# Land cover changes implications in energy flow and water cycle in São Francisco Basin, Brazil, over the past seven decades

Vitor Juste dos Santos<sup>1</sup>, Maria Lucia Calijuri<sup>2</sup>, and Leonardo Campos Assis<sup>3</sup>

<sup>1</sup>Federal University of Viçosa <sup>2</sup>Universidade Federal de Viçosa <sup>3</sup>Universidade de Uberaba

November 22, 2022

#### Abstract

This research aimed to quantify and qualify alterations in land cover and verify the implications of these modifications for variables related to energy flows and water cycle in São Francisco basin (SFB), located entirely in Brazilian territory, in the second half of the 20<sup>th</sup> century and beginning of the 21<sup>st</sup>. For this, statistical analyzes (descriptive, trends, seasonal and correlations) were used to quantify changes in the variables of land cover and energy/water flows, in addition to relating them. As a result, it was found that the SFB lost 65,680 km<sup>2</sup> of native vegetation (10.4% of basin area) to crops and pastures, reducing water infiltration (-52%) while the rains remained stable (-2%). Water loss increased through evapotranspiration (+5%) and surface runoff (+225%). Such changes in the water cycle have entailed an 11% reduction in São Francisco river long term flow rate (Q<sub>95</sub>), comparing pre and post-1990s period. In SFB, the activities that required water, such as farming activities, are those that promote hydric loss.

 Land cover changes implications in energy flow and water cycle in São Francisco Basin, Brazil, over the past seven decades
 V.J. dos Santos<sup>1</sup>, M. L. Calijuri<sup>1</sup>, L. C. de Assis<sup>2</sup>
 <sup>1</sup> Civil Engineering Department, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa-MG, 36570-900, Brazil. E-mails: vjustedossantos@gmail.com and lucia.calijuri@gmail.com.

<sup>2</sup> Environmental Engineering Department, University of Uberaba - Uniube, Av. Nenê Sabino, 1801, Campus
 9 Aeroporto, Uberaba-MG, 38055-500, Brazil. E-mail: <u>leonardo.assis@uniube.br</u>.

- 11 **Corresponding Author:** Vitor Juste dos Santos (<u>vjustedossantos@gmail.com</u>).
- 12

10

1

2 3

4 5

6

7

## 13 Key-Points:

- 65,680 km<sup>2</sup> of native vegetation loss (10.4% of basin area) to crops and pastures;
- Water inflow by rain kept stable (-2%) and infiltration was reduced (-52%). Water loss increased through evapotranspiration (+5%) and surface runoff (+225%);
- São Francisco river flow rate reduced 11%, comparing pre and post-1990s period. The activities that need water are those that promote hydric loss in the basin.
- 19

## 20 Abstract:

21 This research aimed to quantify and qualify alterations in land cover and verify the implications of these modifications for variables related to energy flows and water cycle in São Francisco 22 basin (SFB), located entirely in Brazilian territory, in the second half of the 20<sup>th</sup> century and 23 beginning of the 21<sup>st</sup>. For this, statistical analyzes (descriptive, trends, seasonal and correlations) 24 were used to quantify changes in the variables of land cover and energy/water flows, in addition 25 to relating them. As a result, it was found that the SFB lost 65,680 km<sup>2</sup> of native vegetation 26 27 (10.4% of basin area) to crops and pastures, reducing water infiltration (-52%) while the rains remained stable (-2%). Water loss increased through evapotranspiration (+5%) and surface 28 runoff (+225%). Such changes in the water cycle have entailed an 11% reduction in São 29 30 Francisco river long term flow rate  $(Q_{95})$ , comparing pre and post-1990s period. In SFB, the activities that required water, such as farming activities, are those that promote hydric loss. 31

- 32
- 33

## 34 Key-Words:

35 Correlation; Flow Rate; Rainfall; Trend Analysis; Water Balance; Water Loss

### 37 **1 Introduction**

Investigating Earth's energy and water cycle is essential to understand global climate dynamics and how it impacts and is influenced by human actions (Seyoum & Milewski, 2017; Umair et al., 2019). The terrestrial climate is susceptible to radiation flows, both those of shortwave originating from solar activities and those of long-wave from solar rays' irradiation on the planet's surface (Mokhtari et al., 2018; Yan et al., 2020; Yang et al., 2017).

43 In addition to the intensity of solar activities, the balance of terrestrial radiation will depend on atmosphere composition, land cover, relief, and the amount of surface water present 44 in the upper lithosphere (Jiang et al., 2021; Mokhtari et al., 2018; Yan et al., 2020). It is already 45 known, therefore, that the energy flux on Earth will depend on the interaction between its various 46 47 spheres (Atmosphere, Lithosphere, Hydrosphere and Biosphere). It is also known that man, nowadays, can influence these different spheres, changing energy and water flows among them, 48 with their actions that change land cover and atmosphere chemical composition (Rodell et al., 49 2004; Umair et al., 2019). 50

51 Precipitated water will be distinguished into two main categories (Umair et al., 2019): i) first is the demand for water required by the atmosphere, called potential evapotranspiration, 52 which will convert part of the water present in the lithosphere, hydrosphere and biosphere into 53 real evapotranspiration, not always reaching the total potential demand, as there is dependence 54 on the amount of water present in the environment (Jiang et al., 2021); ii) second is the surface 55 and subsurface runoff, which the balance between these will depend on relief, soils type, land 56 cover, human activities and atmospheric water demand (Ala-aho et al., 2017; Umair et al., 2019). 57 About 67% of the precipitated water across the globe is converted to moisture into the 58 atmosphere by evapotranspiration (Umair et al., 2019). 59

60 Although the planet has its dynamics in terms of energy and water flows, human beings, mainly after the industrial revolution (Lindsey, 2009), begin to participate in these complex 61 cycles more significantly. Its activities, such as deforestation, irrigation, urbanization, mining, 62 among others, are vectors of changes in terrestrial land cover and atmospheric chemical 63 64 composition. In turn, they directly influence energy flows, altering the radiation balance and, consequently, the heat flow (sensitive and latent), which in turn will influence and modify the 65 planet's surface temperature and cause changes in water exchanges between surface and 66 atmosphere (Das et al., 2018; Umair et al., 2019). 67

To understand these complex interactions between the terrestrial spheres, initiatives emerged, such as the Land Data Assimilation System (LDAS) (<u>https://ldas.gsfc.nasa.gov/</u>). This is developed by the Hydrological Sciences Laboratory of the Goddard Space Flight Center belonging to the National Aeronautics and Space Administration (NASA). With numerical models use, physical processes inherent in the interactions between Earth's surface and atmosphere are modeled from data collected in the field and by orbital images.

From the results, several LDAS projects were developed, which are the Global Land Data Assimilation System (GLDAS), the North American Land Data Assimilation System (NLDAS), the National Climate Assessment - Land Data Assimilation System (NCA-LDAS) and the Famine Early Warning System Network (FEWS NET) Land Data Assimilation System (FLDAS). All of these projects have in common the study and understanding of energy and water terrestrial fluxes, but with different areas and technical specifications with the database used, according to the regional reality.

The use of information generated by models like as LDAS program helps in water resources management, as it is possible to carry out monitoring of drought events, numerical studies of the weather forecast and scientific investigations of water and energy flows (Rodell et al., 2004). Without the application of such models, it would be even more difficult and costly to monitor energy and humidity dynamics with frequent periodicity and adequate geographic scale (Mokhtari et al., 2018; Yang et al., 2017).

Several studies have been carried out based on data generated by LDAS, as the impacts caused by changes in land use and land cover on surface runoff and energy flows, under different climatic conditions, in East Asia (Umair et al., 2019), or to measure water consumption in irrigating crops in agricultural areas in China (Yin et al., 2020). In addition to these, others used data from LDAS to investigate what are the climatic forces associated with occurrences of droughts and wet periods across the planet (Yuan et al., 2019). There are several other examples of studies, which can be found on LDAS website.

In this context, the objective of this research is to identify and measure changes in the energy flow and water cycle in São Francisco Basin (SFB) in the second half of the 20th century and the first two decades of the 21st, and verifying the implications of land cover modifications, caused by human activities in the last four decades, in changes caused in these cycles' dynamics. Although studies have already been carried out for the basin in this sense, there are still certain gaps concerning changes in the inlet and outlet of water and energy, alterations that have beeninfluenced by human activities.

The most recent SFB studies dealing with the water cycle focus on issues related to water availability and demand. Sun et al. (2016) identified a loss rate of 3.3 km<sup>3</sup> of water per year over 13 years of assessment (between 2002 and 2015), caused mainly by the drought that started in 2012 and ended in 2017, which resulted in a loss rate of 27.63 km<sup>3</sup> between 2012 and 2015. In this study, data on precipitation and stored water present on the earth's surface were used, and the influence of the *El Niño* phenomenon on drought period occurrence.

