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Abstract

Historical simulations of models participating in the 6th phase of the Coupled Model Intercomparison Project (CMIP6) are

evaluated over ten Australian regions for their performance in simulating extreme temperatures. Based on two observational

datasets, the Australian Water Availability Project (AWAP) and the Berkeley Earth Surface Temperatures (BEST), we first

analyze the models’ abilities in simulating the probability distributions of daily maximum and minimum temperature (TX and

TN), followed by the spatial patterns and temporal variations of temperature-related extreme indices, as defined by the Expert

Team on Climate Change Detection and Indices (ETCCDI). Overall, the CMIP6 models are comparable to CMIP5, with modest

improvements shown in CMIP6. Compared to CMIP5, the CMIP6 ensemble tends to have narrower interquartile model ranges

for some cold extremes, as well as narrower ensemble ranges in temporal trends for most indices. Over southeast, tropical and

southern south regions, both CMIP ensembles generally exhibit relatively large deficiencies in simulating temperature extremes.

It is also noted that models with relatively coarse resolution sometimes show better performance, suggesting that some localized

processes may need further improvement in finer-scale models. With the assessment on the probability distributions of TX and

TN, the results of this study provide more robustness on the evaluation of extreme temperatures and more confidence on future

projections. The findings of this study demonstrate only incremental improvement on the simulation of extremes over Australia

from CMIP5 to CMIP6. However, they are useful in informing and interpreting future projections of temperature-related

extremes over the region.
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Abstract 20 

Historical simulations of models participating in the 6th phase of the Coupled Model 21 

Intercomparison Project (CMIP6) are evaluated over ten Australian regions for their performance 22 

in simulating extreme temperatures. Based on two observational datasets, the Australian Water 23 

Availability Project (AWAP) and the Berkeley Earth Surface Temperatures (BEST), we first 24 

analyze the models’ abilities in simulating the probability distributions of daily maximum and 25 

minimum temperature (TX and TN), followed by the spatial patterns and temporal variations of 26 

temperature-related extreme indices, as defined by the Expert Team on Climate Change 27 

Detection and Indices (ETCCDI). Overall, the CMIP6 models are comparable to CMIP5, with 28 

modest improvements shown in CMIP6. Compared to CMIP5, the CMIP6 ensemble tends to 29 

have narrower interquartile model ranges for some cold extremes, as well as narrower ensemble 30 

ranges in temporal trends for most indices. Over southeast, tropical and southern south regions, 31 

both CMIP ensembles generally exhibit relatively large deficiencies in simulating temperature 32 

extremes. It is also noted that models with relatively coarse resolution sometimes show better 33 

performance, suggesting that some localized processes may need further improvement in finer-34 

scale models. With the assessment on the probability distributions of TX and TN, the results of 35 

this study provide more robustness on the evaluation of extreme temperatures and more 36 

confidence on future projections. The findings of this study demonstrate only incremental 37 

improvement on the simulation of extremes over Australia from CMIP5 to CMIP6. However, 38 

they are useful in informing and interpreting future projections of temperature-related extremes 39 

over the region. 40 
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1 Introduction 41 

Extreme temperatures pose severe threats to human society and the natural environment, 42 

such as human health, energy consumption, agriculture and ecosystems (Intergovernmental Panel 43 

on Climate Change (IPCC), 2012). During recent decades, distinct warming trends have been 44 

documented (e.g., Donat et al., 2013; Perkins-Kirkpatrick & Lewis, 2020) and attributed to 45 

anthropogenic influence (e.g., Diffenbaugh et al., 2017; Fischer & Knutti, 2015; Min et al., 46 

2011), which may further change the severity of these impacts (IPCC, 2013). In Australia, 47 

observations also show clear warming trends in extreme temperatures, which is represented by 48 

most global climate models (GCMs) relatively well (e.g., Alexander & Arblaster, 2009, 2017). 49 

However, to provide more confidence in future climate projections, it is critical to investigate 50 

whether new state-of-art climate models exhibit improved performance in simulating 51 

temperature extremes. Furthermore, the Australian climate is highly variable (e.g., Herold et al., 52 

2018; Westra et al., 2016), which is related to a variety of physical mechanisms and 53 

teleconnections to modes of climate variability. For example, the frequency of heatwaves over 54 

southern and northern parts of Australia can be influenced by the El Niño-Southern Oscillation 55 

(ENSO); and for southeastern Australia, there is a positive correlation between the South 56 

Annular Mode (SAM) and heatwave frequency (Perkins et al., 2015). To better understand 57 

model deficiencies, extreme temperatures over different sub-continental regions should also be 58 

documented. 59 

To investigate how extreme temperatures evolve in the past, present and future climate, 60 

global climate models are the main tools available. The global climate models in the 6th phase of 61 

the Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016), organized by the 62 

Working Group on Coupled Modelling (WGCM) of the World Climate Research Programme 63 
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(WCRP), recently became available and will contribute to the Intergovernmental Panel on 64 

Climate Change (IPCC) 6th Assessment Report (AR6). Compared to the previous phase, CMIP5 65 

(Taylor et al., 2012), the models in CMIP6 generally have finer model resolution and improved 66 

physical processes (Eyring et al., 2016; Stouffer et al., 2017). However, the improvements in 67 

model configuration may not always lead to better simulations. Recent studies (e.g., Meehl et al., 68 

2020; Tokarska et al., 2020; Zelinka et al., 2020) have shown that equilibrium climate sensitivity 69 

(ECS), a quantity of how global surface temperature changes once equilibrium is reached in 70 

response to an instantaneous doubling of CO2, has a greater range in CMIP6 (1.8 to 5.6°C). As 71 

documented in Meehl et al. (2020), 12 of the 39 CMIP6 models exceed the upper end of the 72 

assessed ECS range in CMIP5 (1.5 to 4.5 °C). Though this new attribute of CMIP6, compared to 73 

CMIP5, suggests that there will be more severe impacts of future warming in some models, the 74 

higher values may not be realistic (Tokarska et al., 2020), which is likely due to how such 75 

models resolve cloud feedbacks and cloud-aerosol interactions (e.g., Meehl et al., 2020; Zelinka 76 

et al., 2020). 77 

Extreme temperature can be measured in many ways. The Expert Team on Climate 78 

Change Detection and Indices (ETCCDI), organized by the joint World Meteorological 79 

