranges from 1st January 2016 to 24 Au-266

gust 2016 and includes 2,351 events. We estimate the reference value for the magnitude267

of completeness M∗c with the Lilliefors test provided by the algorithm, which returns M∗c =268
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Figure 2. Magnitude-time plot for events occurred within 3 days from the large shock. White

circles: before STAI modeling. Yellow circles: after STAI modeling.
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Figure 3. Main graphical outputs of the algorithm. Top Left: Magnitudes versus sequential

numbers for the original (synthetic) catalog; Top Right: Magnitudes versus sequential numbers

for the replenished catalog; Bottom Left: Magnitude versus time for 1) the original catalog and

the reconstructed events 2) the original catalog only; Bottom Right: Spatial map of the original

events with overlapping reconstructed events.
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Figure 4. Frequency-magnitude distribution. From left to right: original synthetic catalog

before STAI modeling, original synthetic catalog after STAI modeling, replenished catalog.

1.3. This leaves 11,429 earthquakes with M ≥M∗c . Finally, we set the b-value for the269

Gutenberg-Richter law equal to 1. The replenished catalog includes 17,428 events. Fig-270

ure 5 plots the magnitude of completeness as a function of time, with highlighted the271

detected STAI gaps (four in this case). The magnitude of completeness is recovered to272

the reference value M∗c after about 1 month. Figure 6 shows the other graphical outputs273

returned by the algorithm. While the ground truth is not known in the real-case test,274

we observe that the missing events are correctly reconstructed in a way which is consis-275

tent with data.276

5 Conclusions277

We have presented RESTORE, a new Python toolbox for the reconstruction of mag-278

nitude, time and location of events missed in the coda of large shocks. It relies on very279

few assumptions - e.g. the detection rate of events can be assumed to be constant within280

periods of time that are much shorter than the STAI extent. It also relies on a data-driven281

approach, which is built on well-known empirical properties of earthquake data, such as282

the Gutenberg-Richter law for the frequency-magnitude distribution and the aftershocks283

clustering in space. The critical subsets of the catalog that are affected by STAI are au-284

tomatically detected through a moving-window approach, which identifies statistically285

significant departures of the magnitude of completeness with respect to a reference value.286

We demonstrate the robustness of the algorithm by means of a numerical and a real-case287

test. In the first case, the ground truth is accurately recovered: not only the number of288

missing earthquakes is correctly retrieved, but their space-time-magnitude stochastic dis-289

tribution is correctly resolved as well. The real-test case, which applies to the Mw 6.2290

Amatrice earthquake, further proves the good performance of the algorithm, which re-291

constructs the missed events in a way that is consistent with the data. The main advan-292

tage of RESTORE lies in its fully data-driven approach. However, this could also rep-293

resent a drawback if the following aspects are not carefully taken into consideration:294
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Figure 5. Temporal evolution of the magnitude of completeness, with highlighted the de-

tected STAI gaps. The moving-window includes 1000 events and is shifted by 250 events.

• the quality of the seismic catalog: strong uncertainties about the earthquake pa-295

rameters (epicenter coordinates, magnitude, occurrence time) will affect the prop-296

erties of the simulated events;297

• the seismic quiescent period: it must be carefully selected for an accurate estima-298

tion of the reference value of the magnitude of completeness. Furthermore, it must299

be long enough to include a number of events which must be substantially higher300

than the chosen window size; for an unbiased estimation of M∗c , the user is required301

to select the quiescent period so to include a number of events N which is a mul-302

tiple of the selected window size k (we recommend at least N ' 4 ∗ k);303

• spatial map domain: the same reasoning for the seismic quiescent period applies304

here as well; the selected area should obviously include the large shock/s and, at305

the same time, enough events in the seismic quiescent period;306

• the window size and step: the output provided by RESTORE will be affected by307

the values provided for these parameters; we recommend to test several alterna-308

tives and opt for those assuring the best replenishment. As detailed in the text,309

too small values for the size and step will likely bias the Mc estimate, whereas too310

large values will shadow short-term fluctuations of Mc.311

RESTORE is made freely available and can be downloaded at the link provided in the312

Acknowledgments. It promises to become a valuable research tool to tackle the STAI is-313

sue, which can severely bias any study based on the analysis of real seismic catalogs. Hope-314

fully, it will help reducing these sources of bias, thus leading to better operational earth-315

quake forecasting and seismic hazard assessment.316

6 Data Availability Statement317

The algorithm RESTORE is available at the following Zenodo repository: https://318

doi.org/10.5281/zenodo.3952182, and can also be downloaded from GitHub at this319
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Figure 6. Main graphical outputs of the algorithm. Top Left: Magnitudes versus sequen-

tial numbers for the original catalog; Top Right: Magnitudes versus sequential numbers for the

replenished catalog; Bottom Left: Magnitude versus time for 1) the original catalog and the re-

constructed events 2) the original catalog only; Bottom Right: Spatial map of the original events

with overlapping reconstructed events.
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link: https://github.com/angystallone/RESTORE. The repository includes the dataset320

used for the synthetic test as well. The seismic catalog used for the real-case test (Am-321

atrice earthquake) is the HOmogenized instRUmental Seismic catalog (HORUS) of Italy322

(Lolli et al., 2020) and it can be downloaded at this link: https://horus.bo.ingv.it/.323

The routine Mc-Lilliefors implemented in RESTORE for the magnitude of complete-324

ness estimation is available at the following Zenodo repository: https://doi.org/10325

.5281/zenodo.4162496.326
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Appendix A Calculation of number of missing events330

Here we derive Equation 1 in the text. The frequency-magnitude distribution of
earthquakes is typically described by the Gutenberg-Richter (G-R) exponential law (Gutenberg
& Richter, 1944):

N(M) = 10a−bM , (A1)

where N(M) is the number of events with magnitude above M (M >= Mmin, i.e. the331

minimum magnitude in the earthquake catalog), a is a constant related to the total seis-332

mic rate and b is the b-value, controlling the relative number of large earthquakes in the333

catalog. Let us consider the case where M2 ≥M1. We have:334

N(M ≥M1) = 10a−bM1

N(M ≥M2) = 10a−bM2

We start by expressing N(M ≥ M1) as a function of N(M ≥ M2) and b only, by cal-
culating the ratio:

N(M ≥M1)

N(M ≥M2) = 10−b(M1−M2)
(A2)

This simple trick enables us to rescale the problem, i.e. to get rid of the term 10a, which
is related to the total seismic rate:

N(M ≥M1) = N(M ≥M2) · 10−b(M1−M2) (A3)

We observe that M2 = M1 + n ·mbin, where mbin is the magnitude binning (usually
equal to 0.1). It follows that:

N(M ≥M1) = N(M ≥M2) · 10b·n·mbin (A4)

For one bin only (i.e., n = 1):

N(M ≥M1) = N(M ≥M2) · 10b·mbin (A5)

This equation allows to retrieve the number of expected events with magnitude M ≥335

M1 as a function of the number of events with magnitude M ≥ M2. In other words,336

we can extrapolate the frequency of earthquakes above a given magnitude to any lower337

magnitude cutoff. Note that we implicitly assume the b-value is constant for any sub-338

set of the whole catalog.339
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