In another research, by Koch et al. (2015), water availability and demand were assessed under two scenarios: i) a regionalized world with slow economic development, high population growth and little awareness of environmental problems; ii) a globalized world with low population growth, high growth in Gross National Product (GNP) and environmental sustainability, also adding climate change scenarios to both. As a result, they found that between 2021 and 2050 the basin will be wetter, with more intense rainy and dry periods, and increased water availability for irrigation and a drop in electricity generation.

In addition to these, some other studies highlight that hydroelectric energy production may cease in this first half of the 21st century in drought periods (de Jong et al., 2018). Also the prices of agricultural products generated in SFB will be affected, which will depend on climate change, the production location, variety of products and production technology (Torres et al., 2012). It is as well estimated that economic values of water for use in irrigation tend to increase in the coming decades (Alcoforado de Moraes et al., 2018).

Although they are important researches, none of them deal with implications that changes in land cover, having as vectors the anthropic activities, cause in the energy flows and water cycle in SFB, a theme that will be the focus of this research.

### 123 2 Materials and Methods

The stages of this research were organized as follows (Figure 1): i) study area determination; ii) definition of variables to be studied; iii) statistical analysis of the variables defined in study area over the available historical series; iv) spatiotemporal analysis of the studied variables; v) evaluation of impacts on the water availability in São Francisco River caused by changes in the studied variables.



130 131

Figure 1 – Methodological flowchart

## 132 **2.1 Study Area**

The São Francisco Basin (SFB) (Figure 2) is located in the Northeast and North of the 133 Southeast of Brazil, with an area of 630,000 km<sup>2</sup> and with its main river running 3,200 km from 134 the source, in the State of Minas Gerais, at its mouth, on the border of the States of Alagoas and 135 Sergipe, flowing into South Atlantic Ocean (Bezerra et al., 2019; de Jong et al., 2018). It is 136 between the latitudes of 21° and 7° South, with climatic characteristics, according to the revised 137 classification of Thornthwaite (Feddema, 2005), ranging from humid and wet sub-humid types 138 between latitudes 21° and 10° South (29% of basin area), until dry sub-humid, semi-arid and arid 139 types between latitudes 17° and 7° South (71%). 140



## 141 142 143 144

In humid and wet sub-humid areas, south and southwest of basin, temperatures reach an 144 average of 20°C (Torres et al., 2012), with potential evapotranspiration ranging from 1,241 to 145 4,344 mm/year, with an average of 2,300 mm/year (Beaudoing & Rodell, 2019), and rains 146 precipitate an average of 1,500 to 2,000 mm/year (Koch et al., 2015; Sun et al., 2016). In dry 147 sub-humid, semi-arid and arid areas, north and northeast of basin, temperatures reach an average 148 of 26.5°C (Torres et al., 2012), with potential evapotranspiration ranging from 1,533 to 5,110 149 150 mm/year, with an average of 2,884 mm/year (Beaudoing & Rodell, 2019), and rainfall precipitates an average of 350 mm/year (Koch et al., 2015; Sun et al., 2016). 151

Precipitation in humid and wet sub-humid areas is mainly associated with the South Atlantic Convergence Zone (SACZ) that operates in the southeastern region of Brazil and southwestern Bahia during the summer (between October and March) (Torres et al., 2012). In the dry sub-humid, semi-arid and arid areas, rains are concentrated during the months of March and April, caused mainly by action of the Intertropical Convergence Zone (ITCZ), which acts more intensely in this period due to weakening of the inter-hemispheric south gradient of sea surface temperature, which allows ITCZ to reach regions further south. In the rest of the year, there is a strong presence of a high-level cyclone over the Amazon, which inhibits rains formations in the
 region and favors dry weather conditions, which is often enhanced by strong *El Niño* events.

The humid and wet sub-humid areas cover almost all the sub-regions of Upper São 161 Francisco and western part of the Middle. The main river has its contribution mainly from these 162 areas, which were responsible for 93%, between 1951 and 1999, of total permanence flow curves 163  $(Q_{95})$ . That is, approximately 43% of basin was responsible for maintaining flow rate that flowed 164 through the riverbed 95% of the time. The other 57%, corresponding to the sub-regions of Low, 165 Lower-Middle, and eastern part of the Middle São Francisco, which are mostly covered by dry 166 sub-humid, semi-arid and arid areas, contributed with remaining 7% of Q<sub>95</sub> (Pereira et al., 2007; 167 Pruski et al., 2004). This showing the importance of the areas closest to its source for 168 maintenance of main river. 169

São Francisco has an average flow rate of 2,850 m<sup>3</sup>/s, ranging from 1,077 to 5,290 m<sup>3</sup>/s (Bezerra et al., 2019), with a permanence flow curve ( $Q_{95}$ ) of 800.4 m<sup>3</sup>/s (Pereira et al., 2007; Pruski et al., 2004). It comes from 70% of the surface waters of entire Northeast region of Brazil (Torres et al., 2012), which has a population of over 53 million people, approximately a quarter of the Brazilian population. Besides, hydroelectric system of this river normally meets 70% of the demand for electricity in Northeast region (de Jong et al., 2018).

Added to these hydrological conditions, the basin has vegetations of Cerrado types (Savannah Formation) with a great diversity of tree vegetations (Forest Formation) in Upper and western sub-region of Middle São Francisco, as well as the vegetation of Caatinga biome, which is widely spaced and smaller, associated with drier and hotter climate in Low, Lower-Middle and east of Middle São Francisco (Creech et al., 2015).

Land use is predominantly agricultural, with crops (46%) and pastures (41%) dominating the land cover in basin. Aside from, there are remnants of large and medium-sized tree vegetation, urban areas, mining, among others. The main agricultural production is soy, with other major crops such as corn, wheat and cotton, in addition to important fruit centers (Juazeiro and Petrolina) (R. C. Correia et al., 2001) and family farming throughout the basin. Vegetations, crops and pastures are on soils of latosol (41% of the basin), podzols (11%), sandy soils (10%) and cambisols (7%) (Alcoforado de Moraes et al., 2018; Creech et al., 2015; Torres et al., 2012).

188 Covering approximately 7.5% of the Brazilian territory, SFB has a population of over 17 189 million people (8% of Brazilian population), 21% of which are considered poor by the country's standards (Sun et al., 2016). Due to population growth and the demand for food, water, jobs and services, the municipalities in basin have had satisfactory socio-economic development in recent decades, but at the cost of natural resources, mainly native vegetation, soil and water, relative with deforestation problems, desertification, water scarcity, pollution and water bodies silting up (Creech et al., 2015; de Jong et al., 2018; Koch et al., 2015).

195 From the above, it is clear that SFB has significant physical-natural and socioeconomic diversity, which are dynamic in space and time. Due to these factors, the basin was defined as a 196 study area precisely because of its dynamics and diversity related to environmental and human 197 aspects, which interfere with each other. The choice focused on dynamics pertinent to energy and 198 water cycles, which are affected by the basin's socio-economic activities, but also affect them. 199 The option for the area is also linked to the fact that the basin has one of the main rivers in 200 201 Brazil, entirely within the national territory, which passes through the driest region and one of the poorest in the country. The river has great national importance due to its strong potential for 202 economic use, mainly linked to agricultural activities, irrigation, public supply, navigation and 203 generation of electric energy, but has been under strong pressure exactly by exploration of these 204 205 same activities.

### 206 **2.2 Variables Definition**

The variables defined in this research were those related to the energy flow and water cycle in SFB, as well as those that can interfere in these cycles, referring to land use and land cover, in addition to the minimum, average and maximum flows rate of São Francisco river (Table 1). The GLDAS database units have been converted, as suggested on Land Data Assimilation System website (<u>https://ldas.gsfc.nasa.gov/faq/ldas</u>), for better comparison between variables.

The Global Land Data Assimilation System (GLDAS) is a program from the National Aeronautics and Space Administration (NASA) in which observational data from orbital images and information collected in the field are used to model the dynamics of terrestrial phenomena linked to energy flow and the water cycle of the planet Earth. Produces results almost in realtime, with resolutions that vary between 2.5° and 1 km, with historical series between 1948 until today with periodic update (Beaudoing & Rodell, 2019; Rodell et al., 2004).

The data used in GLDAS contains relief information, soil types, vegetation and atmospheric variables such as rain and radiation flows. Data assimilation techniques are employed to incorporate hydrological products based on satellite sensor imaging that include
snow cover and water equivalent, soil moisture, surface temperature and leaf area indexes
(Beaudoing & Rodell, 2019; Rodell et al., 2004).