Organization (WMO) Commission on Climatology (CCl)/World Climate Research Programme 80 

(WCRP) project on Climate Variability and Predictability (CLIVAR)/Joint Technical 81 

Commission for Oceanography and Marine Meteorology (JCOMM), defines 16 core indices 82 

(Zhang et al., 2011), which are based on daily-scale data and describe extremes that typically 83 

occur once a year or shorter. Compared to other indices or methods that describe temperature 84 

extremes, such as extreme value theory (e.g., Coles, 2001; Kharin et al., 2007; Kharin et al., 85 

2013; Perkins et al., 2014; Zwiers et al., 2011) and the frequency of record-breaking high or low 86 
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monthly temperatures (Meehl et al., 2009), the ETCCDI indices are consistent, widely used and 87 

easy to interpret (e.g., Alexander & Arblaster, 2017; Kim et al., 2020; Klein Tank et al., 2009; 88 

Sillmann et al., 2013; Zhang et al., 2011). In a global study, using ETCCDI indices, Sillmann et 89 

al. (2013) found that the inter-model spread in CMIP5 decreases for extreme temperatures, 90 

compared to CMIP3. As an updated analysis of Sillmann et al. (2013), Kim et al. (2020) 91 

concluded that there is limited improvement for CMIP6 models in simulating temperature 92 

extremes, both globally and regionally; however, some systematic biases (e.g., the cold bias in 93 

cold extremes over high-latitude regions) still exist. In Australia, there are distinct warming 94 

trends in CMIP5 models for most locations, but cold extremes are generally overestimated, and 95 

warm extremes underestimated (Alexander & Arblaster, 2017). CMIP6 has not been analyzed in 96 

terms of ETCCDI indices over sub-regions for Australia, nor have the CMIP5 or CMIP6 indices 97 

been compared as yet. 98 

Since CMIP6 has not been analyzed in terms of ETCCDI indices over Australian regions, 99 

the aim of this study is to investigate the performance of CMIP6 models in simulating 100 

temperature extremes over Australian regions, compared to the models in CMIP5. The paper is 101 

organized as follows: Section 2 introduces the observed and model data. The methods are 102 

summarized in Section 3. Section 4 describes the results and the discussion and conclusions are 103 

presented in Section 5.  104 
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Table 1. CMIP6 models used in this study 105 

Model Institution 
Horizontal Resolution       

(lon × lat) 

1. ACCESS-CM2 Commonwealth Scientific and Industrial Research Organisation 

(CSIRO) and Australian Research Council Centre of Excellence 

for Climate System Science (ARCCSS), Australia 

192 × 145 

2. ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Organisation 

(CSIRO), Australia 

192 × 144 

3. AWI-CM-1-1-MR Alfred Wegener Institute, Germany 384 × 192 

4. AWI-ESM-1-1-LR 192 × 96 

5. BCC-CSM2-MR Beijing Climate Center, China Meteorological Administration, 

China 

320 × 160 

6. BCC-ESM1 128 × 64 

7. CanESM5 Canadian Centre for Climate Modelling and Analysis, Canada 128 × 64 

8. CNRM-CM6-1 Centre National de Recherches Meteorologiques and Centre 

Europeen de Recherche et Formation Avancees en Calcul 

Scientifique, France 

256 × 128 

9. CNRM-CM6-1-

HR 

720 × 360 

10. CNRM-ESM2-1 256 × 128 

11. FGOALS-f3-L Chinese Academy of Sciences, China 288 × 180 

12. FGOALS-g3 180 × 80 

13. GFDL-CM4 National Oceanic and Atmospheric Administration (NOAA) 

Geophysical Fluid Dynamics Laboratory, United States 

288 × 180 

14. GFDL-ESM4 288 × 180 

15. GISS-E2-1-G National Aeronautics and Space Administration (NASA) 

Goddard Institute for Space Studies, United States 

144 × 90 

16. HadGEM3-

GC31-LL 

Met Office Hadley Centre, United Kingdom 192 × 144 

17. HadGEM3-

GC31-MM 

432 × 324 

18. INM-CM4-8 Institute for Numerical Mathematics, Russia 180 × 120 

19. INM-CM5-0 180 × 120 

20. IPSL-CM6A-LR Institut Pierre-Simon Laplace, France 144 × 143 

21. MIROC-ES2L Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute at the University of 

Tokyo, National Institute for Environmental Studies and RIKEN 

Center for Computational Science, Japan 

128 × 64 

22. MIROC6 256 × 128 

23. MPI-ESM-1-2-

HAM 

HAMMOZ‐Consortium 192 × 96 

24. MPI-ESM1-2-HR Max Planck Institute for Meteorology, Germany 384 × 192 

25. MPI-ESM1-2-LR  192 × 96 

26. MRI-ESM2-0 Meteorological Research Institute, Japan 320 × 160 

27. NorCPM1 Norwegian Climate Center, Norway 144 × 96 

28. NorESM2-LM 144 × 96 

29. NorESM2-MM 288 × 192 

30. SAM0-UNICON Seoul National University, South Korea 288 × 192 

31. UKESM1-0-LL Met Office Hadley Centre, United Kingdom 192 × 144 
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2 Data 106 

In this study, we used daily maximum and minimum temperatures (TX and TN) in the 107 

historical simulations from 31 CMIP6 (Table 1) and 26 CMIP5 models (Table 2). Only one 108 

ensemble member (typically the first member) from each model is considered, as using all 109 

members would overemphasize some models with a large number of simulations (Seneviratne & 110 

Hauser, 2020).  111 

As suggested by previous studies (Alexander & Arblaster, 2017; Sillmann et al., 2013; 112 

Srivastava et al., 2020), there are large differences between observational datasets. To robustly 113 

validate the simulated results produced by the models from CMIP5 and CMIP6, the Australian 114 

Water Availability Project (AWAP; Jones et al., 2009) and the Berkeley Earth Surface 115 

Temperatures (BEST; Rohde, Muller, Jacobsen, Muller, et al., 2013; Rohde, Muller, Jacobsen, 116 

Perlmutter, et al., 2013) are employed here.  117 

AWAP is generated by the Commonwealth Scientific and Industrial Research 118 

Organization (CSIRO), the Australian Bureau of Agricultural and Resource Economics and 119 

Sciences (ABARES) and the Australian Bureau of Meteorology (BoM), which aims to 120 

understand the terrestrial water balance of Australia and the responses of land surface changes to 121 

climate variability and change (Jones et al., 2009). The gridded dataset includes rainfall, 122 

temperature, vapor pressure, solar exposure and the normalized difference vegetation index 123 

(NDVI) at the horizontal resolution of 0.05° × 0.05° (approximately 5 km × 5 km) over the 124 

period 1911–present. Although the analyses over data-sparse regions (e.g., central Western 125 

Australia) should be taken caution as the station network is changed over time and method of 126 

gridding can make timeseries inhomogeneous (Alexander & Arblaster, 2017; King et al., 2013), 127 
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AWAP is a high-quality observed dataset over Australia (King et al., 2017), which in this study 128 

is the primary reference dataset. 129 

 130 

Table2. CMIP5 models used in this study 131 

Model Institution 
Horizontal Resolution     

 (lon × lat) 

1. ACCESS−1.0 Commonwealth Scientific and Industrial Research Organization 

(CSIRO) and Bureau of Meteorology (BOM), Australia 

192 × 145 

2. ACCESS1-3 192 × 145 

3. bcc-csm1–1 Beijing Climate Center, China Meteorological Administration, 

China 

128 × 64 

4. BNU-ESM Beijing Norml University, China 128 × 64 

5. CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 128 × 64 

6. CCSM4 National Center for Atmospheric Research (NCAR), United 

States 

288 × 192 

7. CESM1-BGC National Science Foundation, Department of Energy and 

NCAR, United States 

288 × 192 

8. CMCC-CM Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy 480 × 240 

9. CNRM-CM5 Centre National de Recherches Meteorologiques and Centre 

Europeen de Recherche et Formation Avancees en Calcul 

Scientifique, France 

256 × 128 

10. CSIRO-Mk3–6–0 Commonwealth Scientific and Industrial Research Organization 

(CSIRO) and Queensland Climate Change Centre of Excellence, 

Australia 

192 × 96 

11. FGOALS-s2 State Key Laboratory of Numerical Modelling for Atmospheric 

Sciences and Geophysical Fluid Dynamics, Institute of 

Atmospheric Physics, Chinese Academy of Sciences, China 

128 × 108 

12. GFDL-ESM2G National Oceanic and Atmospheric Administration (NOAA) 

Geophysical Fluid Dynamics Laboratory, United States 

144 × 90 

13. GFDL-ESM2M 144 × 90 

14. GISS-E2-R National Aeronautics and Space Administration (NASA) 

Goddard Institute for Space Studies, United States 

144 × 90 

15. HadGEM2-CC Met Office Hadley Centre, United Kingdom 

 

192 × 144 

16. HadGEM2-ES 192 × 144 

17. IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 96 × 96 

18. IPSL-CM5A-MR 144 × 143 

19. IPSL-CM5B-LR 96 × 96 

20. MIROC5 Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute at the University of 

Tokyo, and National Institute for Environmental Studies, Japan 

256 × 128 

21. MIROC-ESM 128 × 64 

22. MIROC-ESM-

CHEM 

128 × 64 

23. MPI-ESM-LR Max Planck Institute for Meteorology, Germany 192 × 96 

24. MPI-ESM-MR 192 × 96 

25. MRI-CGCM3 Meteorological Research Institute, Japan 320 × 160 

26. NorESM1-M Norwegian Climate Center, Norway 144 × 96 
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 132 

As a globally observed dataset, BEST is also analyzed in this study, which provides daily 133 

high and low temperatures from 1880–present (Rohde, Muller, Jacobsen, Muller, et al., 2013; 134 

Rohde, Muller, Jacobsen, Perlmutter, et al., 2013). Compared to other global observational 135 

datasets (e.g., Global Precipitation Climatology Project (GPCP), Global Historical Climatology 136 

Network (GHCN)), the resolution of the Berkeley data is 1° × 1°, which is relatively higher and 137 

covers a longer period. Moreover, more records (around 37,000) are incorporated into the 138 

dataset, compared to 5,000–7,000 records incorporated into other global datasets. Since the 139 

Berkeley Earth claims to address some major concerns (e.g., data selection, data adjustment, 140 

poor station quality and the urban heat island effect) systematically and objectively, it is also an 141 

opportunity to check its validity in measuring temperature extremes over Australia. 142 

 143 

3 Methods and Data Processing 144 

3.1 Perkins’ Skill Score 145 

As a measure of how well each model can capture the probability distributions of weather 146 

variables in the observations, Perkins’ skill score (PSS; Perkins et al., 2007) is defined as 147 

follows: 148 

PSS = ∑ min(𝑍𝑜,  𝑍𝑚)
𝑛
1  149 

where n is the number of bins used to calculate the probability distribution, 𝑍𝑜 is the frequency 150 

of the observed values, and 𝑍𝑚 is the frequency of simulated values in a given bin. A score of 0 151 
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indicates no overlapping area between the simulated and observed data, and a score of 100% 152 

means the two distributions are identical. 153 

In this study, since the definitions of ETCCDI indices are based on TX and TN, it is 154 

necessary to examine the models’ ability in simulating the distributions of TX and TN before 155 

applying the metrics to conduct research. It is noted that the definitions of some ETCCDI indices 156 

(e.g., cold nights (TN10p)) are not always based on TX or TN which are located in the tails of 157 

their probability distributions. Consequently, we utilized PSS to assess the overall similarity 158 

between the observed and simulated data (e.g., Kumar et al., 2014; Lewis, 2018; Perkins et al., 159 