224

|           |                | Table 1 - Database used                                                |                  |                    |
|-----------|----------------|------------------------------------------------------------------------|------------------|--------------------|
|           |                | GLDAS (1948 - 2019)                                                    | Dataset          | Converted          |
| S         | wnet           | Shortwaye Radiation Flow                                               | W/m <sup>2</sup> | W/m <sup>2</sup>   |
| L         | wnet           | Long Wave Radiation Flow                                               | W/m <sup>2</sup> | W/m <sup>2</sup>   |
|           | Oh             | Sensitive Heat Flow                                                    | W/m <sup>2</sup> | W/m <sup>2</sup>   |
| (         | Ole            | Latent Heat Flow                                                       | W/m <sup>2</sup> | W/m <sup>2</sup>   |
| R         | ainf           | Rainfall Rate                                                          | Kg/m²/s          | mm                 |
| Ave       | SurfT          | Average Surface Temperature                                            | K                | °C                 |
| Pot       | tEvap          | Potential Evapotranspiration                                           | W/m²             | mm                 |
| E         | vap            | Real Evapotranspiration                                                | Kg/m²/s          | mm                 |
| Т         | veg            | Vegetation Transpiration                                               | W/m <sup>2</sup> | mm                 |
| Ec        | anop           | Direct Evaporation of Plants Canopy                                    | W/m²             | mm                 |
| Esoil     |                | Direct Evaporation of Bare Soil                                        | W/m²             | mm                 |
| Canint    |                | Moisture in Plants Canopy                                              | Kg/m²            | mm                 |
| RootMoist |                | Root Zone Soil Moisture                                                | Kg/m²            | mm                 |
| Qs        |                | Surface Runoff                                                         | Kg/m²/3h         | mm                 |
| Qsb       |                | Subsurface Runoff                                                      | Kg/m²/3h         | mm                 |
|           |                | <b>MapBiomas (1985 - 2018)</b>                                         | Dataset          | Converted          |
|           |                | [https://mapbiomas.org/]                                               | Units            | Units              |
| L         | ULC            | Lan Use and Land Cover                                                 | -                | -                  |
| [https:   | //Indaac.usg   | MEaSUREs<br>s.gov/data/get-started-data/collection-overview/measures/l | Dataset<br>Units | Converted<br>Units |
| Linepse   | Tree           |                                                                        |                  |                    |
|           | Cover          | Percent Tree Cover (1982 - 2014)                                       | %                | %                  |
|           | Non-           |                                                                        |                  |                    |
| VCF       | Tree           | Percent Non-Tree Cover (1982 - 2014)                                   | %                | %                  |
|           | Cover          |                                                                        |                  |                    |
|           | Bare<br>Ground | Percent Bare Ground (1982 - 2014)                                      | %                | %                  |
| VIP       | NDVI           | Normalized Difference Vegetation Index (1981 - 2019)                   | -                | -                  |
|           |                | ANA (1928 - 2019)                                                      | Dataset          | Converted          |
|           |                | [http://www.snirh.gov.br/hidroweb/]                                    | Units            | Units              |
| Flov      | w Rate         | Minimum, Average and Maximum Flows Rate                                | m³/s             | m³/s               |

225

The Annual Mapping of Land Use and Land Cover in Brazil (MapBiomas) (Souza et al., 2020) is a collaborative network with specialists in Brazilian biomes, land uses, remote sensing, geographic information systems and computer science, which uses cloud processing and automatic classifiers (Random Forest) developed and operated from Google Earth Engine platform. Since its foundation (2015) it has been generating an annual historical series of land use and land cover maps for the whole of Brazil (1985 to 2018 - Collection 4.1), with a spatial resolution of 30 meters using the series of images from Landsat sensors.

The program Making Earth System Data Records for Use in Research Environments 233 (MEaSUREs), from NASA's Land Processes Distributed Active Archive Center (LP DACC), is 234 dedicated to the advancement of remote sensing and the scientific use of measurements from 235 satellite sensors to expand the understanding of terrestrial system, with production and recording 236 of consistent, high quality and long-term data. Among several databases, those used in this 237 research were the Vegetation Continuous Fields (VCF) (Hansen & Song, 2018) and the 238 Vegetation Index and Phenology (VIP) (Didan & Barreto, 2016). The first is a collection that 239 provides global vegetation information from the Advanced Very High-Resolution Radiometer 240 (AVHRR) long-term records between 1982 and 2014, annually, with a spatial resolution of 5,600 241 m containing information on the percentage of tree vegetation cover, non-tree vegetation cover 242 and bare ground. The second is another collection containing a monthly historical series from 243 1981 to 2019, of vegetation and landscape phenology indexes, based on data from the Moderate-244 Resolution Imaging Spectroradiometer (MODIS), AVHRR and Satellite Pour l'Observation de 245 la Terre (SPOT), also with a spatial resolution of 5,600 m. 246

The Hidroweb Portal (http://www.snirh.gov.br/hidroweb/) is a Brazilian tool that is part 247 of the National Water Resources Information System (SNIRH, acronym in Portuguese) and 248 offers access to database that contains all information collected by the National 249 250 Hydrometeorological Network (RHN, acronym in Portuguese), which gathers data on flows rate, river height, rainfall, climatology, sediment and water quality. The data used come from 251 252 conventional fluviometric stations with codes 45298000 (14.3° S and 43.76° W) and 49705000 (10.21 S and 38.82 W), with historical series of daily and monthly frequencies between 1928-253 2019 and 1959-2019, respectively. The use of these two stations is better detailed in item 3.1, as 254 the choice of both was defined based on some results of this research. 255

256 2.3 Statistical Analysis

The statistical procedures were broken down into three stages: i) first performed on variables related to energy flow and water cycle; ii) later on variables related to land use and land cover; iii) and, finally, in the variables related to São Francisco river flow rate and its correlations with the analysis of the previous data.

## 261 **2.3.1 Statistical analysis on variables related to energy and water cycles**

First, the Mann-Kendall test (MK tau) was performed on variables related to energy flow and water cycle, from GLDAS database, monthly, between January 1948 and December 2019.

This first analysis aimed to verify the spatiotemporal behavior of the variables and to search for different trend patterns throughout SFB in the mappings made by the test, pixel by pixel, using the Series Trend tool of the Earth Trend Modeler module available by Idrisi Selva 17.0 software (Eastman, 2016). With the identification of patterns, it was decided to divide the study area into two parts (P1 and P2). This decision is explained in results.

MK tau is a non-parametric trend indicator that measures the degree to which a trend is 269 increasing or decreasing consistently. It was first proposed by Mann (1945) and later studied by 270 271 Kendall (1975), then enhanced by Hirsch et al. (1982) and Hirsch & Slack (1984), which made it possible to take seasonality into account. It has a range of -1 to +1. A value of +1 indicates a 272 trend that continually increases and never decreases. The opposite is true when it has a value of -273 1. The zero value indicates that there is no consistent trend. All combinations of pair values over 274 time are evaluated at each pixel and a count is made of the number that is increasing or 275 decreasing over time. It is simply the relative frequency of increases minus the relative frequency 276 of decreases (Eastman, 2016). 277

With P1 and P2 discriminated, descriptive statistics were made to verify variations of the average values of each variable in both areas, checking if in general there was an increase, stability or decrease in each one of them. Stationarity (KPSS) and homogeneity (Pettitt and Buishand) tests were also performed.

The stationarity test used was the KPSS (Kwiatkowski et al., 1992), which allows to check whether a series is stationary or not. The test result varies from zero to  $\infty$  (Eta Observed Value), in which the higher the critical value (Eta Critical Value), greater the tendency for the series not to be stationary, and the opposite being also true, that is, as closer to zero and below the critical value, greater the tendency to stationarity.

The homogeneity tests used were those by Buishand (1982) and Pettitt (1979), that check if a series is homogeneous over time, or if there is a moment when a change or break in that homogeneity occurs. Such tests were selected based on different sensitivities they present for identification at the change time and because they are widely used to test homogeneity in environmental data series (Bickici Arikan & Kahya, 2019; Rougé et al., 2013; Serinaldi et al.,
2018; Serinaldi & Kilsby, 2015; Yozgatligil & Yazici, 2016).

## 293 **2.3.2 Statistical analysis on variables related to LULC and MEaSUREs**

To measure changes in land use and land cover in SFB, the Change Analysis tool of Land Change Modeler module, from Idrisi Selva 17.0 software, was used (Eastman, 2016). In this tool, it was possible to verify the main changes between the years 1985 and 2018.

In addition to measuring changes in land use and land cover using MapBiomas data, the MEaSUREs database was also used, which contains data on the percentage of tree cover, nontree cover and bare ground (VCF) between 1982 and 2014, and NDVI (VIP) between 1981 and 2019, respectively (Didan & Barreto, 2016; Hansen & Song, 2018).

For MapBiomas land use and land cover data, from the measurements generated in Land Change Modeler module, all classes related to human actions (Farming, Mining, Planted Forest and Urban Areas) were grouped into a single class called Anthropogenic Disorders. In this, Mann-Kendall and homogeneity tests (Pettitt and Buishand) were performed.

In the MEaSUREs data, Mann-Kendall test was used to identify differences spatiotemporal trends in the SFB with Series Trend tool of Earth Trend Modeler module from Idrisi Selva 17.0 software aid (Eastman, 2016).

### 308 **2.3.3 Statistical analysis on variables related to São Francisco river flow rate**

The data series on the minimum, average and maximum flows rate of São Francisco river was analysed in two river stations, one located in P1 (code 45298000) and another in P2 (code 49705000).