2007). 160 

 161 

Table 3. Extreme temperature indices used in this study, defined by ETCCDI  162 

Label Index Name Description Unit 

TXx Hottest day Annual maximum value of daily maximum temperature °C 

TXn Coldest day Annual minimum value of daily maximum temperature °C 

TNx Warmest night Annual maximum value of daily minimum temperature °C 

TNn Coldest night Annual minimum value of daily minimum temperature °C 

DTR 
Diurnal 

temperature range 

Annual mean difference between daily maximum and 

minimum temperature 
°C 

TX90p Warm days 
Percentage of time when daily maximum temperature is 

greater than 90th percentile (using running 5-day window) 
% 

TX10p Cold days 
Percentage of time when daily maximum temperature is less 

than 10th percentile (using running 5-day window) 
% 

TN90p Warm nights 
Percentage of time when daily minimum temperature is 

greater than 90th percentile (using running 5-day window) 
% 

TN10p Cold nights 
Percentage of time when daily minimum temperature is less 

than 10th percentile (using running 5-day window) 
% 

WSDI 
Warm spell 

duration index 

Annual count when at least six consecutive days of 

maximum temperature is greater than 90th percentile (using 

running 5-day window) 

days 

CSDI 
Cold spell 

duration index 

Annual count when at least six consecutive days of minimum 

temperature is less than 10th percentile (using running 5-day 

window) 

days 

SU Summer days 
Annual count when daily maximum temperature is greater 

than 25°C 
days 

TR Tropical nights 
Annual count when daily minimum temperature is greater 

than 20°C 
days 
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FD Frost days 
Annual count when daily minimum temperature is less than 

0°C 
days 

 163 

3.2 ETCCDI Indices 164 

ETCCDI indices used in this study are outlined in Table 3. The indices defined in Zhang 165 

et al. (2011) can be classified into four categories: absolute indices (e.g., hottest day (TXx)), 166 

threshold-based indices (e.g., frost days (FD)), percentile indices (e.g., cold days (TX10p)), and 167 

duration indices (e.g., cold spell duration index (CSDI)). Since the definitions of growing season 168 

length (GSL) and ice days (ID) are not suitable over most of Australia (Alexander & Arblaster, 169 

2017), they are excluded here. Furthermore, compared to previous studies (e.g., Alexander & 170 

Arblaster, 2017; Sillmann et al., 2013), the bootstrap resampling procedure proposed by Zhang et 171 

al. (2005) is also applied to the calculations of warm spell duration index (WSDI) and CSDI, and 172 

the spells crossing year boundaries are taken into consideration. 173 

The linear trends of the time series of ETCCDI indices are estimated by Theil-Sen 174 

estimator and Mann-Kendall non-parametric test is used as the significance test (e.g., Alexander 175 

& Arblaster, 2009; Dey et al., 2019). 176 

3.3 Model Performance Metric 177 

Following Sillmann et al. (2013), the evaluation of model performance is based on root-178 

mean-square error (RMSE), which is calculated as: 179 

𝑅𝑀𝑆𝐸 = √〈(𝑋 − 𝑌)2〉 

where X is the model climatology of an ETCCDI indicator, Y represents the corresponding 180 

climatology in the observed data, and the angular brackets denote spatial averaging over a 181 
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particular domain. It is a quantity that measures the degree of agreement between the observed 182 

and simulated data. 183 

3.4 Data Processing 184 

The observed and simulated datasets of TX and TN are first regridded to 1° × 1° 185 

resolution using bilinear interpolation; the calculations of ETCCDI indices are then performed. It 186 

is noted that reversing the order of operation may have significant effects on the resulting 187 

gridded values (e.g., Avila et al., 2015; Chen & Knutson, 2008; Herold et al., 2017; Zhang et al., 188 

2011). For example, indices sensitive to resolution choice (e.g., Maximum 1-day precipitation 189 

amount) are substantially altered when the order of operation is changed (Herold et al., 2017). In 190 

addition, following the practice in King et al. (2015), gridboxes containing less than 75% land 191 

are masked out. 192 

To investigate the Australian extreme temperatures in more detail, Australia is also 193 

divided into nine sub-regions shown in Table 4 and Fig. 1, which is based on a study by Perkins 194 

et al. (2014) and the BoM 195 

(http://www.bom.gov.au/climate/change/about/temp_timeseries.shtml). Ten regions were 196 

determined according to climatological and geographical conditions, abbreviated AUS 197 

(Australia), NA (Northern Australia), SA (Southern Australia), SEA (South East Australia), 198 

MEA (Middle Eastern Australia), TA (Tropical Australia), SWA (South West Australia), SSA 199 

(Southern South Australia), CAU (Central Australia) and MWA (Mid-Western Australia). Since 200 

there has been an increase in in-situ observations since 1950, the analysis is carried out for the 201 

period of 1950 – near-present, and the base period is from 1961 to 1990, which is commonly 202 

used and allows for a standardized quantification. In the next section, each model is first 203 

evaluated for TX and TN using the PSS for each region. Then, all extreme temperature indices 204 

http://www.bom.gov.au/climate/change/about/temp_timeseries.shtml
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are analyzed in terms of the spatial patterns and temporal evolution, as well as the RMSE being 205 

performed. 206 

 207 

Table 4. Latitude and longitude boundaries of Australian regions 208 

Label Region Lat (°S) Lon (°E) 

1. AUS Australia 10-45 110-155 

2. NA Northern Australia 10–26 110–155 

3. SA Southern Australia 26–45 110–155 

4. SEA South East Australia 32.5–45 140–155 

5. MEA Middle Eastern Australia 20–32.5 140–155 

6. TA Tropical Australia 10–20 110–155 

7. SWA South West Australia 27.5–40 110–127.5 

8. SSA Southern South Australia 30–40 127.5–140 

9. CAU Central Australia 20–30 127.5–140 

10. MWA Mid-Western Australia 20–27.5 110–127.5 

 209 

210 
Figure 1. Regions used in the study. Northern Australia (NA) and Southern Australia (SA) are divided by the dashed 211 

line at 26°S, and solid lines denote the boundaries of other Australian subregions. 212 

 213 
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4 Results 214 

4.1 Probability Distributions and PSS 215 

Figs. 2-3 and Figs. 4-5 show the probability distributions of TX and TN and their PSSs 216 

over the Australian regions during the period 1950-2005 for AWAP, BEST, CMIP6 and CMIP5 217 

models. Bin sizes of 0.5°C were used. For the probability distributions of TX (Fig. 2), the two 218 

observations are generally comparable over the regions, though there are slight differences 219 

between AWAP and BEST over the regions SWA and SSA. In contrast, the probability 220 

distributions of TN (Fig. 3) in the two observed datasets show larger differences over most 221 

regions (except NA). Overall, for TN, BEST tends to have right shifted distributions (warmer-222 

side tails), with higher peaks over the northern regions and lower peaks over the southern 223 

regions, compared to AWAP. 224 

For both TX and TN, the multi-model medians in CMIP6 and CMIP5 are generally 225 

similar over all regions (Figs. 2-3). Compared to AWAP, the medians of the two CMIP 226 

ensembles in the probability distributions of TX tend to overestimate the lower tails and 227 

underestimate the upper tails in Fig. 2. For TN (Fig. 3), the lower tails are underestimated and 228 

the upper tails overestimated. Furthermore, the medians in CMIP6 and CMIP5 are more 229 

analogous to AWAP than BEST. The model spread, as measured by the full range of the multi-230 

model ensemble in each CMIP, tends to be larger in the upper tails and narrower in the lower 231 

tails for CMIP6 when compared to CMIP5 (Figs. 2-3). This suggests that more models in CMIP6 232 

tend to show warmer patterns. In particular, for the probability distributions of TX in CMIP6 233 

models, the larger spread in the upper tail is mainly caused by the three models CanESM5, 234 

MIROC6 and MRI-ESM2 (not shown). 235 
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 236 

 237 
Figure 2. Probability distributions of daily maximum temperature (TX) during the period 1950-2005 over Australian 238 

regions for AWAP (black), BEST (yellow), CMIP6_Median (red) and CMIP5_Median (blue); shading denotes the 239 

full range across the models in CMIP6 (red) and CMIP5 (blue). 240 
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 241 

 242 
Figure 3. Same as Fig. 2, but for daily minimum temperature (TN). 243 
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 244 

 245 
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 246 

Figure 4. Perkins’ skill scores for probability distributions of TX over the Australian regions for the period 247 

1950–2005; the colored circles represent CMIP6 models and the models in CMIP5 are denoted by the black 248 

asterisks; the triangles and squares are the multi-model means from CMIP5 and CMIP6. 249 

  250 



manuscript submitted to Earth’s Future 

 

 251 

 252 
 253 

Figure 5. Same as Fig. 4, but for daily minimum temperature (TN). 254 

 255 
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In Figs. 4 and 5, compared to both observations, the multi-model means of PSSs in 256 

CMIP6 and CMIP5 models are generally around 90%, which implies that both CMIP ensembles 257 

simulate the daily-scale extreme temperatures similarly and relatively well. The lower multi-258 

model mean PSSs are found for TX over TA (~83%) and TN over SEA (~82%), TA (~84%) and 259 

SSA (~84%). Also, over most regions shown in Fig. 5 (e.g., AUS, NA, MEA), higher scores for 260 

AWAP does not mean higher scores in BEST, suggesting that the two observed datasets are 261 

significantly different. For the model spreads of PSSs, the full ranges of the probability 262 

distributions for TX and TN in CMIP6 are commonly wider than CMIP5 over the regions. This 263 

could be due to the fact that several models in CMIP6, such as MIROC6 and NorCPM1, show 264 

relatively lower scores. It is also noted that the models with higher resolution (e.g., MRI-ESM2-265 

0) do not generally show higher scores than those with relatively coarse resolution (e.g., 266 

FGOALS-g3; Figs. 4 and 5). As the change of temperature may be more related to large-scale 267 

meteorological patterns (Grotjahn et al., 2016), the relatively lower PSSs in some models with 268 

higher resolution may result from the generation of unrealistic local details (e.g., soil moisture) 269 

in simulations (Lau & Nath, 2012). 270 

In general, models in CMIP6 and CMIP5 can be evaluated quite differently based on 271 

AWAP or BEST; and the multi-model means and spreads of PSSs over most regions in CMIP6 272 

are comparable to that in CMIP5, though the multi-model means are typically slightly lower in 273 

CMIP6 for both TX and TN over most regions (Figs. 4 and 5). This is because some models in 274 

CMIP6, which usually produce lower scores, collectively reduce the ensemble mean. Compared 275 

to AWAP (Fig. 4), MIROC6, NorCPM1, IPSL-CM6A-LR and CanESM5 usually have lower 276 

scores. Of those, NorCPM1 and IPSL-CM6A-LR have cold shifts while warm shifts occur for 277 

MIROC6 and CanESM5 (not shown). In contrast, the PSSs of MIROC-ES2L, MIROC6, MPI-278 
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ESM1-2-HR and NorESM2-LM for the probability distributions of TN are usually lower over 279 

the Australian regions (Fig. 5), which all have warm shifts (not shown). It is interesting to note 280 

that the model MIROC-ES2L typically has lower PSSs in Fig. 5 but relatively higher scores in 281 

Fig. 4, implying that MIROC-ES2L tends to simulate higher temperatures over Australia. 282 

Furthermore, as the model CanESM5 shows a warmer upper side in the probability distributions 283 

of TX and relatively lower scores in Fig. 4, the extreme heat calculated from CanESM5 may be 284 

unrealistic. In addition, although the ECS is a measure of global climate sensitivity, the higher 285 

values in CanESM5 documented in recent studies (e.g., Meehl et al., 2020; Zelinka et al., 2020) 286 

may be doubtful as well. The results based on PSSs suggest that when using historical 287 

simulations from the above models to calculate extremes, the results should be interpreted with 288 

caution.  289 

4.2 Spatial Patterns of Climatologies 290 

Examining the extreme temperature indices averaged over the period 1961-1990 helps us 291 

to determine the magnitude and spatial distributions of model bias. The 30-year climatologies of 292 