Mann-Kendall, stationarity and homogeneity tests were also applied. After the application of this tests and results obtained, these were compared to the results of tests related to the variables of previous topics. This was performed to verify possible implications of changes in land cover, in energy flows and, consequently, in water cycle basin, and the impacts of these processes on flow rate dynamics of São Francisco river at P1 and P2.

To reinforce possible influences of changes in land cover in water cycle basin, correlation analyzes between NDVI and variations related to water cycle were performed, with the aid of Correlate module of Idrisi Selva 17.0 software (Eastman, 2016). The main application of the module is to identify areas that correlate with a specific temporal pattern of interest, calculating the correlation coefficient R between one or more predictors (independent) with a time series of images (dependent) for each pixel. In addition, such analyzes were also performed between historical series of average flows rate in P1 and P2 with rainfall, surface and subsurface runoff data, using Pearson's correlation (Barber et al., 2020).

#### 325 **4 Results and Discussion**

This topic is divided into three subtopics, which are: 1) results related to spatiotemporal analysis of energy flow and water cycle variables; 2) results related to spatiotemporal analyzes of land use and land cover and; 3) results and discussion referring to consequences on the dynamics of São Francisco river flow rate resulting from changes in the variables evaluated in the two previous subtopics.

## **4.1 Spatiotemporal analysis of energy flow and water cycle variables**

Mann-Kendall tests carried out for energy flow variables showed that there were different intensities in trends, positive and negative, of radiation flows (short and long waves) and heat (sensitive and latent), in specific areas in SFB between January 1948 and December 2019 (Figure 3).

Due to this distinctions, the basin was segmented into two parts, P1 and P2 (Figure 3). 336 Such segmentation was based on trends of radiation flows (short and long waves) (Tables 2 and 337 3), which will influence the dynamics of other variables, such as heat flows (sensitive and latent), 338 evapotranspiration and presence of moisture in the canopies and plants root zones. These results 339 also guided the choice for used fluviometric stations locations, aiming to relate the changes in 340 trends of the variables evaluated in GLDAS database with flow rate dynamics. The definition of 341 342 the fluviometric stations followed two conditions: i) close to the place further downstream from P1 and P2, seeking to cover the entire contribution basin and; ii) with sufficient historical series 343 to satisfactorily cover the period of GLDAS and MEaSUREs data. 344

In P1, the predominant trend was from stability to a slight increase in short-wave radiation flow, from 188 to 198 W/m<sup>2</sup>. Regarding long-wave radiation flow, the predominant trend was a slight to moderate increase, from -70 to -64 W/m<sup>2</sup>. Sensitive heat flow also had a predominant tendency to grow from light to moderate, from 49 to 63 W/m<sup>2</sup>. Regarding the latent heat flow, there was a predominantly stable tendency for light growth, from 66 to 71 W/m<sup>2</sup>.



Figure 3 - Trends in variables referring to energy flow and water cycle in SFB between January 1948 and December 352 2019. The red dots are the fluviometric stations locations with codes 45298000 (P1) and 49705000 (P2).

Variable MK Tau Area (%) p-value Area (%) 0.03 to 0.18 95 89 0 Swnet 0.18 to 0.41 5 >0 11 0 to 0.1 10 0 98 Lwnet 0.1 to 0.33 90 >0 2 0.06 to 0.1 2 0 100 Qh 0.1 to 0.4 98 >0 0 54 -0.04 to 0.1 0 79 Qle 0.1 to 0.21 46 >0 21

 Table 2 - Trend (MK) range values and significance (p) analyze for energy flow variables in P1.

354

353

355

Table 3 - Trend (MK) range values and significance (p) analyze for energy flow variables in P2.

| Variable | MK Tau       | Area (%) | p-value | Area (%) |
|----------|--------------|----------|---------|----------|
| Sumot    | 0.13 to 0.18 | 9        | 0       | 100      |
| Swilet   | 0.18 to 0.41 | 91       | > 0     | 0        |
| Lumat    | -0.14 to 0.1 | 42       | 0       | 79       |
| Lwnet    | 0.1 to 0.33  | 58       | > 0     | 21       |
| Oh       | 0.14 to 0.18 | 4        | 0       | 100      |
| Qn       | 0.18 to 0.4  | 96       | > 0     | 0        |
| 01a      | -0.28 to 0.1 | 81       | 0       | 54       |
| Qie      | 0.1 to 0.21  | 19       | > 0     | 46       |

356

In P2, the predominant trend was for a slight to moderate increase in short-wave radiation flow, from 193 to 216 W/m<sup>2</sup>. Regarding long-wave radiation flow, the predominant trend was stability, ranging from -76 to -73 W/m<sup>2</sup>. The predominant trend of sensitive heat flow was moderate growth, from 65 to 91 W/m<sup>2</sup>. Regarding the latent heat flow, there was a predominantly stability trend, from 51 to 53 W/m<sup>2</sup>.

Even though there are specific cases of mild negative trends, in general, variables related to radiation and heat flows have positive trends in SFB, in both areas (P1 and P2) (Table 4).

364

 Table 4 – Absolute and relative variations of SFB radiation and heat flow.

| Variable | Average Var           | Variation - P1 Average Variation - P2 |                      |          |
|----------|-----------------------|---------------------------------------|----------------------|----------|
| variable | Absolute              | Relative                              | Absolute             | Relative |
| Swnet    | $+ 10 \text{ W/m}^2$  | + 5%                                  | $+ 23 \text{ W/m}^2$ | + 12%    |
| Lwnet    | + 6 W/m <sup>2</sup>  | + 9%                                  | + 3 W/m <sup>2</sup> | + 4%     |
| Qh       | + 14 W/m <sup>2</sup> | + 29%                                 | $+ 26 \text{ W/m}^2$ | + 40%    |
| Qle      | + 5 W/m <sup>2</sup>  | + 12%                                 | + 2 W/m <sup>2</sup> | + 4%     |

365

This fact contributes to positive trends of potential evapotranspiration throughout the basin, notably in P2, influenced by significant positive flow of short-wave radiation and specific heat. Even though the potential evapotranspiration has increased considerably, the real evapotranspiration, although it has grown, has not followed it (Table 5).

371

 Table 5 – Absolute and relative average variations of potential and real evapotranspiration in SFB.

| Variable | Average Varia | tion - P1 | Average Variation - P2 |          |  |
|----------|---------------|-----------|------------------------|----------|--|
| variable | Absolute      | Relative  | Absolute               | Relative |  |
| PotEvap  | + 467 mm/year | + 23%     | + 1072 mm/year         | + 45%    |  |
| Evap     | + 66 mm/year  | + 8%      | + 31 mm/year           | + 5%     |  |

372

In P1, the average potential evapotranspiration increased from 2,043 to 2,510 mm/year, while average real evapotranspiration increased from 820 to 883 mm/year. In P2, the average potential evapotranspiration increased from 2,359 to 3,431 mm/year, while average real evapotranspiration increased from 631 to 662 mm/year. This is shown in the trend analysis (MK) results, where for potential evapotranspiration, they were 0.175 and 0.309, P1 and P2 respectively. As for the real evapotranspiration, they were 0.04 and zero, P1 and P2 respectively.

While there was an increase in potential and real evapotranspiration, pluviometric indexes remained stable (Table 6).

381

 Table 6 – Absolute and relative changes in average rainfall indexes in SFB.

| Variable | Average Varia | ation - P1 | Average Variation - P2 |          |  |
|----------|---------------|------------|------------------------|----------|--|
| variable | Absolute      | Relative   | Absolute               | Relative |  |
| Rainf    | - 63 mm/year  | - 5%       | 0 mm/year              | 0%       |  |

382

In P1 the average rainfall decreased from 1.324 to 1.261 mm/year, and in P2 there was no variation in the average, remaining at 694 mm/year. The Mann-Kendall analysis confirms such variations, in P1 with a result equal to zero and in P2 equal to 0.005, that is, a tendency to stability.

If on average the rainfall rates were stable, which led to an increase in real evapotranspiration in P1 and P2, even if not following the potential evapotranspiration, it was the increase in vegetation transpiration (Table 7), which increased in P1 from 265 to 441 mm/year, and in P2 from 290 to 366 mm/year.

| 30 | 1 |
|----|---|
| 39 | I |

 Table 7 – Absolute and relative variations in transpiration/evaporation from different sources in SFB.

| Variabla | Average Varia | tion - P1 | Average Variation - P2 |          |  |
|----------|---------------|-----------|------------------------|----------|--|
| variable | Absolute      | Relative  | Absolute               | Relative |  |
| Tveg     | + 176 mm/year | + 66%     | + 76 mm/year           | + 26%    |  |
| Ecanop   | - 127 mm/year | - 37%     | - 63 mm/year           | - 28%    |  |
| Esoil    | + 13 mm/year  | + 6%      | 0 mm/year              | 0%       |  |

392

This increase in transpiration was accompanied by a tendency towards stability with a small increase in water evaporation directly from bare soil and a reduction in the plants' canopies evaporation. In P1, there was a tendency for a small increase in bare soil direct evaporation, from

227 to 240 mm/year, and a tendency for a decrease in plant' canopy direct evaporation, from 341 396 to 214 mm/year. In P2, there was a tendency to stability in bare soil direct evaporation, 397 remaining at 139 mm/year, and again a tendency to decrease in plant' canopy direct evaporation, 398 from 227 to 164 mm/year. 399

The increase in evapotranspiration was accompanied by a reduction in the presence of 400 water accumulated in plants' canopies and a decrease in soil moisture in the root zone (Table 8). 401 In P1, there was a water dip in plants' canopies from 0.19 to 0.12 mm, and a decrease in soil 402 moisture in root zone from 244 to 228 mm. In P2, there was a water dip in plants' canopies from 403 0.11 to 0.07 mm, and a decrease in soil moisture in root zone from 210 to 179 mm. 404

405 Table 8 – Absolute and relative average variations in the presence of moisture in canopies and root zone of plants in 406

| SI D.      |            |              |                        |          |  |  |
|------------|------------|--------------|------------------------|----------|--|--|
| Variable   | Average Va | riation - P1 | Average Variation - P2 |          |  |  |
| variable   | Absolute   | Relative     | Absolute               | Relative |  |  |
| CanopInt   | - 0.07 mm  | - 37%        | - 0.04 mm              | - 36%    |  |  |
| RootMoinst | - 16 mm    | - 7%         | - 31 mm                | - 15%    |  |  |

407

Additionally, there was an increase in surface runoff and a decrease in subsurface runoff 408 (Table 9). In P1, there was an increase in surface runoff from 16 to 80 mm/year and a decrease in 409 410 subsurface runoff from 445.6 to 283.2 mm/year. In P2, there was an increase in surface runoff from 0.8 to 38.4 mm/year, and a drop in subsurface runoff from 126.4 to 38.4 mm/year. 411

412

| Table 9 - | - Absolute a | nd relative average variations of | of surface and subs | urface runoff in SF | B. |
|-----------|--------------|-----------------------------------|---------------------|---------------------|----|
|           | Variable     | Average Variation - P1            | Average Varia       | ation - P2          |    |

| Variable | Average Variat  | tion - P1 | Average Variation - P2 |          |  |
|----------|-----------------|-----------|------------------------|----------|--|
| variable | Absolute        | Relative  | Absolute               | Relative |  |
| Qs       | + 64 mm/year    | + 400%    | +37.6 mm/year          | + 4,700% |  |
| Qsb      | - 162.4 mm/year | - 36%     | - 88 mm/year           | - 70%    |  |
| Qsb      | - 162.4 mm/year | - 36%     | - 88 mm/year           | - 70%    |  |

413

Figure 4 shows in general how the trends of each variable from energy flow and water 414 cycle behaved over the period evaluated. The results in Mann-Kendall test show that there were 415 increases in heat and radiation flows across SFB, although on average the latent heat flow is 416 stable at P2, in addition to stability in rainfall indexes. The KPSS test confirms such trends, 417 showing that rainfall has a stationary behavior, both in P1 and in P2, over time, whereas for 418 radiation and heat flows the critical value has been reaching, mainly for specific heat and short-419 wave radiation, showing a tendency towards non-stationarity throughout the series. 420

As a consequence of increase in radiation and heat flows, trends in potential and real 421 evapotranspiration are positive, except for real evapotranspiration in P2, tending to stationarity. 422



Figure 4 – Mann-Kendall, KPSS and Homogeneity tests (Pettitt and Buishand) for energy flow and water cycle
 variables in SFB.

Although actual evapotranspiration did not keep up with the increase in potential, it was positive due to the plant transpiration growth, as the water evaporation directly from plants' canopies reduced, and evaporation directly from bare soils was stable. Even though in P2 the KPSS test points out that there is no stationarity in the series, with a possible reduction.

The trends for the presence of moisture in plants' canopies and their root zones are decreasing, ratified by non-stationarity in KPSS test. The reduction in humidity in these places is probably due to the increase in evapotranspiration, but, mainly, to the rise in surface runoff, which has a positive tendency, and to subsurface runoff reduction, which has a downward trend. This shows less water infiltration in the soil, providing less moisture to plants' roots, and less water containment by vegetation, reflected by less water maintenance in their canopies and increase in water loss due to surface runoff.

438 All variables that showed a trend, positive or negative, with significant p-values, obtained results in Pettitt and Buishand tests that showed a break in homogeneity mainly in the 1990s, 439 varying between 1995 and 2000 in P1, and between 1986 and 2000 in P2. The variables latent 440 heat, precipitation, evapotranspiration, direct water evaporation from bare soil and subsurface 441 442 runoff, whether in P1 and P2 or one of them, were those that obtained meanings that were more distant from zero, being exactly those that showed a break in homogeneity in different years to 443 the rest of variables. This means that there was no break in their series, as the results in Mann-444 Kendall and KPSS tests showed that the variables with most distant values of significance were 445 exactly those with no defined trend, that is, tending to stationarity. 446

## 447 **4.2 Spatiotemporal analyzes of land use and land cover**

Between 1985 and 2018 at SFB there was a reduction of 68,631 km<sup>2</sup> of native vegetation 448 formations, equivalent to 10.8% of the basin total area. From this reduction, 95.7% was caused 449 by agricultural activities (perennial and semi-perennial crops, planted forests and pastures), and 450 the remainder, 2,951 km<sup>2</sup> (4.3%), due to the advance of urban areas, mining and other uses 451 (Figure 5). The most degraded vegetation formations were savannas and grasslands, medium and 452 small sizes vegetations from Cerrado and Caatinga biomes and transition between them. The 453 third most affected were forests, of medium and large size, originating mainly in Atlantic Forest 454 biome, but also present in transition areas between these, Cerrado and Caatinga. 455





This reduction in native vegetation formations and their substitution by areas for 459 agricultural use caused a fall in tree cover (Table 10), both in P1 and in P2. As for the non-tree 460 cover, in P1 and P2 there was an increase, reflecting the pasture and crop expansion in detriment 461 of forest and savanna areas, medium to large vegetation. The bare soil, at the same time, was 462 reduced in P1, even with native vegetation degradation, due to territorial growth of agricultural 463 cover. Although there were dynamics similar to P1 in P2, that is, the replacement of native 464 vegetation with pastures and crops, there was a significant increase in bare soil, in contrast to 465 what happened in P1. 466

467

Table 10 - Changes in tree and non-tree vegetable coverings and bare soil in the SFB.

| Tree Cover (%)   |       |       | Non-Tre          | e Cover | (%)   | Bare Soil (%)    |       |       |  |
|------------------|-------|-------|------------------|---------|-------|------------------|-------|-------|--|
| MK<br>Statistics | P1    | P2    | MK<br>Statistics | P1      | P2    | MK<br>Statistics | P1    | P2    |  |
| Average          | -0.06 | -0.2  | Average          | 0.2     | 0.1   | Average          | -0.13 | 0.1   |  |
| Min.             | -0.56 | -0.58 | Min.             | -0.28   | -0.44 | Min.             | -0.6  | -0.58 |  |
| Max.             | 0.56  | 0.56  | Max.             | 0.67    | 0.67  | Max.             | 0.51  | 0.51  |  |
| Std. Dev.        | 0.21  | 0.18  | Std. Dev.        | 0.18    | 0.23  | Std. Dev.        | 0.21  | 0.17  |  |
| MK Range<br>(P1) | Are   | a (%) | MK Range<br>(P1) | Are     | a (%) | MK Range<br>(P1) | Area  | (%)   |  |
| -0.56 to 0       | (     | 50    | -0.28 to 0       |         | 15    | -0.6 to 0        | 7.    | 3     |  |
| 0 to 0.56        | 4     | 40    | 0 to 0.67        | 5       | 85    | 0 to 0.51        | 2     | 7     |  |
| MK Range<br>(P2) | Are   | a (%) | MK Range<br>(P2) | Are     | a (%) | MK Range<br>(P2) | Area  | (%)   |  |
| -0.58 to 0       | 8     | 37    | -0.44 to 0       |         | 36    | -0.58 to 0       | 3     | 0     |  |
| 0 to 0.56        |       | 13    | 0 to 0.67        | (       | 54    | 0 to 0.51        | 7     | 0     |  |

468

Between 1982 and 2014, in P1, tree cover reduced, on average, from 18.5% to 15%, and non-tree cover increased from 77.1% to 81.3%. Bare soil fell from 5.8% to 4%. In P2, tree cover dropped, on average, from 22% to 13.3%, and non-tree cover increased from 72.7% to 76.8%. Bare soil rose from 5.3% to 9.9%.

Concerning the NDVI (Table 11), even with drop in tree cover in P1, there was mostly an increase, which on average rose 0.06, from 0.50 to 0.56. In P2, in general, it remained stable, with a drop of 0.01, from 0.52 to 0.51, approximately half of the area falling and the remainder rising.