TXx, (coldest night) TNn and diurnal temperature range (DTR) for the observations and the 293 

historical simulations from CMIP6 and CMIP5 models are shown in Figs 6-8, as well as the 294 

biases between the simulated and observed datasets. The climatological patterns of other indices, 295 

including coldest day (TXn), warmest night (TNx), WSDI, CSDI, summer days (SU), tropical 296 

nights (TR) and FD, are shown in Supplementary Material Figs. S1-S7. Except for DTR (Fig. 8), 297 

AWAP and BEST exhibit similar patterns for other temperature indices (Figs. 6-7 and Figs. S1-298 

S7). Overall, compared to AWAP, the magnitude in BEST for most indices is higher over most 299 

parts of Australia, although the absolute values of TXx (Fig. 6) and FD (Fig. S7) in BEST are 300 

generally lower. The negligible variation of DTR in BEST (Fig. 8b) is likely caused by the 301 
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minimization process in the Berkeley's homogenization algorithm, which minimizes the mean 302 

square of the local weather term and suppresses regional differences to some extent (Rohde, 303 

Muller, Jacobsen, Muller, et al., 2013; Rohde, Muller, Jacobsen, Perlmutter, et al., 2013).  304 

 305 
Figure 6. Spatial patterns of 30-year climatological TXx (1961–1990) over Australia for a) AWAP, b) BEST, c) the 306 

multi-model mean of CMIP5 (termed “CMIP5_Mean”) and f) the multi-model mean of CMIP6 (termed 307 

“CMIP5_Mean”), and the biases for d) CMIP5_Mean - AWAP, e) CMIP5_Mean - BEST, g) CMIP6_Mean - 308 

AWAP and h) CMIP6_Mean – BEST. 309 



manuscript submitted to Earth’s Future 

 

 310 
Figure 7. Same as Fig. 6, but for TNn. 311 

 312 

 313 
 314 

Figure 8. Same as Fig. 6, but for DTR. 315 
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The observed climatological indices are reasonably well represented by the models from 316 

CMIP6 and CMIP5. However, similar to CMIP5, systematic errors still exist in the CMIP6 317 

multi-model mean. As shown in Figs 6-8 and Figs. S1-S7, the distinct differences are usually 318 

located over the eastern part of tropical Australia, southeast and western Australia. For example, 319 

for TXx, there are cold biases over southwest Australia and warm biases over southeast Australia 320 

(Fig. 6g). In general, compared to AWAP, the multi-model means of CMIP6 appear to show 321 

improvements for some indices (e.g., TXx, TXn, CSDI, SU). 322 

To investigate regional performance of CMIP6 models, box-and-whisker plots are 323 

employed to show ETCCDI indices over the Australian regions (Fig. 9). The boxes indicate the 324 

interquartile model spreads (range between the 25th and 75th quantiles), the black lines within 325 

the boxes are the multi-model medians, the whiskers extend to the edges of 1.5×interquartile 326 

ranges, and “outlier points” that fall outside of the whiskers are denoted by diamonds. Except for 327 

DTR, BEST exhibit broadly higher values than AWAP over most regions (Figs. 9b-i). However, 328 

for TXx (Fig. 9a) and FD (Fig. 9j), the magnitudes of indices in BEST are generally lower than 329 

AWAP. Moreover, the differences between the observational datasets may be comparable to the 330 

interquartile range of the models from CMIP6 and CMIP5 over most regions for many indices 331 

(except TXx, TXn, SU and FD), which may be due to the homogenization algorithm and 332 

relatively poor observational network coverage. This further implies that based on different 333 

observational data, the model evaluation results may differ, which is consistent with previous 334 

studies (e.g., Kim et al., 2020; Sillmann et al., 2013; Srivastava et al., 2020).  335 

Compared to AWAP, the multi-model medians of CMIP6 tend to overestimate the 336 

duration indices (i.e., WSDI and CSDI) over all Australian regions. For absolute and threshold 337 

indices, TXx, TXn, DTR, SU and FD are commonly underestimated by the CMIP6 over most 338 
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regions (except TXx, TXn and SU over SEA); while the medians in CMIP6 models overestimate 339 

TNx, TNn and TR. Over some regions such as SEA, MEA, TA and CAU, there are relatively 340 

higher biases between AWAP and the medians in the CMIP6 models. 341 

 342 

 343 

344 

345 

 346 
Figure 9. Box-and-whisker plots for the 10 ETCCDI indices calculated from 31 CMIP6 models (orange) and 26 347 

CMIP5 models (green) over Australian regions. The boxes indicate the interquartile model spreads (range between 348 

the 25th and 75th quantiles), the black lines within the boxes are the multi-model medians, the whiskers extend to 349 

the edges of 1.5×interquartile ranges and “outliers” outside of the whiskers are denoted by diamonds. The round 350 

circles represent the indices in AWAP (red) and BEST (blue) datasets. 351 

 352 
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For the comparison between CMIP6 and CMIP5 models, the multi-model medians and 353 

interquartile model ranges are analyzed and shown to be broadly comparable. The distinct 354 

differences for the medians are among the absolute indices. For TXx and TNx, the medians in 355 

CMIP6 models are higher than CMIP5. In contrast, for TXn and TNn, CMIP6 shows lower 356 

values over most regions (expect for TXn over the regions CAU and MWA). The interquartile 357 

model ranges in CMIP6 tend to be lower than CMIP5 for TNn, WSDI and CSDI over most 358 

regions, which suggests that the model uncertainty in CMIP6 may be reduced. However, over 359 

some regions such as NA, TA and MEA, the interquartile range tends to be larger for some 360 

indices, compared to other regions, suggesting that models simulating the extremes over these 361 

regions may have more uncertainty. 362 

4.3 Metric Evaluation 363 

With respect to AWAP, the RMSEs for the CMIP6 and CMIP5 models are used to assess 364 

the models’ overall performance in simulating extreme temperature indices averaged for the base 365 

period 1961-1990 over Australian regions (Fig. 10; RMSEs based on BEST is shown in Fig. S8). 366 

The medians in the two ensembles commonly have higher values over tropical and eastern 367 

Australia (Fig. 10). And the models do not perform consistently well over Australian regions (not 368 

shown), which suggests that there is large variability for the performance of the models in 369 

simulating different indices over different regions. For example, in CMIP6, the model MIROC-370 