 Table 11 - Changes in NDVI in SFB.

| MK Statistics | P1       | MK Statistics | P2       |
|---------------|----------|---------------|----------|
| Average       | 0.18     | Average       | 0        |
| Min.          | -0.32    | Min.          | -0.35    |
| Max.          | 0.56     | Max.          | 0.56     |
| Std. Dev.     | 0.17     | Std. Dev.     | 0.13     |
| MK Range (P1) | Area (%) | MK Range (P2) | Area (%) |

| -0.32 to 0 | 18 | -0.35 to 0 | 57 |
|------------|----|------------|----|
| 0 to 0.56  | 82 | 0 to 0.56  | 43 |

The tests by Pettitt and Buishand (Figure 5), show that the break in homogeneity in historical series of land use and land cover occurred in the late 1990s for P1 and early 2000s for P2, very close to the results achieved for variables from the previous subtopic.

## 481 **4.3 Impacts and changes in São Francisco river' flow rate dynamics**

Although the drop in rainfall index in P1 was small, 5% between 1948 and 2019, the drought events of the last decade (2010-2019) affected the permanence flow curve of São Francisco river ( $Q_{95}$  and  $Q_{50}$ ) (Figure 6). It is also noteworthy that these flows were influenced by the temporal behavior of rainfall, increasing when rainfall increases (between 1950 and 1989) and decreasing when rainfall drops (between 1990 and 2019).

Another relevant factor is the change in land cover caused by the expansion of activities 487 and land uses, mainly linked to agriculture and livestock. Even though in P1 there was a fall in 488 bare soils, this was accompanied by a reduction in tree vegetation cover and an increase in the 489 non-tree vegetation cover, due exactly to increase in pastures and crops areas. This fact has 490 implications for other variables related to energy flow and water cycle, such as the greater flow 491 492 of radiation and, consequently, of heat, causing a greater evapotranspiration process, in addition to reduction in tree cover contribute to increase in surface runoff and reduction of water soil 493 494 infiltration, reducing subsurface runoff and soil moisture in plants root zone.

Even with the reduction in rainfall during the 2000s and 2010s, surface runoff was greater than in previous decades, when there were similar or higher rainfall levels. This has an impact on the long-term flow rate of São Francisco river, given the precipitated water that drains superficially is reaching the watercourses faster due to reduction of friction caused by the replacement of the land cover. Thus, water soil infiltration reduced and caused less subsurface runoff, impairing the recharge of groundwater that supplies tributaries and the main river itself. This supply is even more important in drought periods.

In P2 (Figure 7), the situation is similar to P1, although there was a greater drop in tree cover and a greater increase in bare soil. The exception is the behavior of rainfall over the decades, which is not similar to that of flows rate (Figure 7). This occurs because in P2 the flow rate also follows the behavior of P1 rains, which are responsible for 65% of the water entering basin on average.



508 509

Figure 6 – Influence of rain dynamics and changes in land cover on the behavior of SFB flow rate in P1.



510 511

Figure 7 – Influence of rain dynamics and changes in land cover on the behavior of SFB flow rate in P2.

The impacts are even clearer when the statistical results referring to the maximum, 512 average and minimum flows rate are revealed, which show downward trends (MK) with values 513 of -0.102, -0.109 and -0.084 respectively, in P1 (Figure 6), and P2 (Figure 7) with values of -514 0.151, -0.062 and -0.115. KPSS tests for all flows rate show that the critical levels have been 515 reached, reporting non-stationarity in the series. The tests by Pettitt and Buishand reveal that the 516 break in historical series homogeneity occurred in the early 2000s, in agreement with years 517 obtained for data on land use and land cover and very close to energy flow and water cycle 518 variables. This fact is a strong indication that changes in land use and land cover in SFB have 519 resulted in changes in the natural cycles of energy and water in basin. 520

It is also worth mentioning another factor that influenced the flows rate, which is the 521 construction of the Sobradinho dam, in the state of Bahia. Inaugurated in 1982, from then on the 522 dam contributed to regularization of the São Francisco flow rate. Between 1959 and 1980, in 523 rainy season, maximum and minimum flows rate reached values close to 4,600 and 2,800 m<sup>3</sup>/s, 524 respectively, and 1,200 and 1,100 m<sup>3</sup>/s, respectively, in drought period. From the 1980s to 2000s, 525 even with a certain increase in rainfall, maximum and minimum flows rate did not reach 3,600 526 527 and 2,400 m<sup>3</sup>/s, respectively, in rainy season, and exceeded 1,900 and 1,500 m<sup>3</sup>/s, respectively, in drought period, showing a control of increase in flows rate when the rains occur with greater 528 529 frequency and intensity, and release when the drought occurs (Figure 8).

The flow rate regularization shown in the fluviometric station located in P2 does not occur in the one located in P1, which reveals that there was a clear drop in the maximum and minimum flows rate over the three periods evaluated, except for some similar values that occur between the periods, notably in dry season. Comparing P2 to P1, the amplitude of maximum and minimum flows rate between rainy and drought periods in 2001-2019, shows how the dams can help to regulate water flow rate in watercourses and keep their availability even higher in drought periods.

In P2, despite the reduction in rainfall between 2001 and 2019, there was an average drop of 28% and 8% in maximum and minimum flows rate, respectively. In P1, the fall was 82% and 63%, respectively. This fact shows that without the construction of the dam, the situation in P2, regarding water availability in São Francisco river, could have been more serious in drought periods.



Figure 8 – Seasonal analysis of variables related to water cycle in the SFB.

In 2001-2019 period, in addition to a small reduction in rainfall in P1 and a stable situation in P2, there was also an increase in average evapotranspiration in rainy season and a reduction in drought in both areas (Table 12). There was an increase in average surface runoff practically throughout the year, notably in greatest rainfall period, and average subsurface runoff decreased, mainly in rainy season in P1. The presence of moisture in plants' root zone also

dropped in the period 2001-2019, in both areas. The average reduction of 5% of rainfall in P1 is one of the factors related to the reduction of water present in basin, but the increase in evapotranspiration and surface runoff, caused by changes in land cover, had a greater impact on water maintenance.

|           | Average Variation (P1) |          |            |          |  |  |
|-----------|------------------------|----------|------------|----------|--|--|
| Variable  | Rainy Season           |          | Dry Season |          |  |  |
|           | Absolute               | Relative | Absolute   | Relative |  |  |
| Rainf     | -131 mm                | -11%     | -27 mm     | -11%     |  |  |
| Evap      | +81 mm                 | +14%     | -29 mm     | -10%     |  |  |
| Qs        | +8.4 mm                | +105%    | +0.4 mm    | +80%     |  |  |
| Qsb       | -201 mm                | -55%     | -2 mm      | -7%      |  |  |
| RootMoist | -152 mm                | -9%      | -146 mm    | -12%     |  |  |
|           | Average Variation (P2) |          |            |          |  |  |
| Variable  | Rainy Season           |          | Dry Season |          |  |  |
|           | Absolute               | Relative | Absolute   | Relative |  |  |
| Rainf     | 0 mm                   | 0%       | +26 mm     | +16%     |  |  |
| Evap      | +33 mm                 | +7%      | -47 mm     | -19%     |  |  |
| Qs        | +102 mm                | +3,792%  | +24 mm     | +2,380%  |  |  |
| Qsb       | -5 mm                  | -36%     | -3 mm      | -38%     |  |  |
| RootMoist | -230 mm                | -17%     | -203 mm    | -18%     |  |  |

Table 12 - Seasonal variation of water flow in SFB between 1951-1980 and 2001-2019.

The correlation (R) between the monthly data from January 1981 to December 2019 of NDVI with those of rain, evapotranspiration, root zone soil moisture of the plants, surface and subsurface runoff, shows, to a certain extent, the influence of vegetation maintaining humidity in basin.

Figure 9 shows how the NDVI has a higher correlation with rain, evapotranspiration and soil moisture in root zone. In other words, it shows how the seasonality of rainfall influences the seasonality of vegetation, with vegetation increasing its vigor in the rainy seasons and decreasing in the dry seasons, expect for some areas, probably influenced by local factors, such as relief, irrigation, among others.



The same occurs with soil moisture in root zone and with evapotranspiration, as in the rainy seasons it tends to have a greater water accumulation in the soil, increasing its humidity, and consequently a greater plant development, which also increases evapotranspiration processes. In the dry seasons, the lower occurrence of rain decreases inlet of water into basin, and with increase in energy flow (radiation and heat), it tends to increase potential evapotranspiration, removing more water from the system by this process.

Although NDVI shows the vigor and health status of vegetation with some success, there 572 is some difficulty in defining its size, as there is no direct relationship between this and the 573 values of this index, depending a lot on the type of vegetation evaluated, in which biome and 574 climatic caracteristics is located. For this reason, this index obtained lower correlations with 575 surface and subsurface runoff, which will vary according to the occurrence of precipitation. It 576 also depends on the relief and obstacles that favor or not water infiltration in soil and flow speed 577 on the surface, with plant sizes as important factors in this case. Land covers (bare soil, arboreal 578 and non-arboreal vegetation) were not used in this correlation because their information is of 579 annual frequency, and it is not possible to assess the seasonality of the process, which is 580 581 important in assessing the correlations, mainly due to the differences in the rainy and dry seasons. 582

Correlating average monthly flow rate of the fluviometric stations located in P1 and P2, with variables of rainfall, surface and subsurface runoff (Figure 10), it is clear their importance in the flow rate dynamics over time. However, notably, as subsurface runoff is vital for maintaining flow rate, especially in droughts. This shows how the recharge of groundwater is essential during rainy periods, and this process has been hampered by changes in land cover (Figure 11).