ES2L has higher RMSEs across all regions for TNn while its performance in simulating TXn is 371 

relatively better than other models (lower RMSEs). The values of RMSEs in CMIP6 also suggest 372 

that the models need further improvement over the regions MEA, TA, CAU and MWA. Overall, 373 

the models HadGEM3-GC31-MM, HadGEM3-GC31-LL and GFDL-CM4 are commonly among 374 
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the best performers, while NorCPM1, NorESM2-LM and MIROC6 tend to show higher RMSEs 375 

(not shown).  376 

377 

378 

 379 

380 

 381 
Figure 10. Box-and-whisker plots for the RMSEs of 14 ETCCDI indices calculated from 31 CMIP6 models (green) 382 

and 26 CMIP5 models (yellow) over Australian regions, with respect to AWAP. The boxes indicate the interquartile 383 
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spreads (range between the 25th and 75th quantiles), the black lines within the boxes are the multi-model medians, 384 

the whiskers extend to the edges of 1.5×interquartile ranges and “outliers” outside of the whiskers are denoted by 385 

diamonds. The round circles represent the multi-model means of RMSEs calculated from CMIP5 with respect to 386 

AWAP and BEST, termed “c5aw_Mean” (purple) and “c5be_Mean” (blue); the squares are the same but for 387 

CMIP6, termed “c6aw_Mean” (yellow) and “c6be_Mean” (red). 388 

 389 

Compared to the RMSEs in CMIP5 models, there are some improvement shown in 390 

CMIP6. Usually, for some cold extremes (e.g., TNn, warm nights (TN90p), TN10p, CSDI and 391 

FD), the interquartile model ranges are commonly narrower in CMIP6. For TXx, TNn and SU, 392 

the means and medians of RMSEs in CMIP6 are generally lower than CMIP5.  393 

4.4 Temporal Variations 394 

Time series of the anomalies and the actual values for extreme temperature indices 395 

averaged over Australia (10-45°S, 110-155°E) are shown in Fig. 11 and Fig. S9, respectively. 396 

Furthermore, the boxplots representing trends over Australia regions are displayed in Fig. 12, 397 

and the number of models that show trends of ETCCDI indices significant at 95% level is 398 

summarized in Table. 5. 399 

As shown in Fig. 11, the temporal variations of the two observations for the extremes are 400 

quite similar and they are reasonably well captured by both the CMIP ensembles. However, for 401 

some indices, differences between AWAP and BEST are substantial. For example, the 402 

differences between the two observations for TR (Fig. S9m) can be as large as the total inter-403 

model range, further indicating the observational uncertainty can be quite large. Consistent with 404 

Alexander and Arblaster (2017), the temporal variations of TNx, TNn and TR in AWAP is close 405 

to the lower end of the model spread in CMIP6 and CMIP5, while the observed TXn, DTR and 406 

FD tend to be at the upper end (Fig. S9). In terms of the model spread, some outliers shown in 407 
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CMIP5 are relieved in CMIP6 (e.g., the outliers shown in TN10p and CSDI produced by the 408 

model GFDL-ESM2G in the year 1964).  409 

In Fig. 12, the trends of temperature indices in the observed and simulated data are 410 

displayed for each region. For all the temperature indices, the warming trends of BEST are 411 

generally higher than AWAP over most regions, with the lower warming trends in BEST usually 412 

located over SSA, CAU and MWA, which are data-sparse regions. Again, the differences 413 

between the observations can be as large as the interquartile model range (e.g., TN10p). 414 

Compared to the medians of CMIP5 models, the medians in CMIP6 are commonly closer to 415 

AWAP (e.g., TXx, warm days (TX90p) and SU). Moreover, both the spreads and interquartile 416 

model ranges tend to be narrower in CMIP6, and there is a larger portion of models in CMIP6 417 

that show the trends significant as compared to CMIP5 (Table 5). This may imply that the model 418 

uncertainty in CMIP6 is somewhat reduced. Over the regions, the interquartile model ranges in 419 

CMIP6 and CMIP5 are usually larger over NA, TA and MWA for some indices (e.g., TNn, 420 

TX90p, TN90p, WSDI and CSDI).  421 

 422 
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424 

425 

 426 

 427 
Figure 11. Time series for the anomalies of the 14 ETCCDI indices averaged over Australia (10-45°S, 110-155°E) 428 

from 1950 to 2014 for AWAP (red), BEST (yellow), CMIP5 (multi-model mean: red solid; multi-model median: red 429 

dashed) and CMIP6 (multi-model mean: blue solid; multi-model median: blue dashed); Shading indicates the full 430 

range of CMIP5 (blue) and CMIP6 (red) models. 431 
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 432 

 433 

 434 

 435 

 436 
Figure 12. Box-and-whisker plots for the trends of 14 ETCCDI indices calculated from 31 CMIP6 models (red) and 437 

26 CMIP5 models (blue) over Australian regions. The boxes indicate the interquartile spreads (range between the 438 

25th and 75th quantiles), the black lines within the boxes are the multi-model medians, the whiskers extend to the 439 

edges of 1.5×interquartile ranges and “outliers” outside of the whiskers are denoted by diamonds. The round circles 440 

represent the indices in AWAP (yellow) and BEST (green) datasets. 441 

 442 
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Table 5. Number of models in CMIP6 and CMIP5 that show trends of ETCCDI indices significant at 95% level 443 