As seen earlier, Buishand and Pettitt tests show that the break in homogeneity for energy 589 flow, water cycle and land cover variables, occurred in the late 1990s and early 2000s, similar, 590 too, the result for these tests in the cases of flows rate in P1 and P2, which were between 2000 591 and 2002. Thus, concerning the pre and post-1990s periods, for the entire SFB, the average 592 reduction in rainfall volume was 2%, from 958.9 to 940.5 mm per year, down 18.4 mm. While 593 rainfall is stable, average evapotranspiration increased by 5% (+38.1 mm), surface runoff 594 increased by 225% (+36 mm) and water infiltration in the soil decreased by 52% (-92.5 mm) 595 (Figure 11). 596



Figure 10 - Correlations between average monthly flow rate with rainfall, surface and subsurface runoff data in 599 SFB. Note: the construction of Sobradinho dam influenced the correlation values at the fluviometric station located in P2, due to flow rate regularization in São Francisco river, which significantly changed its behavior compared to 600 601 other variables natural dynamics.



## 602 603

Figure 11 – Simplified water balance for the pre and post-1990s periods at SFB.

This means that in the period before the 1990s, from 100% of the water volume that entered the basin (precipitation), 79% returned to the atmosphere through evapotranspiration. In the current period, after the 1990s, this ratio is 85%. The loss through surface runoff was 2% and became 6%. In other words, there was a reduction in the water infiltration into the soil, which corresponded to 19% of the water volume, which entered the basin due to rains. This ratio has now dropped to 9% (Figure 11).

## 610 4 Conclusions

In this research, the following conclusions were reached:

• The variables related to energy flow and water cycle have undergone changes between 1948 and 2019, which contribute to evapotranspiration and surface runoff processes increase, and reduction of water infiltration in the soil, with drops in subsurface runoff and in humidity of the plants' root zone;

• The flow rate of São Francisco river has been impacted by such changes, since the water contribution of subsurface runoff has decreased in both P1 and P2, notably in the first, an area that represents 65% of the water entering SFB due to rain;

• The São Francisco river flow rate have been impacted mainly by the drop in the contribution of P1 in the maintenance of basin's water resources, notably by the reduction in

- subsurface runoff of the last two decades, caused by the greater loss of water in surface runoff
- and evapotranspiration;
- In summary, the very activities that depend on greater water maintenance in the basin are
- those that promote water loss through surface runoff and evapotranspiration, reducing flow rates
- of São Francisco river, by decreasing the recharge of aquifers and soil moisture.

## 626 Acknowledgments, Samples, and Data

This research was supported in part by a grant from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Finance Code 001, belonging to the Education Ministry of Brazil. The entire database was obtained from secondary sources, on the websites indicated in subtopic 2.2, and duly referenced. The authors have no conflicts of interest to declare.

## 631 **References**

- Ala-aho, P., Soulsby, C., Wang, H., & Tetzlaff, D. (2017). Integrated surface-subsurface model
  to investigate the role of groundwater in headwater catchment runoff generation: A
  minimalist approach to parameterisation. *Journal of Hydrology*, 547, 664–677.
- 635 https://doi.org/10.1016/j.jhydrol.2017.02.023
- Alcoforado de Moraes, M. M. G., Biewald, A., Carneiro, A. C. G., Souza da Silva, G. N., Popp,
  A., & Lotze-Campen, H. (2018). The impact of global change on economic values of water
  for Public Irrigation Schemes at the São Francisco River Basin in Brazil. *Regional Environmental Change*, 18(7), 1043, 1055. https://doi.org/10.1007/s10113, 018, 1201.0
- 639 Environmental Change, 18(7), 1943–1955. https://doi.org/10.1007/s10113-018-1291-0
- Barber, C., Lamontagne, J. R., & Vogel, R. M. (2020). Improved estimators of correlation and R
   <sup>2</sup> for skewed hydrologic data. *Hydrological Sciences Journal*, 65(1), 87–101.
   https://doi.org/10.1080/02626667.2019.1686639
- Beaudoing, H., & Rodell, M. (2019). GLDAS Noah Land Surface Model L4 monthly 0.25 x 0.25
   degree V2.0, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information
   Services Center (GES DISC). https://doi.org/10.5067/9SQ1B3ZXP2C5
- Bezerra, B. G., Silva, L. L., Santos e Silva, C. M., & de Carvalho, G. G. (2019). Changes of
  precipitation extremes indices in São Francisco River Basin, Brazil from 1947 to 2012. *Theoretical and Applied Climatology*, *135*(1–2), 565–576. https://doi.org/10.1007/s00704018-2396-6
- Bickici Arikan, B., & Kahya, E. (2019). Homogeneity revisited: analysis of updated precipitation
  series in Turkey. *Theoretical and Applied Climatology*, *135*(1–2), 211–220.
  https://doi.org/10.1007/s00704-018-2368-x
- Buishand, T. A. (1982). Some methods for testing the homogeneity of rainfall records. *Journal of Hydrology*, 58(1–2), 11–27. https://doi.org/10.1016/0022-1694(82)90066-X
- Correia, R. C., Araújo, J. L. P., & Cavalcanti, E. de B. (2001). A fruticultura como vetor de
   desenvolvimento: o caso dos municipios de Petrolina (PE) e Juazeiro (BA). Portal
- desenvolvimento: o caso dos municipios de Petrolina (PE) e Juazeiro (BA). Portal
  Embrapa. In R. C. (Embrapa S.-C. Correia & J. L. P. (Embrapa S.-C. Araujo (Eds.),
- 658 CONGRESSO BRASILEIRO DE ECONOMIA E SOCIOLOGIA RURAL. (39th ed., p. 8).

| 659                      | Recife, Brasil: SOBER/ESALQ/EMBRAPA/UFPE/URFPE. Retrieved from                                                                                                                                                                                                                                                                                                    |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 660                      | https://www.embrapa.br/busca-de-publicacoes/-/publicacao/134327/a-fruticultura-como-                                                                                                                                                                                                                                                                              |
| 661                      | vetor-de-desenvolvimento-o-caso-dos-municipios-de-petrolina-pe-e-juazeiro-ba                                                                                                                                                                                                                                                                                      |
| 662<br>663<br>664<br>665 | Creech, C. T., Siqueira, R. B., Selegean, J. P., & Miller, C. (2015). Anthropogenic impacts to the sediment budget of São Francisco River navigation channel using SWAT. <i>International Journal of Agricultural and Biological Engineering</i> , 8(3), 1–20.<br>https://doi.org/10.3965/j.ijabe.20150803.1372                                                   |
| 666                      | Das, P., Behera, M. D., Patidar, N., Sahoo, B., Tripathi, P., Behera, P. R., et al. (2018). Impact of                                                                                                                                                                                                                                                             |
| 667                      | LULC change on the runoff, base flow and evapotranspiration dynamics in eastern Indian                                                                                                                                                                                                                                                                            |
| 668                      | river basins during 1985–2005 using variable infiltration capacity approach. <i>Journal of</i>                                                                                                                                                                                                                                                                    |
| 669                      | <i>Earth System Science</i> , 127(2), 19. https://doi.org/10.1007/s12040-018-0921-8                                                                                                                                                                                                                                                                               |
| 670                      | Didan, K., & Barreto, A. (2016). NASA MEaSUREs Vegetation Index and Phenology (VIP)                                                                                                                                                                                                                                                                               |
| 671                      | Vegetation Indices Monthly Global 0.05Deg CMG [Data set].                                                                                                                                                                                                                                                                                                         |
| 672                      | https://doi.org/10.5067/MEaSUREs/VIP/VIP30.004                                                                                                                                                                                                                                                                                                                    |
| 673                      | Eastman, J. R. (2016). Terrset: Geospatial Monitoring and Modeling System Manual. Retrieved                                                                                                                                                                                                                                                                       |
| 674                      | September 10, 2020, from https://clarklabs.org/wp-content/uploads/2016/10/Terrset-                                                                                                                                                                                                                                                                                |
| 675                      | Manual.pdf                                                                                                                                                                                                                                                                                                                                                        |
| 676                      | Hansen, M., & Song, X. P. (2018). Vegetation Continuous Fields (VCF) Yearly Global 0.05 Deg                                                                                                                                                                                                                                                                       |
| 677                      | [Data set]. https://doi.org/10.5067/MEaSUREs/VCF/VCF5KYR.001                                                                                                                                                                                                                                                                                                      |
| 678                      | Hirsch, R. M., & Slack, J. R. (1984). A Nonparametric Trend Test for Seasonal Data With Serial                                                                                                                                                                                                                                                                    |
| 679                      | Dependence. <i>Water Resources Research</i> , 20(6), 727–732.                                                                                                                                                                                                                                                                                                     |
| 680                      | https://doi.org/10.1029/WR020i006p00727                                                                                                                                                                                                                                                                                                                           |
| 681                      | Hirsch, R. M., Slack, J. R., & Smith, R. A. (1982). Techniques of trend analysis for monthly                                                                                                                                                                                                                                                                      |
| 682                      | water quality data. <i>Water Resources Research</i> , 18(1), 107–121.                                                                                                                                                                                                                                                                                             |
| 683                      | https://doi.org/10.1029/WR018i001p00107                                                                                                                                                                                                                                                                                                                           |
| 684                      | Jiang, S., Wei, L., Ren, L., Xu, C. Y., Zhong, F., Wang, M., et al. (2021). Utility of integrated                                                                                                                                                                                                                                                                 |
| 685                      | IMERG precipitation and GLEAM potential evapotranspiration products for drought                                                                                                                                                                                                                                                                                   |
| 686                      | monitoring over mainland China. <i>Atmospheric Research</i> , 247, 105141.                                                                                                                                                                                                                                                                                        |
| 687                      | https://doi.org/10.1016/j.atmosres.2020.105141                                                                                                                                                                                                                                                                                                                    |
| 688                      | de Jong, P., Tanajura, C. A. S., Sánchez, A. S., Dargaville, R., Kiperstok, A., & Torres, E. A.                                                                                                                                                                                                                                                                   |
| 689                      | (2018). Hydroelectric production from Brazil's São Francisco River could cease due to                                                                                                                                                                                                                                                                             |
| 690                      | climate change and inter-annual variability. <i>Science of the Total Environment</i> , 634, 1540–                                                                                                                                                                                                                                                                 |
| 691                      | 1553. https://doi.org/10.1016/j.scitotenv.2018.03.256                                                                                                                                                                                                                                                                                                             |
| 692                      | Kendall, M. (1975). Multivariate analysis. London: Charles Griffim & Company Ltd.                                                                                                                                                                                                                                                                                 |
| 693<br>694<br>695<br>696 | <ul> <li>Koch, H., Biewald, A., Liersch, S., Azevedo, J. R. G. de, Silva, G. N. S. da, Kölling, K., et al. (2015). Scenarios of climate and land-use change,water demand and water availability for the São Francisco River basin. <i>Revista Brasileira de Ciências Ambientais (Online)</i>, (36), 96–114. https://doi.org/10.5327/z2176-947820151007</li> </ul> |
| 697<br>698<br>699        | Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. How sure are we that economic time series have a unit root? <i>Journal of Econometrics</i> , <i>54</i> (1–3), 159–178.                                                                                   |
|                          |                                                                                                                                                                                                                                                                                                                                                                   |

700 https://doi.org/10.1016/0304-4076(92)90104-Y Lindsey, R. (2009). Climate and Earth's Energy Budget. Retrieved from 701 https://earthobservatory.nasa.gov/features/EnergyBalance 702 Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245. 703 704 https://doi.org/10.2307/1907187 Mokhtari, A., Noory, H., & Vazifedoust, M. (2018). Performance of Different Surface Incoming 705 706 Solar Radiation Models and Their Impacts on Reference Evapotranspiration. Water Resources Management, 32(9), 3053-3070. https://doi.org/10.1007/s11269-018-1974-9 707 708 Pereira, S. B., Pruski, F. F., Da Silva, D. D., & Ramos, M. M. (2007). Study of the hydrological behavior of São Francisco River and its main tributaries. Revista Brasileira de Engenharia 709 710 Agricola e Ambiental, 11(6), 615–622. https://doi.org/10.1590/S1415-43662007000600010 Pettitt, A. N. (1979). A Non-Parametric Approach to the Change-Point Problem. Applied 711 Statistics, 28(2), 126. https://doi.org/10.2307/2346729 712 Pruski, F. F., Pereira, S. B., Novaes, L. F. de, Silva, D. D. da, & Ramos, M. M. (2004). Specific 713 714 yield discharge and mean precipitation in São Francisco Basin. Revista Brasileira de Engenharia Agrícola e Ambiental, 8(2-3), 247-253. https://doi.org/10.1590/s1415-715 43662004000200013 716 717 Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., et al. (2004). The Global Land Data Assimilation System. Bulletin of the American Meteorological 718 Society, 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381 719 Rougé, C., Ge, Y., & Cai, X. (2013). Detecting gradual and abrupt changes in hydrological 720 records. Advances in Water Resources, 53, 33-44. 721 https://doi.org/10.1016/j.advwatres.2012.09.008 722 723 Serinaldi, F., & Kilsby, C. G. (2015). Stationarity is undead: Uncertainty dominates the distribution of extremes. Advances in Water Resources, 77, 17-36. 724 https://doi.org/10.1016/j.advwatres.2014.12.013 725 Serinaldi, F., Kilsby, C. G., & Lombardo, F. (2018). Untenable nonstationarity: An assessment 726 of the fitness for purpose of trend tests in hydrology. Advances in Water Resources, 111, 727 132–155. https://doi.org/10.1016/j.advwatres.2017.10.015 728 Sevoum, W. M., & Milewski, A. M. (2017). Improved methods for estimating local terrestrial 729 water dynamics from GRACE in the Northern High Plains. Advances in Water Resources, 730 110, 279–290. https://doi.org/10.1016/j.advwatres.2017.10.021 731 732 Souza, C. M., Z. Shimbo, J., Rosa, M. R., Parente, L. L., A. Alencar, A., Rudorff, B. F. T., et al. (2020). Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian 733 734 Biomes with Landsat Archive and Earth Engine. *Remote Sensing*, 12(17), 2735. 735 https://doi.org/10.3390/rs12172735 Sun, T., Ferreira, V., He, X., & Andam-Akorful, S. (2016). Water Availability of São Francisco 736 River Basin Based on a Space-Borne Geodetic Sensor. Water, 8(5), 213. 737 https://doi.org/10.3390/w8050213 738 Torres, M. D. O., Maneta, M., Howitt, R., Vosti, S. A., Wallender, W. W., Bassoi, L. H., & 739

| 740<br>741<br>742 | Rodrigues, L. N. (2012). Economic impacts of regional water scarcity in the São Francisco river Basin, Brazil: An application of a linked hydro-economic model. <i>Environment and Development Economics</i> , <i>17</i> (2), 227–248. https://doi.org/10.1017/S1355770X11000362 |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 743               | Umair, M., Kim, D., & Choi, M. (2019). Impacts of land use/land cover on runoff and energy                                                                                                                                                                                       |
| 744               | budgets in an East Asia ecosystem from remotely sensed data in a community land model.                                                                                                                                                                                           |
| 745               | <i>Science of The Total Environment</i> , 684, 641–656.                                                                                                                                                                                                                          |
| 746               | https://doi.org/10.1016/j.scitotenv.2019.05.244                                                                                                                                                                                                                                  |
| 747               | Yan, G., Jiao, Z. H., Wang, T., & Mu, X. (2020). Modeling surface longwave radiation over                                                                                                                                                                                        |
| 748               | high-relief terrain. <i>Remote Sensing of Environment</i> , 237, 111556.                                                                                                                                                                                                         |
| 749               | https://doi.org/10.1016/j.rse.2019.111556                                                                                                                                                                                                                                        |
| 750               | Yang, F., Lu, H., Yang, K., He, J., Wang, W., Wright, J. S., et al. (2017). Evaluation of multiple                                                                                                                                                                               |
| 751               | forcing data sets for precipitation and shortwave radiation over major land areas of China.                                                                                                                                                                                      |
| 752               | <i>Hydrology and Earth System Sciences</i> , 21(11), 5805–5821. https://doi.org/10.5194/hess-21-                                                                                                                                                                                 |
| 753               | 5805-2017                                                                                                                                                                                                                                                                        |
| 754               | Yin, L., Feng, X., Fu, B., Chen, Y., Wang, X., & Tao, F. (2020). Irrigation water consumption of                                                                                                                                                                                 |
| 755               | irrigated cropland and its dominant factor in China from 1982 to 2015. Advances in Water                                                                                                                                                                                         |
| 756               | Resources, 143, 103661. https://doi.org/10.1016/j.advwatres.2020.103661                                                                                                                                                                                                          |
| 757               | Yozgatligil, C., & Yazici, C. (2016). Comparison of homogeneity tests for temperature using a                                                                                                                                                                                    |
| 758               | simulation study. <i>International Journal of Climatology</i> , 36(1), 62–81.                                                                                                                                                                                                    |
| 759               | https://doi.org/10.1002/joc.4329                                                                                                                                                                                                                                                 |
| 760               | Yuan, R. Q., Chang, L. L., Gupta, H., & Niu, G. Y. (2019). Climatic forcing for recent                                                                                                                                                                                           |

- Yuan, R. Q., Chang, L. L., Gupta, H., & Niu, G. Y. (2019). Climatic forcing for recent
   significant terrestrial drying and wetting. *Advances in Water Resources*, *133*, 103425.
   https://doi.org/10.1016/j.advwatres.2019.103425
- 763