Region 
CMIP 

Phase 
TXx TXn TNx TNn DTR TX90p TX10p TN90p TN10p WSDI CSDI SU TR FD 

AUS 
CMIP6 18 12 26 25 5 24 25 31 31 24 30 23 30 22 

CMIP5 14 4 16 16 3 17 12 24 25 15 20 12 22 11 

NA 
CMIP6 19 8 27 21 7 25 22 30 31 25 30 20 31 13 

CMIP5 12 2 16 13 2 17 11 24 24 16 19 12 22 8 

SA 
CMIP6 13 13 18 25 4 20 23 30 31 16 25 17 25 21 

CMIP5 9 9 11 15 4 11 10 21 23 8 19 10 18 9 

SEA 
CMIP6 4 16 12 18 5 17 25 29 28 10 21 14 21 20 

CMIP5 5 10 5 10 5 10 15 19 22 4 9 7 11 9 

MEA 
CMIP6 8 11 13 22 3 19 15 28 28 16 25 16 25 19 

CMIP5 8 7 9 10 5 11 11 21 21 11 16 13 19 10 

TA 
CMIP6 19 7 27 21 6 24 21 30 30 25 29 18 29 1 

CMIP5 9 3 16 8 2 17 13 21 22 16 15 10 20 1 

SWA 
CMIP6 16 11 13 21 2 23 22 30 31 14 23 13 23 11 

CMIP5 13 10 10 13 5 11 11 16 22 5 12 6 14 4 

SSA 
CMIP6 14 13 9 17 5 17 23 27 28 11 18 13 20 9 

CMIP5 7 8 7 9 4 10 10 18 21 4 12 7 10 7 

CAU 
CMIP6 18 6 23 20 5 21 16 29 28 22 24 17 26 10 

CMIP5 10 2 16 14 2 14 7 21 22 12 13 10 20 9 

MWA 
CMIP6 23 8 27 21 3 24 17 30 31 21 25 18 28 7 

CMIP5 16 5 14 13 2 15 7 22 21 15 16 10 17 3 

 444 

5 Discussion and conclusions 445 

This study examines the performance of the newly released CMIP6 models in simulating 446 

the 30-year climatologies and time series of extreme temperature indices over Australian regions. 447 

Using two observational datasets, AWAP and BEST, as the verification, the historical 448 

simulations from 31 CMIP6 models are compared with 26 models from CMIP5. Since extreme 449 

temperatures are defined based on TX and TN, we also use Perkins’ Skill Score (PSS) to 450 

evaluate the models’ abilities in simulating the probability distributions of TX and TN, for which 451 

we expect more robust conclusions to be obtained. 452 

Similar to previous studies, some differences between AWAP and BEST are found to be 453 

substantial, implying that multiple observations or reanalysis datasets are needed for the 454 
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evaluation studies on climate models (e.g., Alexander & Arblaster, 2017; Herold et al., 2017; 455 

Kim et al., 2020; Sillmann et al., 2013; Srivastava et al., 2020). For example, compared to 456 

AWAP, the spatial pattern of DTR shown in BEST is smoother, which suggests that the process 457 

to minimize the square of the local weather term in the algorithm differs to that of AWAP. 458 

Moreover, while AWAP and BEST use a comparable amount of stations in their calculations 459 

(Jones et al., 2009; Rohde, Muller, Jacobsen, Muller, et al., 2013; Rohde, Muller, Jacobsen, 460 

Perlmutter, et al., 2013), the interpolation procedures in BEST are more complex (Rohde, 461 

Muller, Jacobsen, Muller, et al., 2013; Rohde, Muller, Jacobsen, Perlmutter, et al., 2013). Thus, 462 

due to different underpinning methods it is not surprising that these observational products yield 463 

different ETCCDI values and highlights why multiple datasets should always be used when 464 

evaluating climate models. 465 

Although the performance of CMIP6 and CMIP5 models in simulating extreme 466 

temperatures are comparable, there are some improvements in CMIP6. For TXx, TNn and SU, 467 

the multi-model means and medians of RMSEs in CMIP6 are generally lower. In terms of model 468 

ranges in CMIP6, the interquartile model ranges of RMSEs, for some cold extremes (e.g., TNn, 469 

TN90p, TN10p, CSDI and FD), are usually narrower; and there are narrower spreads and 470 

interquartile model ranges for the temporal trends as well. However, it is noted that the full range 471 

of model results should not be considered as uncertainty, and to know whether the model 472 

uncertainty is reduced depends on our understanding of the physical processes and feedbacks 473 

(Meehl et al., 2020). 474 

With the results from PSS, the RMSEs for some individual models need to be interpreted 475 

with caution. For example, as the model MIROC-ES2L is much better at simulating TX than TN, 476 

the relatively lower RMSEs of some cold extremes for MIROC-ES2L are doubtful. Moreover, 477 



manuscript submitted to Earth’s Future 

 

the lower PSSs and the higher RMSEs for the model NorCPM1confirm that its performance in 478 

simulating extreme heat is among the worst performers. 479 

Over the regions SEA, TA and SSA, both CMIP ensembles usually show relatively large 480 

deficiencies in simulating temperature extremes. As documented in previous studies, TA can be 481 

influenced by the South Pacific convergence zone, tropical cyclones and ENSO (Perkins et al., 482 

2015; Vincent et al., 2011); over southeast Australia, the SAM and the Madden Julian 483 

Oscillation are two important factors related to extremes (Parker et al., 2014; Perkins et al., 484 

2015), and in southern Australia, it is generally assumed that there exists a positive relationship 485 

between the Indian Ocean Dipole (IOD) and extreme events (White et al., 2014). Moreover, with 486 

finer resolution in climate models, which can better represent localized processes (e.g., land 487 

surface influences) and topography, the models’ performance in simulating extreme temperatures 488 

can be further improved over all Australian regions. 489 

In this regional study, it seems that the higher ECS in CMIP6 models does not lead to 490 

regional warmer trends in the historical simulations. However, as suggested by Meehl et al. 491 

(2020), in order to reproduce the historical temperature response, it is likely that the improved 492 

aerosol-cloud interactions in CMIP6 produced large negative radiative forcing, making the ECS 493 

in some CMIP6 models larger. A study on future projections over Australia is needed to further 494 

investigate if higher ECS leads to regional warmer trends. 495 

This study provides an assessment of the CMIP6 models’ ability in simulating extremes, 496 

first analyzing the probability distributions of daily-scale weather variables and then calculating 497 

the extreme indices, for which more robust conclusions are expected. However, it should be 498 

recognized that with more CMIP6 models available, the conclusions may be changed to some 499 
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extent. Also, in the future, remote sensing data may be assimilated into the observations, so that 500 

robust conclusions over the data-sparse regions like western Australia can be obtained. 501 
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